Recherche du neutrino stérile avec l'expérience Stereo : influence de la non-linéarité de la réponse du détecteur sur la sensibilité

Thomas Salagnac

Laboratoire de Physique Subatomique et Cosmologie

July 2015

1 - Présentation de Stereo

2 - Mesure de la linéarité en charge

3 - Impact sur la sensibilité

Anomalie ν à courte distance

- Expériences réacteurs, à courte distance (10-500 m) \Rightarrow \sim 7% déficit de $\overline{\nu_e}$
- Expériences solaires Gallium, étalonnées avec des sources radioactives, SAGE & GALLEX $\Rightarrow \sim 16\%$ déficit de ν_e

Hypothèse : disparition de $\nu_e/\overline{\nu_e}$ vers un **neutrino stérile**

$$P_{e \to e} = 1 - P_{e \to st} = 1 - \sin^2 \left(2\theta_{st} \right) \sin^2 \left(1, 27 \cdot \frac{\Delta m_{st}^2 [eV^2] \cdot L[m]}{E_{\bar{\nu_e}} [MeV]} \right)$$

Limites sur les paramètres d'oscillation :

 $|\Delta m_{st}^2| > 1.5 \text{ eV}^2$ (99% C.L)

 $\sin^2(2\theta_{st}) = 0.17 \pm 0.04 \ (1\sigma)$

Hypothèse sans oscillation défavorisée à 3.6σ

Réf. : Abazajian, K. N. et al. Light Sterile Neutrinos: A White Paper. (2012)

Motivations de l'expérience Stereo

But de l'expérience Stereo : Vérification de l'existence d'une nouvelle oscillation de ν à coute distance des réacteurs (~ 10 m)

Méthode : Observation de la déformation du spectre en énergie [1.8 - 10 MeV] en fonction de la distance au réacteur

 \Rightarrow permet de s'affranchir de la norme du flux de $\overline{\nu_e}$ qui est entachée de fortes incertitudes

Principe de détection de Stereo

Inverse Beta Decay (IBD) : $\overline{\nu_e} + p \longrightarrow e^+ + n$

Volume cible : Liquide Scintillant (LS) + Gadolinium (Gd)

Signal "Prompt" :

- Thermalisation de e^{+}
 - $\rightarrow \text{scintillation}$
- Annihilation $e^+ + e^- \rightarrow 2\gamma$ (511 keV) \rightarrow scintillation

Signal "Retardé" ($\tau \sim qqs \ \mu s$) :

- $\bullet\,$ Thermalisation du n
- $\bullet\,$ Capture du n par un noyau de Gd
 - \rightarrow émission de γ
 - \rightarrow scintillation

Photons de scintillation = UV/visible $\rightarrow N_{photons} = f(E_{déposée})$

Coüncidence temporelle \Rightarrow Signature du $\overline{\nu_e}$: Séparation du bruit de fond

Le détecteur Stereo

Volume cible (LS + Gd) : 6 cellules identiques pour mesurer la déformation du spectre en énergie en fonction de la distance **Gamma-catcher (LS) :** couronne entourant le volume cible pour récupérer les γ qui s'échappent

- $\bullet~24 \rightarrow 6 \, \times \, 4$ PMTs par cellules
- 24 PMTs pour le Gamma-Catcher

• 20 PMTs pour le Veto- μ

Électronique de Stereo

Caractéristiques :

- Échantillonnage à 250 MHz (4 ns)
- Acquisition jusqu'à 1 kHz sans temps mort
- 2 niveaux de trigger :
 - 1 par carte FE (sur 8 voies)
 - 2 carte trigger : sur l'ensemble des 68 voies

Réf. : Bourrion et al. Trigger and readout electronics for the STEREO experiment. arXiv:1510.08238 (2015)

Détection des photons de scintillation

Charge : $Q = \sum_{i} S_i$ en somme de codes ADC

De la charge à l'énergie : $\sum_{PMT} Q \Rightarrow N_{PE} \Rightarrow N_{photons} \Rightarrow E_{déposée}$

