

LagSHT

○ Laguerre \mathcal{E} Spherical Harmonic 3D Transform
○ Original work done by Boris Leistedt and Jason D. McEwen (Ieee TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO 12 Dec 2012.)

○ C++ library, author: J.E.C; contributions from M. Reinecke (libsharp). Improve the speed and validity domain of B.L \& J.D.M
○ https://gitlab.in2p3.fr/campagne/LagSHT
\cap Performs from $f_{i j k}=f\left(\theta_{i}, \phi_{j} r_{k}\right)$ with r_{k} the Laguerre roots to $f_{\text {lmn }}$ the cplx coefficients (and vice-versa)
\cap Usefull by product: $a_{l m}$ cplx Ylm-coefficients on each shell r_{k}
Analysis :

$$
\begin{array}{crll}
\text { Analysis : } & f_{i j k} \xrightarrow{S H T} & a_{l m k}=a_{l m}\left(r_{k}\right) & \xrightarrow{\text { Lag.Trans }} f_{l m n} \\
\text { Synthesis : } & f_{l m n} \xrightarrow{\text { Inv.Lag.Trans }} & a_{l m k}=a_{l m}\left(r_{k}\right) & \xrightarrow{\text { Inv.SHT }} f_{i j k}
\end{array}
$$

Some basics (1/2)

$$
\begin{gathered}
f\left(r, \Omega_{r}\right)=\sum_{n=0}^{\infty} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l m n} Y_{l m}\left(\Omega_{r}\right) \mathcal{L}_{n}(r) \\
f_{l m n}=\iiint d r d \Omega_{r} r^{2} f\left(r, \Omega_{r}\right) Y_{l m}^{*}\left(\Omega_{r}\right) \mathcal{L}_{n}(r)
\end{gathered}
$$

$$
Y_{l, m}(\Omega)=\lambda_{l m}(\theta) e^{i m \phi}=\sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(\cos \theta) e^{i m \phi}
$$

$$
\mathcal{L}_{n}(r)=\sqrt{\frac{n!}{(n+\alpha)!}} e^{-r / 2} L_{n}^{(\alpha)}(r) \quad \text { Laguerre Func. }
$$

$$
\int_{\mathbb{R}^{+}} d x x^{2} \mathcal{L}_{n}(x) \mathcal{L}_{m}(x)=\delta_{n m} \quad \int_{\theta=0}^{\pi} \int_{\varphi=0}^{2 \pi} Y_{\ell}^{m} Y_{\ell^{\prime}}^{m^{\prime} *} d \Omega=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} ;
$$

Some basics (2/2)

○ Radial part (Gauss-Laguerre quadrature*)

$$
f(r)=\sum_{n=0}^{N-1} f_{n} \mathcal{L}_{n}^{(\alpha)}(r) \quad f_{n}=\sum_{i=0}^{N-1} w_{i} f\left(r_{i}\right) \mathcal{L}_{n}^{(\alpha)}\left(r_{i}\right)
$$

r_{i} : the roots of generalized Laguerre polynomials w_{i} : the associated Gauss quadrature weights

○ The (θ, ϕ) part uses Spherical Harmonic decomposition library based on some usual spherical pixelizations
*: nb. No quadrature for Bessel transform even if there is possible quantification

Exercices

Stage de M2 A\&A Ph. Bacon
○ Generate $\delta \rho / \rho$ on cube of $512 \times 512 \times 512$ cells each $8 \times 8 \times 8 \mathrm{Mpc}^{3}$ using SimLSS (parametrization of $\mathrm{P}(\mathrm{k})$ by Eisentein et Hu)
○ Fill $\mathrm{N}=128$ sub-shells with the radii : $R_{k}=R_{\max } \times \frac{r_{k}}{r_{N-1}}$
○ Perform LagSHT Analysis to get the $a_{l m k}$ and the $f_{l m n}$
○ Computes "with BAO" or NoOsc \& ratio BAO/NoOsc

$$
\begin{aligned}
& C_{l}(k)=\frac{1}{2 l+1} \sum_{m=-l}^{l}\left|a_{l m}\right|^{2} \\
& C_{l}(n)=\frac{1}{2 l+1} \sum_{m=-l}^{l}\left|f_{l m n}\right|^{2}
\end{aligned}
$$

\cap Change $\left(\Omega_{\Lambda}, \Omega_{\mathrm{b}} / \Omega_{\mathrm{m}}\right)$

$C L(l, z)_{B A O} / C l(l, z)_{\text {NoOSC }}$

The (black/pink) curves give the locations of peak/valey using the simple formula

$$
\left(\frac{4 n \pm 1}{2}\right) \frac{\pi D_{c o m}(z)}{r_{s}}
$$

Cosmology param.

anas anas.

ℓ	1er creux	1er pic	2eme creux	2eme pic
ℓ mesuré	47	80	120	155
ℓ formule	50	84	117	150
$\Delta \ell / \ell$	5%	$6,3 \%$	$2,5 \%$	$3,2 \%$

Compatible with Eisenstein et Hu parametrization accuracy

$C_{\ell}(\ell, n)_{\mathrm{BAO}} / C_{\ell}(\ell, n)_{\text {nobaO }}$

Summary

○ LagSHT is publicly available well tested by M.R \& me on the numerical/speed side

○ Simple analysis seems to give satisfactory results
○ Possible future studies: «Fisher matrix»

$$
\begin{aligned}
& \quad C_{l}\left(n, n^{\prime}\right)=\frac{1}{2 l+1} \sum_{m} f_{l m n} f_{l m n^{\prime}}^{*}=\mathbb{C}_{l} \\
& F_{\alpha \beta} \propto \sum_{l} \frac{2 l+1}{2} \operatorname{Tr}\left[\mathbb{C}_{l}^{-1} \frac{\partial \mathbb{C}_{l}}{\partial \Theta_{\alpha}} \mathbb{C}_{l}^{-1} \frac{\partial \mathbb{C}_{l}}{\partial \Theta_{\beta}}\right] \\
& \Theta=
\end{aligned}
$$

○ Link «Laguerre \rightarrow Bessel» in progress (Maths Ok, Numerical pbs currently investigated)

