

Outline

1. Cosmic rays

2. Fermi-LAT

3. Supernova Remnants

- > Highly energetic particles coming from space
- > 1912 : discovered by Victor Hess
- > Galactic and extra-galactic origin

- > Highly energetic particles coming from space
- > 1912 : discovered by Victor Hess
- > Galactic and extra-galactic origin

- > Highly energetic particles coming from space
- > 1912 : discovered by Victor Hess
- > Galactic and extra-galactic origin

- > Highly energetic particles coming from space
- > 1912 : discovered by Victor Hess
- > Galactic and extra-galactic origin

What is the link with Gamma Astronomy?

• Cosmic rays = charged particles

==> deflected by magnetic field

What is the link with Gamma Astronomy?

- Cosmic rays = charged particles
 ==> deflected by magnetic field
- But cosmic rays accelerators also produce gamma rays
 => not deflected (neutral particles)

What is the link with Gamma Astronomy?

- Cosmic rays = charged particles
 - ==> deflected by magnetic field
- But cosmic rays accelerators also produce gamma rays
 => not deflected (neutral particles)
- Usefulness of Gamma Astronomy:
 - ==> Search for cosmic ray accelerators using gamma rays
 - Ground-based telescope: H.E.S.S., Veritas, MAGIC, ...
 - Space-based telescope: Fermi Large Area Telescope

Gamma ray emission in SNR

- Three ways to produce gamma-rays in SNR:
 - Bremsstrahlung radiation (charged particules)
 - Inverse Compton Scattering (electrons)
 - Decay of neutral pions (protons)

Gamma ray emission in SNR

- Three ways to produce gamma-rays in SNR:
 - Bremsstrahlung radiation (charged particules)
 - Inverse Compton Scattering (electrons)
 - Decay of neutral pions (protons)

Gamma ray emission in SNR

- Three ways to produce gamma-rays in SNR:
 - Bremsstrahlung radiation (charged particules)
 - Inverse Compton Scattering (electrons)
 - Decay of neutral pions (protons)

The Fermi - Large Area Telescope (LAT)

The Fermi - Large Area Telescope (LAT)

Supernova Remnants

• First things first : what is a supernova (SN)?

Supernova Remnants

- First things first : what is a supernova (SN)?
 - explosion of a dead/near-to-death star
 - Two major types of supernova:
 - Thermonuclear SN (Type Ia) ==> no star residue
 - Core-collapse SN ==> star residue : neutron star (pulsar)

Supernova Remnants

- What is a supernova remnant?
 - Shock wave produced by the SN, propagating through space and interacting with the interstellar medium

1) Free expansion phase:

- Mass swept up by the shock < Mass of the stellar ejecta
- The shock propagates in a low density medium at high velocity

1) Free expansion phase:

- Mass swept up by the shock < Mass of the stellar ejecta
- The shock propagates in a low density medium at high velocity

2) Adiabatic (Sedov-Taylor) phase:

- Mass swept up by the shock ~ Mass of the stellar ejecta
- Interaction of the shock with the interstellar medium
- A reverse shock is produced and travels inwards

1) Free expansion phase:

- Mass swept up by the shock < Mass of the stellar ejecta
- The shock propagates in a low density medium at high velocity

2) Adiabatic (Sedov-Taylor) phase:

- Mass swept up by the shock ~ Mass of the stellar ejecta
- Interaction of the shock with the interstellar medium
- A reverse shock is produced and travels inwards

3) Cooling/Radiative phase:

- Mass swept up > Mass of the ejecta
- Temperature low enough to allow electrons to recombine with ions
 - ⇒ efficient Infrared emission
- The shock continues to slow down

1) Free expansion phase:

- Mass swept up by the shock < Mass of the stellar ejecta
- The shock propagates in a low density medium at high velocity

2) Adiabatic (Sedov-Taylor) phase:

- Mass swept up by the shock ~ Mass of the stellar ejecta
- Interaction of the shock with the interstellar medium
- A reverse shock is produced and travels inwards

3) Cooling/Radiative phase:

- Mass swept up > Mass of the ejecta
- Temperature low enough to allow electrons to recombine with ions
 - ⇒ efficient Infrared emission
- The shock continues to slow down

4) Merging with the interstellar medium and disappearing...

- Remnant of a Type Ia supernova
- Probably associated to the historical supernova SN 185
- Why this remnant in particular?
 - Expected to be an efficient particle accelerator (X-rays and TeV observations)
 - A lot of multiwavelength data

- Remnant of a Type Ia supernova
- Probably associated to the historical supernova SN 185
- Why this remnant in particular?
 - Expected to be an efficient particle accelerator (X-rays and TeV observations)
 - A lot of multiwavelength data

- Remnant of a Type Ia supernova
- Probably associated to the historical supernova SN 185
- Why this remnant in particular?
 - Expected to be an efficient particle accelerator (X-rays and TeV observations)
 - A lot of multiwavelength data

1) Data selection

- region of the sky (coordinates of the center + radius)
- energy range (100 MeV 500 GeV)
- time interval
- max zenith angle ⇒ avoid gamma-ray coming from the Earth limb

- 1) Data selection
- 2) First fit of the data with a model

The model contains a list of gamma sources:

- sources from the Fermi-LAT catalog (3FGL)
- Galactic diffuse emission
- Isotropic diffuse emission

Each source is defined by:

- a spectral shape
- a spatial model

- 1) Data selection
- 2) First fit of the data with a model
- 3) Significance map

We look for gamma-ray excess in the region.

- Map centered on the position of RCW 86 (above 1 GeV)
- Colors represent the significance of the source in each pixel

==> We add a source in the model to fit this gamma-ray emission

- 1) Data selection
- 2) First fit of the data with a model
- 3) Significance map
- 4) Morphological analysis

- Fit with different spatial model:
 - point-like
 - disk
 - ring
 - multiwavelength morphologies

- 1) Data selection
- 2) First fit of the data with a model
- 3) Significance map
- 4) Morphological analysis
- 5) Spectral Analysis

- Fit with different spectral shape:
 - power law
 - broken power law
 - log parabola
- Compute the Spectral Energy Distribution

Spectral energy distribution of RCW 86.

Spectral energy distribution of RCW 86.

Spectral energy distribution of RCW 86.

- 1) Data selection
- 2) First fit of the data with a model
- 3) Create of a significance map to look for new gamma excess in the region
- 4) Morphological analysis
- 5) Spectral Analysis
- 6) Modeling of the Spectral Energy Distribution

Modeling of the spectral energy distribution

Modeling of the spectral energy distribution

Parameter	Value
Density (cm ⁻³)	0.1
B-field (µG)	10.2 ± 0.5
$\Gamma_{ m e,p}$	2.37 ± 0.03
$\mathbf{E}_{ ext{max}}$ (TeV)	75 ± 5
$\eta_{\rm e}$ (% of ${ m E}_{ m SN}$)	3.84 ± 0.6
$\eta_{_{\mathrm{p}}}$ (% of $\mathrm{E}_{_{\mathrm{SN}}}$)	2
$K_{ep} (x 10^{-2})$	11.1 ± 1.5

