Search for new particles with diphoton final state at LHC at \sqrt{s} =13 TeV with the ATLAS experiment

Kirill Grevtsov Supervisor: Isabelle Wingerter-Seez

JJC 2015

Introduction

Searching for a resonance ingredients:

- Having a model
 - \circ Theory
 - Production/Decay
- Background parametrization
- Signal parametrization
- Apply ingredients to get:
 - **excess** (discovery)
 - \circ cross-section imes BR limit

Introduction

ATLAS

(A Toroidal LHC ApparatuS) general-purpose detector:

- search for new physics
- test predictions of the Standard Model (including the Higgs boson)

The Nobel Prize in Physics 2013 François Englert, Peter Higgs

"for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through <u>the discovery of the predicted fundamental particle</u>, <u>by the **ATLAS** and CMS experiments at CERN's Large Hadron Collider"</u>

Having a model

Standard Model

Symmetries:
$$U(1)_Y \otimes SU(2)_L \otimes SU(3)_C$$

$$\boxed{\text{Doublet}}$$

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$

Two complex fields $\,\phi^+\,\,\phi^0\,$ are parametrized as 4 real fields

Potential:

$$V(\Phi) = \frac{1}{2}\mu^2 \Phi^{\dagger} \Phi + \frac{1}{4}\lambda (\Phi^{\dagger} \Phi)^2$$

Field in unitary gauge:

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v + H(x) \end{pmatrix}$$

 $v/\sqrt{2} = \sqrt{-\mu^2/\lambda}$ stable vacuum

H is a physical scalar field, which quantum excitation is called the Higgs boson

For details look at Nicolas Morange talk at tuesday

Production

The Higgs boson can be produced via the interaction of quarks and gluons from the colliding protons; the four production modes considered:

(a) $gg \rightarrow H$ (87%)

fraction for m_{H} =125 GeV

Kirill Grevtsov

JJC 2015

Decay

In the Standard Model, the Higgs boson can decay in various ways:

3) jj - two jets misidentified as photons

JJC 2015

g 000000000000000

See more in backup

the a

Search for a resonance

In 2012, THE ATLAS & CMS collaborations presented the observation of a new resonance: **a Higgs Boson of the Standard Model**

 p_0 - local significance, probability of background mimic signal where excess below 3σ treated as statistical fluctuations

7

Search for a resonance

What if there are more of them?

Having a model

There are theories, like two-Higgs doublet model (2HDM), which require a second scalar particle.

SM Standard Model	2HDM two Higgs Doublets Model	
Free parameters:	Free parameters:	
1	14	
Potential:	Potential:	
$V(\Phi) = \frac{1}{2}\mu^2 \Phi^{\dagger} \Phi + \frac{1}{4}\lambda (\Phi^{\dagger} \Phi)^2$	$V = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right) + \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \Phi_{1}^{\dagger} \Phi_{1} \Phi_{2}^{\dagger} \Phi_{2} + \lambda_{4} \Phi_{1}^{\dagger} \Phi_{2} \Phi_{2}^{\dagger} \Phi_{1} + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left(\Phi_{2}^{\dagger} \Phi_{1} \right)^{2} \right],$	
Field: $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$	Fields: $\Phi_{a} = \begin{pmatrix} \phi_{a}^{+} \\ \left(v_{a} + \rho_{a} + i\eta_{a} \right) / \sqrt{2} \end{pmatrix}, a = 1, 2$	
3+1: <i>₩</i> [±] , <i>Z</i> ⁰ + <i>H</i>	3+5: <i>W</i> [±] , <i>Z</i> ⁰ + 5* <i>H</i>	

Note!: The models are **guides**; but the search would reveal a resonance even if it is not the one predicted by any model.

