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> Highly energetic particles coming from space
> 1912 : discovered by Victor Hess
> Galactic and extra-galactic origin
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> Highly energetic particles coming from space
> 1912 : discovered by Victor Hess
> Galactic and extra-galactic origin
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> Highly energetic particles coming from space
> 1912 : discovered by Victor Hess
> Galactic and extra-galactic origin
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> Highly energetic particles coming from space
> 1912 : discovered by Victor Hess
> Galactic and extra-galactic origin

-lux of i:osmic Rays

1 part (le per m? - second

.ee
| particle per m? - year)

T T T

L (e

Elikle
(1 particle |)2r km? - yea

Energy (eV)

(source: Swordy — U.Chicago)




 Cosmic rays = charged particles

==> deflected by magnetic field



 Cosmic rays = charged particles

==> deflected by magnetic field

* But cosmic rays accelerators also produce gamma rays

==> not deflected (neutral particles)
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 Cosmic rays = charged particles

==> deflected by magnetic field

 But cosmic rays accelerators also produce gamma rays

==> not deflected (neutral particles)

* Usefulness of Gamma Astronomy :

==> Search for cosmic ray accelerators using gamma
rays
Ground-based telescope : H.E.S.S., Veritas, MAGIC, ...

Space-based telescope : Fermi Large Area Telescope
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 Three ways to produce gamma-rays in SNR :

- Bremsstrahlung radiation (charged particules)
- Inverse Compton Scattering (electrons)

- Decay of neutral pions (protons)
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 Three ways to produce gamma-rays in SNR :

- Bremsstrahlung radiation (charged particules)
- Inverse Compton Scattering (electrons)

- Decay of neutral pions (protons)
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 Three ways to produce gamma-rays in SNR :
- Bremsstrahlung radiation (charged particules)
- Inverse Compton Scattering (electrons)

- Decay of neutral pions (protons)
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LAT Instrument
(Large Area Telescope under the AntiCoincidence Detector)

Tracker
4 x 4 Array of Towers side view

Calorimeter
AntiCoincidence
Detector

top view

Solar Panels

Ku-Band Antenna

Gamma Ray Large Area Space Telescope
http://www.nasa.gov/glast
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The Fermi - Large Area Telescope (LAT)

6 years of observations with Fermi-LAT 18
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» First things first : what is a supernova (SN) ?
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« First things first : what is a supernova (SN) ?

- explosion of a dead/near-to-death star
- Two major types of supernova :

 Thermonuclear SN (Type Ia) ==> no star residue

* Core-collapse SN ==> star residue : neutron star (pulsar)

Galaxy : NGC 4526

.

~ — SN 1994D
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e What is a supernova remnant ?

- Shock wave produced by the SN, propagating through space and
interacting with the interstellar medium

Supernova
Interstellar Material Blast Wave
and Swept-up
Shell
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1) Free expansion phase :

- Mass swept up by the shock < Mass of the stellar ejecta

- The shock propagates in a low density medium at high velocity
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1) Free expansion phase :

- Mass swept up by the shock < Mass of the stellar ejecta

- The shock propagates in a low density medium at high velocity

2) Adiabatic (Sedov-Taylor) phase :

- Mass swept up by the shock ~ Mass of the stellar ejecta
- Interaction of the shock with the interstellar medium

- A reverse shock is produced and travels inwards
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1) Free expansion phase :

- Mass swept up by the shock < Mass of the stellar ejecta

- The shock propagates in a low density medium at high velocity

2) Adiabatic (Sedov-Taylor) phase :
- Mass swept up by the shock ~ Mass of the stellar ejecta

— Interaction of the shock with the interstellar medium

- A reverse shock is produced and travels inwards
3) Cooling/Radiative phase :

- Mass swept up > Mass of the ejecta

- Temperature low enough to allow electrons to recombine with ions
= efficient Infrared emission

— The shock continues to slow down
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1) Free expansion phase :

- Mass swept up by the shock < Mass of the stellar ejecta

- The shock propagates in a low density medium at high velocity

2) Adiabatic (Sedov-Taylor) phase :
- Mass swept up by the shock ~ Mass of the stellar ejecta

— Interaction of the shock with the interstellar medium

- A reverse shock is produced and travels inwards
3) Cooling/Radiative phase :

- Mass swept up > Mass of the ejecta
- Temperature low enough to allow electrons to recombine with ions
= efficient Infrared emission

— The shock continues to slow down

4) Merging with the interstellar medium and disappearing... 26
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« Remnant of a Type Ia supernova

* Probably associated to the historical
supernova SN 185

 Why this remnant in particular ?

- Expected to be an efficient particle
accelerator (X-rays and TeV observations)

- A lot of multiwavelength data

29



Remnant of a Type Ia supernova

Probably associated to the historical
supernova SN 185

Why this remnant in particular ?

- Expected to be an efficient particle
accelerator (X-rays and TeV observations)

- A lot of multiwavelength data

i &
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Rayons X et Infra-rougé'
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Declinatin (J2000)

Remnant of a Type Ia supernova

Probably associated to the historical
supernova SN 185

Why this remnant in particular ?

- Expected to be an efficient particle
accelerator (X-rays and TeV observations)

- A lot of multiwavelength data

-62°00°

Excess Counis
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1) Data selection

- region of the sky (coordinates of the center + radius)
- energy range (100 MeV - 500 GeV)

- time interval

- max zenith angle = avoid gamma-ray coming from

the Earth limb
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1) Data selection
2) First fit of the data with a model

The model contains a list of gamma sources :
- sources from the Fermi-LAT catalog (3FGL)
- Galactic diffuse emission
- Isotropic diffuse emission

Each source is defined by :

- a spectral shape
- a spatial model
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1) Data selection
2) First fit of the data with a model
3) Significance map

We look for gamma-ray excess in the region.

. B  Map centered on the position of
il ., RCW 86 (above 1 GeV)

=62.2 Il | 30 * Colors represent the

! - : significance of the source in
-62.4 .

' each pixel

<62.6

62.8 -

==> We add a source in the
model to fit this gamma-ray
emission

<63.0
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1) Data selection

2) First fit of the data with a model
3) Significance map

4) Morphological analysis

45
-62.08 % |, ¢ Fit with different spatial model :
9 -62.2§ » - point-like
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S 46l < - multiwavelength morphologies
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R.A. (J2000) (deg)



1) Data selection

2) First fit of the data with a model
3) Significance map

4) Morphological analysis

5) Spectral Analysis

» Fit with different spectral shape :

- power law
- broken power law
- log parabola

 Compute the Spectral Energy Distribution
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Spectral energy distribution of RCW 86.
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Spectral energy distribution of RCW 86.

10_1{}5"”” [ T TTTTI | 11T | 1T T | 1 T | | IIII||| | | IIIE

n —— Fermi-LAT -

B ——H.E.S.S. .

10—'11 - -

e — =

Im B —

o B % B

s Nl

o 10712 I * -

s, F E

w |13
N 4

Lu B i

10" = .

3 Fermi-LAT points =

-10-'14 IIIIIIE | ] IIIIIIE | ] IIIIIIE | ] IIIIIIE | | IIIIIIE | | IIIIIIE | L L. 111

10 1 10 102 10° 10° 38

Energy [GeV]



Spectral energy distribution of RCW 86.
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1) Data selection

2) First fit of the data with a model

3) Create of a significance map to look for new
gamma excess in the region

4) Morphological analysis

5) Spectral Analysis

6) Modeling of the Spectral Energy Distribution
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RCW 86 (One-zone model)
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| RCW 86 (One-zone model) |

E2 dN/dE [erg cm™ s°1]
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