Dynamique : de 1 PE à 1500 PEs \leftarrow Positon e^+ à 10 MeV en face d'un PMT

Mesure de la linéarité avec des LEDs

- Charge attendue pour N_{PE} photoélectrons : $Q_{att} = N_{PE}.Q_{PE}$
- Charge mesurée : $Q_{mes} = Q_{att}.(1 + \epsilon)$ avec ϵ = déviation de la linéarité attendue
- Utilisation des combinaisons de 3 LEDs (ON/OFF)
- Évaluation des Q_{att} des patterns à plusieurs LEDs à partir des Q_{mes} des patterns de référence

Exemple avec les patterns à 2 LEDs : $Q_{att}(P_{ij}) = Q_{mes}(P_i) + Q_{mes}(P_j)$

Problème : Références affectées par une non-linéarité

Solution : Méthode itérative

Méthode itérative

Hypothèse : pas de déviation à faibles charges

Étapes :

- 1 Calculer les charges attendues comme avant
- 2 Ajuster les Q_{att} : $Q_{att} = \frac{Q_{mes}}{1 + \varepsilon}$
- 3 Corriger les références avec l'ajustement
- 4 Re-calculer des charges attendues
- 5 Répéter à partir de l'étape 2 jusqu'à convergence

Modèle d'ajustement :

$$\begin{split} \varepsilon &= (\alpha.Q_{mes} + \beta.Q_{mes}^2 + \gamma.Q_{mes}^3 + \delta.Q_{mes}^4).e^{-Q_{cut}/Q_{mes}^2} \\ \text{où } \alpha, \ \beta, \ \gamma, \ \delta \ \text{et} \ Q_{cut} \ : \ \text{paramètres libres} \end{split}$$

Résultats

1^{ère} Itération : (pas de correction)

10^{ème} Itération :

 \Rightarrow Cohérence entre les mesures

 \Rightarrow Non-linéarité jusqu'à 3% dans notre dynamique

Possibilité de corriger la linéarité ! avec non-linéarité "résiduelle" < 1%

Évaluation de la sensibilité

Sensibilité : Capacité de faire la différence entre les spectres en énergie $O_{l,i}$ dans le cas d'une oscillation et les spectre $N_{l,i}$ dans le cas sans oscillation

$$\chi^2_{spectre} = \sum_{l}^{nCells} \sum_{i}^{nEbins} \left(\frac{O_{l,i} \left(\Delta m_{st}^2, \sin^2(2\theta_{st}) \right) - N_{l,i}}{\sigma_{l,i}} \right)^2$$

Notation : $i = i^{ime}$ bin en énergie et $l = l^{ime}$ cellule

Spectres $O_{l,i}$ et $N_{l,i}$ simulés en prenant en compte :

- Les géométries du détecteur et du réacteur
- Le nombre de neutrinos attendus : 400 ν .j $^{-1}$ pendant \sim 300 jours

• Un rapport signal sur bruit :
$${S\over B}\simeq 1,5$$

Réf : Huber et al Reactor neutrino experiments compared to superbeams. Nucl.Phys. B665, 487-519 (2003)

Prise en compte des incertitudes

Incertitudes : paramètres libres $\vec{\alpha}$ mais contraints lors de la minimisation

$$\Rightarrow N_{l,i} = \left(1 + \alpha^{norm(cor)} + \alpha_l^{norm(uncor)} + \alpha^{WM} \cdot (E_i - 1) + \alpha_i^{spec}\right) \cdot T_{l,i} + \Delta T_{l,i}^{\alpha^{calib}}$$

avec $T_{l,i}$ les spectres sans oscillation et sans incertitude

$$\begin{split} \chi^2 &= \chi^2_{spectre} + \left(\frac{\alpha^{WM}}{\sigma^{WM}}\right)^2 + \left(\frac{\alpha^{norm(cor)}}{\sigma^{norm(cor)}}\right)^2 \\ &+ \sum_l^{nCells} \left(\frac{\alpha_l^{norm(uncor)}}{\sigma^{norm(uncor)}}\right)^2 + \sum_l^{nCells} \left(\frac{\alpha_l^{calib}}{\sigma^{calib}}\right)^2 + \sum_i^{nEbins} \left(\frac{\alpha_i^{spec}}{\sigma_i^{spec}}\right)^2 \end{split}$$