Search for a resonance

 $\tan \beta \equiv \frac{v_2}{v_1}$ The angles α and β are the rotation angles which diagonalizes matrices. They determine the interactions of the various Higgs fields with the vector bosons and with the fermions

$$\Phi_a = \begin{pmatrix} \phi_a^+ \\ (v_a + \rho_a + i\eta_a)/\sqrt{2} \end{pmatrix}, \quad a = 1, 2 \qquad v_1 = v \cos\beta$$
$$v_2 = v \sin\beta$$

The addition of the second Higgs doublet leads to 5 physical states:

• the CP even neutral Higgs bosons *h* and *H* (heavier than h)

$$h = \rho_1 \sin \alpha - \rho_2 \cos \alpha \qquad H = -\rho_1 \cos \alpha - \rho_2 \sin \alpha$$
$$H^{\text{SM}} = \rho_1 \cos \beta + \rho_2 \sin \beta = h \sin (\alpha - \beta) - H \cos (\alpha - \beta)$$
$$\text{the "alignment limit" } \alpha - \beta = \pi/2 : H_{125}^{\text{SM}} = h$$

• the CP odd pseudoscalar A

$$A = \eta_1 \sin\beta - \eta_2 \cos\beta$$

• two charged Higgs bosons H^{\pm}

Note!: The models are **guides**; but the search would reveal a resonance even if it is not the one predicted by any model. Kirill Grevtsov Limits were set for Run 1 - no excess found

Search for a resonance

Cross Section increases in Run 2, and we are **searching again!**

\sqrt{s} (TeV)	$\sigma_{pp ightarrow H}^{total}$ (pb)	$\sigma_{pp \to H \to \gamma\gamma}$ (fb)
7	13.37	30.48
8	22.13	50.46
14	56.98	129.91

During LHC run 1, ATLAS collected:

4.8 fb⁻¹ @ 7 TeV

20.7 fb⁻¹ @ 8 TeV

In 2015, ATLAS has collected and validated 3.3 fb⁻¹ @ 13 TeV Luminosity proportional to the number of expected events N for a process over its cross section σ

In collected data with "diphoton" signature we have combination of photon-photon, photon-jet and jet-jet events.

- 1) Select events with a pair of photons, applying selection criteria to maximize a high photon purity
- 2) The selected events contains events from direct $\gamma\gamma$, γ j, jj production, decays from the Higgs boson (H_{125}) (and possibly a new resonance ?)
- 3) The background is continuous and its shape can be parametrized
- 4) The possible signal is parametrized as a Narrow Width Resonance
- 5) Data are fitted with the sum of the background + a possible signal ("3+4")

The analysis is ongoing right now. As the collaboration has not reviewed the results, I cannot present them. Everything below will be **simulation** or **public results from Run 1**

Background parametrization

The background contribution to the $m_{\gamma\gamma}$ spectrum is modeled by a smooth functional form. Standard Model Higgs resonance accounted to background during fit

Signal+Background fit presented for Run 1 data.

I'm responsible for Signal Parametrization in Run 2 analysis

Search for scalar diphoton resonances at √s = 13 TeV in the mass range from 200 GeV to 3 TeV

Parametrize signals with Double-Sided Crystal Ball (DSCB) function using simulation:

MC signal samples produced for several mass points.

Parametrization derived on those points and provide function to continuously cover all the mass range

• An unbinned fit of the $m_{\gamma\gamma}$ distribution of all the events passing the selection cuts (single mass point fit)

where $t=\Delta m_{\chi}/\sigma_{CB}$, $\Delta m_{\chi} = m_{\chi} - \mu_{CB}$, *N* is a normalisation parameter, μ_{CB} is the peak of the Gaussian distribution, σ_{CB} represents the width of the Gaussian part of the function, α_{Low} (α_{High}) is the point where the Gaussian becomes a power law on the low (high) mass side, n_{Low} (n_{High}) is the exponent of this power law

Kirill Grevtsov

• The evolution of the Double-Sided Crystal Ball (DSCB) parameters as a function of $m_{\gamma\gamma}$ are then fitted to extract parameterizations.

Parametrization DSCB

Parameter	Parametrization		
Δm _x	a+bm _{nX} +cm ² _{nX}		
σ _{CB}	a+bm _{nx}		
$\alpha_{\sf Low}$	a+b/(m _{nX} +c)		
n _{Low}	а		
$lpha_{High}$	a+b/(m _{nX} +c)		
n _{High}	а		

 $m_{nx} = (m_x - 100)/100$

• The parameterization functions of the DSCB parameters are used as input for a binned multiple mass point fit, where all the mass points are fitted simultaneously.

