Étude du couplage du boson de Higgs au quark top et identification des b-jets pour l'expé<mark>rienc</mark>e ATLAS au LHC

> Run: 280464 Event: 517140616 2015-09-28 04:21:57 CEST

Calvet Thomas CPPM, groupe ATLAS *Journées Rencontres Jeunes Chercheurs* 2015 19 novembre 2015

CPP

Recherche de bosons Higgs au Run 2 du LHC

- État des lieux après le Run 1
 - > Productions ggF and VBF (ATLAS+CMS^X ± only) observés à plus de 5σ.
 > Désintégrations H->ave, H->77, H->WW
 - > Désintégrations H->γγ, H->ZZ, H->WW and H->ττ (ATLAS+CMS only) observés à plus de 5σ.
 - > Mesure précise de la masse et du spin.
- LHC Run 2 (2015)
 - Énergie au centre de masse augmentée à 13TeV et haute luminosité ~10³⁴cm⁻²s⁻¹.
 - > Amélioration du détecteur.

<u>ල</u>10²

10

10⁻¹

 $pp \rightarrow H (NNLO+NNLL QCD + NLO$

 $pp \rightarrow qqH (NNLO QCD + NLO EW)$

 $pp \rightarrow WH (NNLO QCD + NLO EW)$ $pp \rightarrow ZH (NNLO QCD + NLO EW)$

 $pp \rightarrow bbH$ (NNLO and NLO Q

 $pp \rightarrow ttH (NLO QCD)$

q

10

8

La production ttH sera accessible pour la première fois au Run 2.

12

M_L = 125 GeV

13

MSTW2008

∖s [TeV]

Le détecteur ATLAS

Objet important : les jets

Jets:

- Ensemble de particules produit par l'hadronisation des quarks et gluons.
- Reconstruit à partir des dépôts d'énergie dans le calorimètre.
 - > Utilise un algorithme de regroupement.
 - Anti-kt 4 : associe les particules dans un cône de rayon 0.4.
 - b-jets: jets provenant de quarks b.

Le Insertable B-Layer (IBL)

Nouvelle couche de pixels

- Plus proche du flux de particules: 3.3cm contre 5cm au Run 1.
- Plus petits pixels: 50x250µm² contre 50x400µm² au Run 1.

Meilleur résolution des traces et des vertex

- Essentiel pour différencier les nombreux points d'impact.
- Important pour l'identification des jets b.

https://atlas.web.cern.ch/Atlas/GROUPS/ PHYSICS/PLOTS/IDTR-2015-003/

Étude de la production ttH: motivation

• Le quark top est la particule du modèle standard avec le plus fort couplage au boson de Higgs.

Mesure indirecte du couplage t<->H

- Mesure actuelle fait appel à des boucles de quark top.
- Assume qu'aucune nouvelle physique n'entre en jeu dans ces boucles.

• ttH : seul canal permettant une mesure directe du couplage t<->H

Le taux de production du ttH donne une mesure directe du couplage t<->H.

Une déviation par rapport au modèle standard indiquerait la présence de nouvelle physique !

ttH(H->bb)

 $g_{0000000} + \frac{1}{b}$

H->bb est le mode de désintégration le plus probable (~58%) pour un g_{12} boson de Higgs avec m_H = 125 GeV.

- Principal bruit de fond tt+jets:
 - tt+bb: irréductible car même état final.
 - tt+cc et tt+light jets: réductibles.
- L'identification des b-jets : b-tagging
 - Fondamental pour le signal et le bruit de fond.
 - Jusqu'à 4 b-jets sont attendus dans l'état final.

Ingrédient fondamental pour toute analyse avec des b-quarks dans l'état final: physique du Higgs, modèle standard, nouvelle physique.
Vise à différentier les b-jets des c-jets et light-jets (udsg).

Ingrédient fondamental pour toute analyse avec des b-quarks dans l'état final: physique du Higgs, modèle standard, nouvelle physique.
Vise à différentier les b-jets des c-jets et light-jets (udsg).

Ingrédient fondamental pour toute analyse avec des b-quarks dans l'état final: physique du Higgs, modèle standard, nouvelle physique.
Vise à différentier les b-jets des c-jets et light-jets (udsg).

Ingrédient fondamental pour toute analyse avec des b-quarks dans l'état final: physique du Higgs, modèle standard, nouvelle physique.
Vise à différentier les b-jets des c-jets et light-jets (udsg).

Basé sur la longue durée de vie des b-hadrons: ~1.5ps.

