# Analytic control of jet substructure

Laís Schunk

IPhT - CEA Saclay

#### Work being finalized with Gregory Soyez and Mirinal Dasgupta

November 19, 2015



- 2 Jet substructure
- Control of jet substructure



# 1 Introduction

2 Jet substructure

3 Control of jet substructure

4 Conclusion

# Introduction

• QCD partons in high energies (LHC) can not be directly observed and their final state are complex structures called *jets*;



ATLAS collaboration

• Jets are used very frequently in LHC analysis.

# Definition of jet

- A jet definition is a set of rules to cluster particles into jets;
- Composed of a *recombination algorithm* and its *parameters* (usually the jet radius *R*);



M. Cacciari, G. P. Salam and G. Soyez (2008)

• LHC uses the anti-k<sub>t</sub> algorithm.

### Introduction



3 Control of jet substructure

#### 4 Conclusion

#### • At the LHC ightarrow boosted ( $p_t \gg m$ ) heavy particles

- $\rightarrow$  decay in very collimated final states
- $\rightarrow$  clustered into a single jet;



• Characteristic opening angle of the jet is  $\theta \propto \frac{m}{p_t}$ .

• QCD collinear divergences keep parton jets collimated for any p<sub>t</sub>;



• QCD collinear divergences keep parton jets collimated for any p<sub>t</sub>;



#### How to discriminate QCD jets from $Z/W/H \rightarrow hadrons$ jets?

• QCD collinear divergences keep parton jets collimated for any p<sub>t</sub>;



How to discriminate QCD jets from  $Z/W/H \rightarrow hadrons$  jets?

Possible method : partons are *color charged particles*, they produce different radiation patterns from bosons.

# Jet substructure

 Knowing the mass of a jet is not enough to identify its origin, we need to access the jet substructure;



J. Thaler and K. V. Tilburg (2010)

- Different techniques are available:
  - Find hard cores (1 for QCD, 2 for bosons);
  - 2 Constrain the radiation patterns.

# Application : diboson excess



ATLAS collaboration

- ATLAS found a 3.2σ excess in diboson resonances at ~ 2TeV;
- CMS found similar anomalies;
- High energy events → very collimated final states.

### Introduction

2 Jet substructure

Control of jet substructure

#### 4 Conclusion

- Constraint radiation patterns to discriminate different types of jets;
- Making use of jet-shapes : observables that are functions of the jet constituents v(p<sub>1</sub><sup>µ</sup>, p<sub>2</sub><sup>µ</sup>, ..., p<sub>n</sub><sup>µ</sup>);
- In this work we chose  $v = \tau_{21}$ ,  $\mu^2$  and  $C_2$  (next slide);
- Understand differences/similarities from a *first-principle analytical study*.

Jet shapes (angular parameter  $\beta = 2$ )



# Jet shapes (angular parameter $\beta = 2$ )

• **N-subjettiness** with axes  $a_1, ..., a_N$ 

$$\tau_{21}^{(2)} = \frac{\tau_2^{(2)}}{\tau_1^{(2)}}, \qquad \tau_N^\beta = \frac{1}{p_{t,jet}R^\beta} \sum_{i \in jet} p_{t,i} \min_{a_i \dots a_N} (\theta_{ia_1}^\beta, \dots, \theta_{ia_N}^\beta).$$

• Mass-drop with subjets  $j_1$  and  $j_2$ 

$$\mu_p^2 = \max(m_{j1}^2, m_{j2}^2)/m_j^2.$$

# Lund diagrams

- We consider boosted jets of a given mass,  $\rho = m^2/p_t^2 R^2 \ll 1$ ;
- Lund diagram : graphical representation of the results in  $z\theta$  vs.  $1/\theta^2$  coordinates.



# Lund diagrams

- We consider boosted jets of a given mass,  $\rho = m^2/p_t^2 R^2 \ll 1$ ;
- Lund diagram : graphical representation of the results in  $z\theta$  vs.  $1/\theta^2$  coordinates.



# Structure of the results (QCD background)

- Up to LL, emissions are strongly ordered in mass and angle.
- Independent emissions  $\rightarrow$  constraints as an exponential factor.
- For a jet of a given mass:



# Structure of the results (QCD background)

• For a jet of a given mass + a cut in the shape  $v_{cut} \ll 1$ :

$$\frac{\rho}{\sigma} \frac{d\sigma}{d\rho} \Big|_{

$$R_{v}(\rho, z_{1}) = \int_{0}^{1} \frac{d\theta_{2}^{2}}{\theta_{2}^{2}} \int_{0}^{1} dz_{2} P_{i}(z_{2}) \frac{\alpha_{s}}{2\pi}$$

$$\times \Theta(v > v_{cut}) \Theta(z_{2}\theta_{2}^{2} < \rho)$$

$$+ \int_{0}^{1} \frac{d\theta_{12}^{2}}{\theta_{12}^{2}} \int_{0}^{1} dz_{2} P_{g}(z_{2}) \frac{\alpha_{s}}{2\pi}$$

$$\times \Theta(v^{sec} > v_{cut})$$$$

### Structure of the results (QCD background)

• For a jet of a given mass + a cut in the shape  $v_{cut} \ll 1$ :



Now all we need is to find  $v(\rho, z_1, z_2, \theta_2)$ .

### Results



Laís Schunk

Analytic control of jet substructure

November 19, 2015 19 / 22

# ROC curves

- Probability that  $v_{QCD} < v_{cut}$  vs. probability that  $v_{sig} < v_{cut}$ ;
- $C_2$  is the most efficient, and  $\tau_{21}$  more efficient than  $\mu^2$  (more delicate call).



# **ROC** curves

- Probability that  $v_{QCD} < v_{cut}$  vs. probability that  $v_{sig} < v_{cut}$ ;
- $C_2$  is the most efficient, and  $\tau_{21}$  more efficient than  $\mu^2$  (more delicate call).



Good description of the order between shapes.

## Introduction

- 2 Jet substructure
- 3 Control of jet substructure



• Good qualitative description of the shapes.

• Efficiency of the shapes:  $C_2 > \tau_{21} \gtrsim \mu^2$  .

#### Future works

- Add grooming (in progress);
- Higher accuracy (in progress);
- Different jet shapes (next);
- 3-pronged jet shapes;
- ISR contributions;
- Calculations for finite v.



# **Backup Slides**

November 19, 2015

æ

#### Diboson excess at CMS



CMS collaboration

Analytic control of jet substructure

November 19, 2015

イロト イポト イヨト イヨト

3

- Depends on a parameter *p*;
- Cluster partons by smallest distance  $d_{ij} = \min(z_i^{2p}, z_i^{2p})\theta_{ij}^2$ ;
- Particular cases:
  - p=0 : C/A algorithm, angular ordered;
  - p=-1 : anti- $k_t$  algorithm;
  - p=1/2 : similar to mass measure.

# Non-perturbative effects



# Structure of the results (Signal)

- Decay of a boosted object into a pair  $q\bar{q}$  or gg.
- For a signal jet (fixed mass always) + a cut in the shape v:



November 19, 2015