Signal parametrization procedure for Run 2

In order to make model independent search, signal parametrization was done for all production modes

All production modes

Checks were done to prove stability of procedure independently to production mode

To estimate impact of difference in signal parametrization for production modes, injection test been done

Bias test

To estimate bias of choice of production mode, "toy" simulation was done. ttH signal was injected to background, and fitted with ggH assumption.

Bias of ~0.75% will be accounted as systematic uncertainty on choice of production mode for the signal parametrization

Variations

Use "simplified" decorrelation modes, vary up and down on size of uncertainty

- Resolution
- Scale

Variations

Impact on signal parametrization

-.

Variations

Dominant contribution from resolution variations will be included in Signal+Background fit as nuisance parameter.

All ingredients are ready:

- Look at the data we have collected 3.3 fb⁻¹ for whole 2015
- Present the search (p₀ plot)
- Publish results of the search: excess if any, cross-section imes BR limit
 - I'm co-editor of supporting documentation for this analysis

Current situation

- Work with LAr calorimeter
- Calibration studies
- Photon performance studies
- Part of analysis in γγ final state

All these points are logical and are essential in the preparation of my thesis:

"Search for new particles with diphoton final state at LHC at $\sqrt{s}=13$ TeV with the ATLAS experiment and Higgs boson mass measurement."

Thank you for your attention

Inspection of the ATLAS cavern

- Have a look on ATLAS!
- Inspection inside/outside before
- ramping up ATLAS toroid magnet

JJC 2015

video tour

Search for a resonance

Decay - Background

JJC 2015

Selections

We require:

- basic preselections
 - trigger (HLT_g35_loose_g25_loose)
 - in good detector acceptance $|\eta| < 2.37$ excluding crack)
 - \circ photon's E_T greater than *15* GeV
- Tight photons (after this step we select pair of photons)
- Isolation (topoetcone40 < $0.022^* E_T + 2.45 \text{ GeV } \& \text{ ptcone20} < 0.05^* p_T$)
- Relative p_T cuts: $E_T^{\gamma_i}/m_{\gamma\gamma} > 0.4/0.3$ (leading/subleading)

Estimation of required MC samples

Due to limitation of total amount of Monte Carlo, we have to reduce size of requested samples. Studies was done to **estimate limit, where signal parametrization is still valid**:

Decision was done to use $\frac{1}{3}$ of statistics

Isolation

An isolation requirement, based on the transverse energy deposited in the calorimeters in a cone around the photon candidate, is used to further suppress the main background from neutral hadrons decaying into two photons.

JJC 2015

Reconstruction in ATLAS

EM (e/ γ) particle

- Collect deposited energy in EM calorimeter
- Signal reconstruction
 - particle reconstruction
 - identification
 - calibration

Calibration in ATLAS

1 - Optimisation of E_{rec}/E_{truth} using multivariate algorithm (MC-based)

2,3 - specific data handling:

- Intercalibration of the 1st and 2nd calorimeter layers
- uniformity corrections
- 4 energy scale and resolution:

difference in response between data and simulation

5 - data-driven validation

Kirill Grevtsov

Calibration in ATLAS

And we do it with <u>incredible</u> precision:

Electron pair invariant mass distribution for $Z \rightarrow ee$ decays in data and improved simulation. Ratio of the data and uncorrected MC distributions to the corrected MC distribution with the calibration uncertainty band.

MC corresponds to Data within ~1-2%, which is inside systematic coverage.

Photon conversion

Photons can be reconstructed in calorimeter as:

- unconverted photons (no vertex or track matched to the cluster)
- converted photons
 - double track matched
 - single track matched

unconv

~_conv2tr

Photon conversion

Using first 2015 data, the performance of the ATLAS detector was tested. I studied the fraction of the three types of photon candidates Requiring high E_{T} cut, isolation and η region we selected photon candidates with 95% purity

These plots were approved as public by ATLAS for the EPS conference, and shown there in my poster

Pileup

Proton-proton collisions in LHC produce multiple interactions per bunch crossings

	2010-2011	2012-2013	2015		
√ <i>s</i> , TeV	7	8	13		
<µ>	9.1	20.7	~25		
To find the formula of the formula					

MC simulated before, and to account various number of pileup in data, in MC it is generated in wide range

0.15