Vertex secondaire pour la désingration du B.
 Éloigné du vertex primaire: L_{xy}~4mm.
 Masse importante: 1 à 5 GeV.
 Traces incompatibles avec le vertex primaire.
 Grands paramètres d'impact.

Discriminant final du b-tagging

ATL-PHYS-PUB-2015-022

Objectif : donner une définition cohérente avec le b-tagging et les données:

- Efficacités calculées sur les simulations.
- Doivent être aussi proche que possible des efficacités sur les données.

Facteur d'échelle pour les b-jets:

- Rapport entre efficacité mesurée et calculée.
- Correction appliquée aux simulations.

Définition des b-jets doit prendre en compte la région de l'espace des phases où on peut différentier les b-jets expérimentalement.

> Une définition mal choisie demanderait une extrapolation suplémentaire des simulations.

Labelling dans une simulation ttbar

Comparaison de différents algorithmes d'association quark<->jets

- Ghost association: utilise l'agorithme de construction des jets.
- ΔR < 0.3 exclusif: toute particule dans un cône de rayon 0.3 autour du jet est associée à celui-ci. Si une particule est compatible avec plusieurs jets elle est associée au plus proche.

Labelling dans une simulation ttbar

Comparaison de différents algorithmes d'association quark<->jets

- Ghost association: utilise l'agorithme de construction des jets.
- $ightarrow \Delta R < 0.3$ exclusif: toute particule dans un cône de rayon 0.3 autour du jet est associée à celui-ci. Si une particule est compatible avec plusieurs jets elle est associée au plus proche.

Label light	0.4%		0.3%	49.0%	
Label C	0.1%		9.4%	0.01%	
Label BB	~0%	0.4%	ATLAS W	ork in pro	gress
Label B	40.3%	0.2%	0.02%	0.03%	
DR GA	Label B	Label BB	Label C	Label light	

n(X-jets)/n(jets)

	Label other	1.0%		0.39%	0.30%	
4	Label C	8.7%		20.3%	6.7%	
	Label BB	60%	76.4%	ATLAS \	Work in pro	ogress
	Label B	70.8%	66.1%	45.9%	33.3%	
	DR GA	Label B	Label BB	Label C	Label other	

14

Efficacité du b-tagging pour chaque catégorie

∧R identifie moins de b-jets, mais ces jets ont une meilleure efficacité.

b-hadron divisé dans deux jets

Jet associé

au b avec DR

Jet associé

au b avec GA

Jet associé à un b-hadron par ΔR seulement:

- Souvent proche d'un autre jet.
- Dans 89% des cas cet autre jet est associé au b-hadron par ghost association.

- Le b-tagging semble préférer le jet choisi par ΔR . Pourquoi ?
 - b-tagging basé sur les traces.
 - > Traces associées au jets par ΔR .
 - Exploite la corrélation jet<->particule / jet<->traces

Double-b-tagging

Motivation : contraindre le bruit de fond tt+bb.

- Difficile à contrôler, importantes erreurs théoriques.
- > Besoin d'un outil pour détecter g->bb dans les données.
 - > bb-jet tagging.

0000000000

9 0000000

MultiSVbb: bb-jet tagger
Exploite les multiples vertex secondaires.
Théoriquement 4 : 2x(B->D)
Utilise des arbres de décision boosté.
Doit être optimisé pour le Run 2.

Multiples vertex secondaires

Nombre de vertex avec au moins 2 traces pour chaque saveur de jets.

~50% des bb-jets ont 2 vertex avec au moins 2 traces.

> Efficacité maximum pour MultiSVbb.

11

Pureté des vertex.

- ≻~58% des vertex n'ont que des traces du B.
- Large fraction de vertex avec des traces des 2 b-hadrons.

Diminution des performances.

> Faible fraction de vertex sans trace du B.

Arbres de décision boostés et MultiSVbb

Optimisation et performances

Performances :

- Rejection = 1/efficacité
- Gain calculé entre la nouvelle configuration testée sur des simulations à 13TeV et l'ancienne configuration testée sur des simulations à 8TeV.

@35% eff	MultiSVbb1	MultiSVbb2
b-rej/gain	19 / +5%	24 / +4%
cc-rej/gain	55 / +57%	63 / +66%
c-rej/gain	390 / +100%	600 / x2.5
light-rej/gain	3600 / +50%	5500 / +70%

ATLAS Work in progress

Optimisation du software: nouveau format de lecture

- > Plus rapide.
- Consomme moins de mémoire.

