Calibration in situ des jets avec le détecteur ATLAS et recherche de la supersymetrie

Baptiste Abeloos

Laboratoire de l'Accélérateur Linéaire

November 19, 2015

Introduction

Motivations pour le BSM

- Ne décrit pas la gravitation
- N'explique pas la masse des neutrinos
- N'explique pas l'asymétrie matière-antimatière
- Ne propose pas de candidats pour la matière noire
- Problème de hierarchie

Le Modèle Minimal Supersymétrique

• La supersymétrie permet l'unification des bosons et des fermions

• Elle prédit l'existence de nouvelles particules Supersymétrie

- quark \longleftrightarrow squark
- lepton \longleftrightarrow slepton
- higgs \longleftrightarrow higgsinos
- bosons de jauges \longleftrightarrow jauginos

Après la brisure de symétrie: 4 neutralinos et 2 charginos

Le Modèle Minimal Supersymétrique

- Les corrections associées aux sparticules compensent celles apportées par les particules du MS
 - \rightarrow règle le problème de hierarchie
- Permet l'unification des constantes de couplages
- Propose un candidat pour la matière noire (neutralino)

La recherche de squarks et gluinos

\$\tilde{\chi}^0\$ est la particule la plus légère
Les neutralinos ne peuvent pas être detectés (MET dans le detecteur)

•
$$\overrightarrow{Met} = -\sum \overrightarrow{p_T}$$

 \rightarrow Une mauvaise mesure de l'impulsion des jets a une influence sur la mesure de la MET

Content

Reconstruction des jets dans le détecteur ATLAS

- Les étapes de la reconstruction des jets
- Les différentes méthodes de correction in situ

(2) La mesure directe de la méthode $\gamma + jets$

- Description de la méthode $\gamma + jets$
- Les distributions
- Résultats pour les jets EM
- Calcul des incertitudes
 - Les différentes incertitudes de l'analyse
 - Les résultats

Reconstruction des jets avec le détecteur ATLAS

Reconstruction des jets

Event display

Reconstruction des jets

- Un jet est une collection d'objets générés par l'hadronisation d'un parton
- Dans cette analyse, les jets sont reconstruits à partir de groupes de cellules du calorimètre (topo-cluster)
- On peut utiliser différentes calibrations pour les topo-clusters
 - Calibration à l'echelle éléctromagnétique (EMTopo)
 - Calibration à l'échelle locale (LCTopo)
- Ces topo-clusters sont rassemblés dans un rayon R=0.4

Calibration des jets

Différentes corrections de l'energie et de la direction basées sur la simulation MC sont appliquées aux jets (JES) afin de corriger:

- Non compensation du calorimètre d'ATLAS
- Matériaux morts
- Le pile-up
- Les pertes d'energie
- $\rightarrow \mathsf{EM} + \mathsf{JES}$

calibration in situ

- Corrections supplémentaires appliquées en utilisant directement les données
- Comparaison de l'impulsion du jet avec celle d'un objet de référence
- Plusieurs méthodes in situ ont été développées
 - Les événements di-jets (calibration relative en η)
 - $\bullet \operatorname{Z+jet}/\gamma + \operatorname{jet}$
 - ${\ensuremath{\circ}}$ Calibration absolue basée sur un objet de ence (Z ou $\gamma)$
 - Pour les jets centraux
 - \rightarrow Par exemple la mesure direct de la balance (DB)
 - Multi-jet à grand p_T
- \longrightarrow La méthode a différentes sensibilités au pile-up et aux radiations de partons \longrightarrow Méthodes combinées pour le résultat final de la JES

calibration in situ (Run1)

La mesure directe de la méthode $\gamma + jets$

La mesure directe de la méthode $\gamma + jets$

- Analyse basée sur les données à $\sqrt{s} = 13 TeV$.
- Séléction des événements avec un jet et un photon opposés
- Projection de l'impulsion des photons sur la direction des jets:

$$p_T^{Ref} = p_T^{\gamma} \times |\cos(\Delta \Phi)|$$
 (1)

 Comparaison de p_T^{Ref} à l'impulsion du jet dominant pour différentes regions en p_T:

$$\mathcal{B} = rac{p_T^{jet}}{p_T^{Ref}}$$

(2)

distributions en pt, η et ϕ

Distribution des photons isolés

Selection: photons "Tight" et isolés, $p_t^{ref} > 125 GeV$

distribution en η , ϕ du jet dominant

Selection: photons "Tight", isolés et convertis, $p_t^{ref} > 125 GeV$

$\Delta \Phi$ distribution

• photons "Tight", isolés et convertis • $p_t^{ref} > 125 GeV$ • $|\eta^{jet}| < 0.8$

Balance vs *pt_{Ref}* fit

• Comparaison data et MC

Résultats pour les jets EM

Balance vs p_t^{ref}

Calcul des incertitudes

Incertitudes sur:

- le générateur MC utilisé (Pythia8)
- topologie des événements (deuxième jet, angle jet/photon)
- la rejection des jets de pile-up (jvt)
- la calibration des photons (PES, PER)
- la pureté de la selection des photons
- les erreurs statistiques
- l'estimation de l'energie en dehors du cone

Out-of-cone effects

- Certaines particules issues de la désintégration du parton ne sont pas prise en compte dans le jet
- \rightarrow Cet effet doit être estimé par les simulation
- \rightarrow Les erreurs sur l'estimation doivent être calculées

Baptiste Abeloos (LAL)

Fit sur la densité d'énergie des traces

Systematics on EM+JES

Systématiques sur l'analyse (travail en cours)

Baptiste Abeloos (LAL)

Conclusion

- Je travail sur la recherche de squark et gluinos dans le MSSM
- Une partie concerne la calibration in situ des jets
- Travail en cours:
 - Appliquer le bootstrap sur les systématiques
 - Améliorer les fit à bas p_T
- Les premiers résultats seront envoyés le 27 novembre
- Puis travail sur SUSY

BACKUP

BACKUP

Selection

Balance:
$$\mathcal{B} = \frac{p_T^{jet}}{p_T^{ref}}$$

- Photon selection
 - "Tight" identification criteria
 - $p_T^{\gamma} > 25 GeV$
 - Isolation: "FixedCutTight"
 - $E_T^{\gamma Cluster} / p_T^{tracks} \in [0, 2]$ (single-track conversion)
 - $E_T^{\gamma Cluster} / p_T^{tracks} \in [0.5, 1.5]$ (double-track conversion)
 - $ullet \left|\eta^\gamma
 ight| < 1.37$

$$p_T^{ref} = p_T^\gamma imes |\cos(\Delta \Phi)|$$

- 2 Jet selection
 - $p_T^{Leadingjet} > 8 GeV$
 - $|\eta^{Leadingjet}| < 0.8$
 - jvt > 0.64 for $p_T^{jet} < 50 GeV$ and |eta| < 2.4
- Solution
 Solution</