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Motivation

Higgs boson, discovered in July 2012 by the ATLAS and CMS
experiments at the LHC

Properties (spin, parity, couplings) ?

Arthur Chomont, JRJC, 19/10/15 2/20



Standard Model and Higgs coupling to fermions
Yukawa coupling of Higgs to fermions proportional to fermions mass

For now, only observation of coupling of Higgs to fermion: H → ττ

ν
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with ν ≃ 246GeV the vacuum expectation value
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Standard Model and Higgs coupling to fermions
Yukawa coupling of Higgs to fermions proportional to fermions mass
For now, only observation of coupling of Higgs to fermion: H → ττ

ν

√2mf

H

 +f

 -f

with ν ≃ 246GeV the vacuum expectation value

Top quark, heaviest fermion → should couple strongly to Higgs boson
(coupling at around 1)

Coupling already indirectly observed in the case of SM Higgs decaying in
two photons (we assume that there is no new physics in the loop )
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Standard Model and Higgs coupling to fermions
Yukawa coupling of Higgs to fermions proportional to fermions mass
For now, only observation of coupling of Higgs to fermion: H → ττ

ν

√2mf

H

 +f

 -f

with ν ≃ 246GeV the vacuum expectation value

Top quark, heaviest fermion → should couple strongly to Higgs boson
(coupling at around 1)

The goal is to do a direct measurement of this coupling at the tree level
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Choice of the multileptonic signature
Higgs boson and top quark not stable → we observe the product of their
decay in the detector

Top quark decays almost exclusively in a W boson and a b quark
◮ W boson will decay to a pair qq̄′ or to l ν̄
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Multileptonic signature separated in charge and flavours (e, µ, τ) can be
used for search of tt̄H
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Multileptons signature

Decays of Higgs to WW, ZZ and ττ targeted

8 different channels can be considered for Run 2

◮ Light leptons channels: 2lSS, 3l, 4l
◮ Light+tau channels: 2τ+1l, 2lSS+τ , 2lOS+τ , (l+τ)SS, 2τ+jets

Focus on 2lSS channel

◮ Description of estimation of data-driven background
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Experimental environment and personal contribution

ATLAS detector at the LHC

◮ Work on the calibration of
the TileCal using Laser
system

Run 1 at 8TeV in ATLAS: 20fb−1of data, discovery of Higgs boson

◮ Personal work on Run 1: Test of sensibility on the tt̄H signal

Run 2 at 13TeV in ATLAS: 4fb−1this year, more luminosity expected in

the future, Higgs production

◮ Personal contribution on Run 2 ongoing tt̄H analysis: data-driven
backgroung estimation, fitting tools
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Backgrounds
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Few SM processes with similar signatures

◮ True physical same-sign background: tt̄W , tt̄Z , VV estimated
from MC simulation

◮ Instrumental backgrounds estimated from the data (mainly
tt̄ events)

• Fake leptons (jets or secondary lepton from B-decay
reconstructed as primary electron)

• Electrons with a mis-identification of the charge (Charge
MisId)
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Charge MisId estimation

Mis-identification of the charge of a lepton is an important background

originating from two processes

◮ High pT electron with straight track
◮ Trident process with an electron radiating a photon converting to a

pair of electrons

Negligible effect on muon

Results shown afterward using 1fb−1of data, from the Run 2 of the LHC
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QMisid rates estimation
Rate of QMisid computed from Z → e+e− mass peak region and used to
reweight OS data
Background substraction done using a side-band method:
NZ = nB − nA+nC
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The QMisid rate is defined as NSS

NOS +NSS
◮ Supposition that rates are independent of the physical

characteristics (energy, momentum . . . ) of the electron

Arthur Chomont, JRJC, 19/10/15 9/20



QMisid: method for rates estimation

ǫi rate of charge Misid for a single electron in region i (regions defined in
η, pT ,E . . . ) and we obtain for Ntot true opposite-sign events:

Nss = Ntot [(1 − ǫi)ǫj + (1 − ǫj)ǫi ] ≃ Ntot(ǫi + ǫj)

The rates, ǫi and ǫj , are obtained by likelihood minimization and are
highly dependent on the choice of the binning
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Closure test: good agreement
between rates from LH method
and truth matching
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QMisid: First Rates estimation for Run 2

Rates obtained using Likelihood method from 1fb−1of data

Rates for last bin in pT obtained by extrapolation of rates in the next to
last bin in pT (bin [90,130]GeV)
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Large uncertainties particularly in pT bin [90,130] and |η| bin [1.1,1.37]
→ to be improved with full 2015 statistics
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Systematics
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Uncertainties include:

◮ Statistical uncertainty from the likelihood method
◮ Statistical uncertainty on the pT dependent correction factor (last

pT bin, pT >130GeV)
◮ Difference between rates from truth matching and likelihood

method on Z samples
◮ Stability of rates due to definition of Z-peak region definition
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Fakes rate estimation

Leptons fakes are objects reconstructed as prompt leptons, leptons

coming from a W boson, a Z boson or a τ (decay results of top or Higgs)

◮ jets
◮ Non prompts leptons due to decays of b-hadrons for example
◮ Trident process with an electron radiating a photon converting to a

pair of electrons

Fakes impact both muons and electrons

Estimation as for the QMisid done directly from the data
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Fake factor method