Modélisation du bruit de fond ttH(H->bb)

Motivation : contraindre le bruit de fond tt+bb.

- Difficile à contrôler, larges erreurs théoriques.
- Les nouveaux générateurs pourraient contraindre les incertitudes du tt+bb.

ME

NLO

NLO

S

Calcul des productions de particules à des ordres supérieurs.

NLO

Génération d'évènement

00000

00000 g

- > Cacul du diagramme.
- > Ajout de jets.

Directement dans le calcul du diagramme.

g

00000

20

q

h

Par correction radiative.

Simulations utilisées

• tt+bb difficile et long à générer.

- > Utilise ttbar pour les comparaisons.
- Comparaison de plusieurs algorithmes de génération:
 - Sherpa, Powheg+Pythia.
 - Différent nombre de jets suplémentaires.
 - > Avec ou sans calcul au second ordre (NLO).
- Powheg+Pythia ttbar avec des poids:
 - Poids appliqués pour correspondre aux données à 7TeV.
- Générateur de pointe:
 - Sherpa ME+PS@NLO: ttbar + 0,1 jets NLO et +2,3,4 LO

 Reconstruction des quarks top à partir des jets associés aux particules de l'état final.

Structure des jets dans ttbar

ATL-PHYS-PUB-2014-022 Normalized to unity Vormalized to unity Vormalized to unity 0.2 0.35 0.35 0.18 0.3 0.16 0.3 0.14 0.25 0.25 0.12 0.2 0.2 0.1 s = 8 TeVs = 8 TeVs = 8 TeV0.08 0.15 lepton+jets; particle jets 0 15 lepton+jets; particle jets lepton+jets; particle jets 0.06 0.1 0.1 0.04 0.05 0.05 0.02 eight powheg 1. 2. 1 Dec M 1.5 eweight pov C/re vy 0.5℃ AC/re 100 200 300 400 500 600 50 150 200 1000 250 300 350 400 450 500 H₋ (all iets) [GeV] H₊ (not from ttbar) [GeV] nJets (not from ttba

22

 $H_{T} = \Sigma p_{T}$ (jets) pour tous les jets (gauche), que les jets additionels (milieu).

- Plus de jets dans Sherpa
 - > Attendu: avec jets additionels et calculs au NLO.
- > Sherpa avec ME+PS: plus large H_T
- > Sherpa NLO un peu plus petit H_T
- Sherpa ME+PS@NLO: semble être le plus proche de Powheg+Pythia6 avec poids

Conclusion

Le Run 2 a commencé. En plus de l'augmentation en énergie, les nouveaux algorithmes augmenteront la sensitivité du ttH.

- Études pour le b-tagging:
 - L'association des jets aux particules a été choisi grâce à mon étude.
 - > Adapté au b-tagging.
 - > Prometteur pour la compréhension des données.
 - bb-jets tagging.
 - > Optimisation de l'algorithme: plus rapide et moins consommateur en mémoire.
- > Performances optimisées pour la configuration du Run 2.
 Études pour l'analyse ttH(H->bb):
 - Comparaison des générateurs de pointe pour la simulation.
 - > Meilleure compréhension de la modélisation du bruit de fond.
 - Les nouveaux générateurs semblent plus compatibles avec la simulation matchant les données. Incertitudes systématiques pas encore prises en compte.

Backup

Reconstruction des jets et ghost association

>Algorithme de reconstruction des jets:

$$d_{ij} = \min(k_{ti}^{-2}, k_{tj}^{-2}) \frac{\Delta R_{ij}^2}{R^2}$$
 $d_{iBeam} = k_{ti}^{-1}$

> Distance entre 2 particules en $(1/p_T)^2$

R : distance maximale pour que 2 particules soient dans le même jet.

26

➤Ghost association:

- > Ajoute le b-hadron dans la liste des particules pour reconstruire les jets.
- > p_T du b-hadron mis très proche de 0 pour ne pas changer le jet.

Si la particule a été ajouté au jet, elle y est associée.