Paramètre α	Description	Écart-type σ
α^{WM}	incertitude due au magnétisme faible	$\sigma^{WM}=0,65\%$
$\alpha^{norm(cor)}$	erreur corrélée sur la norme	$\sigma^{norm(cor)}=3,7\%$
$\alpha_l^{norm(uncor)}$	erreurs non corrélées sur la norme par cellule	$\sigma^{norm(uncor)} = 1,7\%$
α_l^{calib}	erreurs sur l'étalonnage en énergie par cellule	$\sigma^{calib}=2\%$
α_i^{spec}	erreurs sur le spectre par bin en énergie	$\sigma_i^{spec} = 0,7\% - 4\%$

Contours de sensibilité

Implémentation d'une non-linéarité

Hypothèse d'une non-linéarité
$$\beta^{nl} = \frac{Q_{mes} - Q_{att}}{Q_{att}} < 1\%$$

- Modèle de non-linéarité : $\beta^{nl}(E_{att}) = \alpha^a . E_{att}^2 + \alpha^b . E_{att} + \alpha^c$ Trois termes de nuisance : α^a , α^b et α^c
- Sans non-linéarité : $E_{mes} = (1 + \alpha^{calib}) \cdot E_{att}$ \Rightarrow Avec non-linéarité : $E_{mes} = (1 + \alpha^{calib}) (1 + \beta^{nl}) \cdot E_{att} = (1 + \varepsilon) \cdot E_{att}$
- Terme principal : variation du nombre d'événements

$$\Delta T_{l,i}^{\varepsilon} = \frac{\varepsilon(E_i^-).E_i^-.(T_{l,i-1} + T_{l,i}) - \varepsilon(E_i^+).E_i^+.(T_{l,i+1} + T_{l,i})}{2(E_i^+ - E_i^-)}$$

• Termes de contraintes : contraintes sur β^{nl}

$$\chi^2 = \ldots + \left(\frac{\beta^{nl}(2 \text{ MeV})}{\sigma^{nl}}\right)^2 + \left(\frac{\beta^{nl}(5 \text{ MeV})}{\sigma^{nl}}\right)^2 + \left(\frac{\beta^{nl}(7 \text{ MeV})}{\sigma^{nl}}\right)^2$$

Effet d'une non-linéarité de 1%

 \bullet Faible diminution mais seulement à faible Δm^2 : incertitude de 1% sur la linéarité acceptable

Comparaison avec des non-linéarités de 0,5% et 2%

- Faible gain pour 0,5% de NL
 ⇒ peu d'intérêt à gagner un facteur
 2 sur la precision de la linéarité
- Diminution seulement à faible Δm^2 pour 2% de NL
 - \Rightarrow Marge disponible sur
 - l'incertitude

Conclusion

• Mise en place d'une méthode pour mesurer la linéarité en charge de l'électronique

 \Rightarrow Non-linéarité résiduelle < 1%

• Étude préliminaire de l'impact sur la sensibilité du détecteur

⇒ Peu d'influence sur la sensibilité

- Status de l'électronique :
 - ► Design √
 - ▶ Fabrication \checkmark
 - \blacktriangleright Validation \checkmark

⇒ Électronique prête pour l'expérience Stereo

- Planning :
 - Avril 2016 : Montage de détecteur
 - Juin 2016 : Début de la prise de données
 - Début 2017 : 1^{er} résultats