Four regions defined based on jet multiplicity and 2 leptons categories
(Tight T, anti-Tight✚T )

Tight lepton: object used in the
analysis which can be fakes

Anti-Tight lepton: almost all
fakes

Ratio of TT/T✚T estimated in region without signal and supposed to be
independent w.r.t the number of jets

Then the ratio is applied in the high multiplicity region
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Fake factor method

Fake factor θ is defined as (for electrons):

θe = TT

T✁T
(2 − 3jets) =

TT (Ndata
ee −N

PromptSS
ee −NQMisId

ee )

T✁T (Ndata

e✄e
−N

allPrompt

e✄e
)

PromptSS: tt̄V , VV

QMisId: prompt opposite-sign events with a charge mis-identification
(data-driven in TT region)

In the case of µ±µ± channel, same definition of θµ as for θe (without the
QMisId terms)
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Fake factor method

Number of fakes in signal region obtained from θe , θµ

◮ for e±e± region: Nee(njets) = Ne ✄e
(njets) × θe

◮ for µ±µ± region: Nµµ(njets) = N
µ✁µ

(njets) × θµ

◮ for e±µ± region:
Neµ(njets) = Ne✁µ

(njets) × θµ + N
µ✄e

(njets) × θe
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Systematic uncertainties

Validity of the extrapolation flow 2-3 jets region to ≥ 4jets region

◮ Closure test performed on simulated tt̄ events
◮ Comparison of real ss fakes in signal region to number predicted by

N
l✄l

× θ

Uncertainty on substracted backgrounds (QMisId, PromptSS)

Composition of 2-3 jets region

◮ Presence of additional non-tt̄ fake sources, prompt processes w.r.t
signal region → bias on the θ estimation

◮ Estimated by changing definition of low multiplicity region adding
supplementary selection for example

4 jets ≥5 jets

e±e± 37.4 (35.4) 38.1 (36.2)
µ

±
µ

± 37.8 37.9

e±
µ

± 27.2 (26.1) 28.0 (27.1)

Statistical uncertainties [%] on fake estimate in Run 2 (5 fb−1)
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Statistical treatment
After choice of a signal region and estimation of background, a fit on
data is performed
Signal strength defined as µ = σmeas

σSM

Maximum likelihood fit of µ with floating systematic uncertainties used to
obtain the observed value
The final result combines the sensitivity obtained in all tt̄H multilepton
channels

Phys. Lett. B 749 (2015) 519-541
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Limit setting and result stability

In the case of Run 1, where the tt̄H was not seen a limit is set on µ

In the case of a limit on µ below 1 it means the hypothesis can be rejected

ATLAS-CONF-2015-006

Cross-check of the result stability versus background cross-section
performed

µ(tt̄H) = 2.1 − 1.4(
σ(tt̄W )

232fb
− 1) − 1.3(

σ(tt̄Z)
206fb

− 1)
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Conclusion

Run 1 tt̄H multileptons results

◮ Search for tt̄H in multileptonic final states performed: µ = 2.1+1.4
−1.2

◮ 2lSS channels one of the most sensitive one: µ = 2.8+2.1
−1.9

◮ First personal participation on an analysis (cross-check of the resuts
stability, test of signal sensibility)

Run 2 ongoing tt̄H multileptons analysis

◮ Estimation of data-driven background
◮ Development of fitting tools and framework

Run 2 data analysis on-going with the observation of tt̄H process
expected before the end of the Run 2 of the LHC

Arthur Chomont, JRJC, 19/10/15 20/20



Backup



QMisid: Likelihood method

ǫi rate of charge Misid for a single electron in region i (regions defined in
η, pT ,E . . . ) and we obtain for Ntot true opposite-sign events:

Nss = Ntot [(1 − ǫi)ǫj + (1 − ǫj)ǫi ] ≃ Ntot(ǫi + ǫj)

Then we suppose that all same-sign events in Z peak are produced by
QMisid → N

ij

SS described by Poisson distribution

From this the probablity for both electrons to produce a charge flip is

P(ǫi , ǫj |N
ij

SS , N ij) =
[N ij (ǫi +ǫj )]

N
ij

SS e
−Nij (ǫi +ǫj )

N
ij

SS
!

(= Li,j)

The likelihood is then L(ǫ|NSS , N) =
∏

i,j

Li,j

The rates, ǫi and ǫj , are obtained by minimizing the likelihood and are
highly dependent on the choice of the binning



QMisid: Extrapolation in pT

Rates for last bin in pT obtained by extrapolation of rates in the next to
last bin in pT (bin [90,130]GeV)

pT dependent correction factor extracted from tt̄ events

So rates in last bin obtained by:

ǫ(|η|,pT > 130GeV ) = ǫ(|η|,pT ∈ [90, 130]GeV ) × αtt̄(|η|,pT > 130GeV )

with αtt̄ being defined only in the highest pT bin as:

αtt̄(|η|, pT ) =
ǫ(|η|,pT )tt̄

ǫ(|η|,pT ∈[90,130]GeV )tt̄

The statistical uncertainty on α is taken as a systematic uncertainty for
the final result
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Materials in ATLAS detector