27 Gain de l'IBL sur les paramètres d'impact $> z_0$: paramètre d'impact longitudinal Coordonnée z du point de la trace le plus proche du displaced track vertex primaire. secondary vertex > d₀: paramètre d'impact dans le plan transverse d Distance au vertex primaire du point d'approche dans le plan (xy). primary vertex > $\sigma(d_0)$: d_0 divisé par l'erreur sur d_0 (idem pour z_0) point of closest approach 400 600 σ(q⁰) [μm] ດ(z⁰) [μm] ATLAS Preliminary ATLAS Preliminary 350 Data 2012, vs = 8 TeV Data 2012, \s = 8 TeV 0.0 < n < 0.2500 $0.0 < \eta < 0.2$ Data 2015, vs = 13 TeV Data 2015, vs = 13 TeV 300 400 250 200 300 150E 200 100 100 50 2015/2012 2015/2012 0.84×10⁻¹ 5678910 20 4×10⁻¹ 2 3 2 3 5678910 4 4 20 p_T [GeV] p₋ [GeV]

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2015-007/

28 b-tagging: les algorithmes Algorithmes basés sur le vertex Algorithme multi-vertex: secondaire inclusif: Reconstruction de la chaîne > Algorithme de reconstruction. PV->B->D. Reconstruit un seul vertex. > Réseau de neuronnes pour Log Likelihood Ratio pour différencier les saveurs de jets. Displaced discriminer les différentes Tracks saveur de jets. Secondar Primary vertex Primary Vertex B flight axis

Algorithmes basés sur le paramètre d'impact:

- > Significance avec signe du paramètre d'impact.
- Probabilité pour chaque saveur du jet.
- Log Likelihood Ratio par jet pour séparer les saveurs de jets.

b-tagging: du Run 1 au Run 2

Gains dus à l'IBL principalement. Gains dus aux nouveaux algorithmes. > Run 2: utilise directement les propriétés des vertex reconstruits.

Comparaison Run 1 - Run 2 :
Gain facteur 4 en rejection des lights-jets pour une efficacité de 70%.
+10% d'éfficacité relative des b-jets pour la rejection du Run 1.
+40-50% d'acceptance au ttH(H->bb).

Analyse ttH Run 1: regions et bruit de fond

Analyse ttH Run 1: systematics

ATLAS-CONF-2014-011

Modélisation:

Normalisation de tt+bb au calcul théorique au 3eme ordre.

31

- p_T système ttbar dans tt+saveurs lourdes (c et b).
- > Choix de la simulation ttbar.
- Sections efficaces du ttbar et du tt+V.

Objets physiques:

- Échelle d'énergie des jets.
- > Identification des saveurs de jets.

ATLAS+CMS: désintégrations du Higgs

ATLAS-CONF-2015-044

Channel	References for		Signal stre	Signal strength $[\mu]$		Signal significance $[\sigma]$	
	individual publications		from	from results in this paper (Section 5.2)			
	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS	
$H \rightarrow \gamma \gamma$	[51]	[52]	$1.15^{+0.27}_{-0.25}$	$1.12^{+0.25}_{-0.23}$	5.0	5.6	
			$\binom{+0.26}{-0.24}$	$\binom{+0.24}{-0.22}$	(4.6)	(5.1)	
$H \to Z Z \to 4\ell$	[53]	[54]	$1.51_{-0.34}^{+0.39}$	$1.05^{+0.32}_{-0.27}$	6.6	7.0	
			$\binom{+0.33}{-0.27}$	$\binom{+0.31}{-0.26}$	(5.5)	(6.8)	
$H \rightarrow WW$	[55, 56]	[57]	$1.23^{+0.23}_{-0.21}$	$0.91\substack{+0.24 \\ -0.21}$	6.8	4.8	
			$\binom{+0.21}{-0.20}$	$\binom{+0.23}{-0.20}$	(5.8)	(5.6)	
$H \to \tau \tau$	[58]	[5 9]	$1.41^{+0.40}_{-0.35}$	$0.89^{+0.31}_{-0.28}$	4.4	3.4	
			$\binom{+0.37}{-0.33}$	$\binom{+0.31}{-0.29}$	(3.3)	(3.7)	
$H \rightarrow bb$	[38]	[39]	$0.62^{+0.37}_{-0.36}$	$0.81^{+0.45}_{-0.42}$	1.7	2.0	
			$\binom{+0.39}{-0.37}$	$\binom{+0.45}{-0.43}$	(2.7)	(2.5)	
$H \rightarrow \mu \mu$	[60]	[<mark>61</mark>]	-0.7 ± 3.6	0.8 ± 3.5			
			(±3.6)	(±3.5)			
<i>ttH</i> production	[28,62,63]	[65]	$1.9^{+0.8}_{-0.7}$	$2.9^{+1.0}_{-0.9}$	2.7	3.6	
			$\binom{+0.72}{-0.66}$	$\binom{+0.88}{-0.80}$	(1.6)	(1.3)	

ATLAS+CMS: production du Higgs

