Search for a diphoton and E_T^{miss} final state in pp collision at the LHC using the ATLAS detector

Stefano Manzoni INFN - Sezione di Milano, LPNHE - Paris

JRJC 2015

• Supersimmetry:

- new bosonic field to each SM fermion
- new fermionic field to each SM gauge boson
- $\rightarrow\,$ Solve the Higgs/hierarchy problem
- $\rightarrow\,$ In Susy the unification of the coupling costants is far more precise
- → Dark matter: LSP SUSY particle (with R-parity conservation)

A B > A B >

- Search for a signal from General Gauge Mediated models
 - LSP Gravitino
 - NLSP Neutralino

• Prompt decay
$${ ilde \chi}_1^{0} o { ilde G}\gamma$$
 ($c au < 0.1$ mm)

- Search for a signal from GGM models
 - Lightest Stable Particle Gravitino
 - Next to LSP Neutralino
- Two processes identified with $\gamma\gamma + E_T^{miss}$ final state:
 - Strong production
 - gluinos→Neutralinos (binolike)+jets→photons+Gravitinos+jets
 - Electroweak production
 - wino triplet→neutralinos+gaugebosons→photons+Gravitinos
- The mass of the neutralino is treated as a free parameter $m_{\tilde{\chi}_{1}^{0}} \in (0 \text{GeV}, m_{\tilde{g}}/m_{(\tilde{\chi}_{1}^{\pm 1}, \tilde{\chi}_{2}^{0})})$

• Prompt decay
$${ ilde \chi}_1^{ extsf{0}} o { ilde G}\gamma$$
 ($c au < 0.1$ mm)

CERN-PH-EP-2015-168

Photon Identification and reconstruction

• Photon Reconstruction:

- Energy deposit in the electromagnetic calorimeter
- Tracks to determine if the candidate is an electron or converted/unconverted photon

• Photon Identification:

- Energy leakage in the hadronic calorimeter
- Shower shapes in the three longitudinal layer of EM calorimeter
- Isolation: further discrimination between jets and photons: Isolation
 - energy around the candidate in a cone $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$
 - $\rightarrow\,$ jets faking a photons have lots of other particles around it

• Goal: $E_{reco} \rightarrow E_{true}$

- My qualification task: training the MVA calibration (1)
 - Monte Carlo based
 - advantages:
 - easiness to derive a new set of correction
 - take into account the correlation between the inputs
- Non completely related to my analysis:
 - $\rightarrow~$ much important for resonance search

≓ 0.06

0.05 H→yy

0.04

0.03

0.02

0.01

ATLAS Simulation

s = 8 TeV

116 118 120 122 124 126 128 130 132

Initial calibration MPV = 124.48 GeV $\sigma_{eff} = 1.55 \text{ GeV}$

MPV = 124.93 GeV σ_a = 1.39 GeV

134

MVA

• E_T^{miss} = Missing Transverse Momentum

- Negative vector sum of the transverse momenta of all detected particles
- Global quantity of the event
- The handle for the invisible part of the event

• Real E_T^{miss} :

- New particles
- Neutrinos

• Fake E_T^{miss} :

- Mis-calibrations
- Mis-measurements

イロト イヨト イヨト イヨト

- Limited detector acceptance
- Detector Noise

$$\begin{split} E_{x(y)}^{\text{miss}} &= E_{x(y)}^{\text{miss},e} + E_{x(y)}^{\text{miss},\gamma} + E_{x(y)}^{\text{miss},\tau} + E_{x(y)}^{\text{miss},jets} + E_{x(y)}^{\text{miss},\mu} + E_{x(y)}^{\text{miss},Soft} \\ E_{x(y)}^{\text{miss},k} &= -\sum_{k} p_{T}^{k} \end{split}$$

• Hard Terms

- Reconstructed and calibrated physics objects:
 - electrons, photons, taus, muons (identified objects)
 - Hadronics jets: $p_T > 20$ GeV

• Soft Terms

- Unmatched tracks and clusters
- soft jets with 7 GeV $< p_T < 20$ GeV

• • • • • • • • • •

- QCD background (instrumental $E_T^{miss} + 1$ or 2 real photons):
 - SM $\gamma\gamma$, $\gamma+jet$
- Eelctroweak background (genuine $E_T^{miss} + 1$ real photon)
 - W+ γ (W \rightarrow e ν), Z+ γ (Z \rightarrow $\tau^{+}\tau^{-}$), $t\bar{t}$ + γ (t \rightarrow be ν)
- Irreducible background (genuine $E_T^{miss} + 2$ real photons):
 - Finale state identical to the searched signal
 - $Z + \gamma \gamma \ (Z \rightarrow \nu \nu)$
 - W+ $\gamma\gamma$ (W $\rightarrow e\nu$)
- Discriminant variables:
 - p_T^{γ}
 - E_T^{miss}
 - $\Delta \phi$ (*jet*, E_T^{miss}) (to reduce fake E_T^{miss} contribution)
 - $\Delta\phi(\gamma, E_T^{\rm miss}),$ (signal γ and $E_T^{\rm miss}$ are expected to be back to back
 - H_T (=total transverse energy of all visible objects)
 - m_{eff} (scalar sum of H_T and E_T^{miss})

Data and Analysis strategy

- RUN1 data: $\sqrt{s} = 8$ TeV and L = 20.3 fb⁻¹
- Cut and count analysis:
 - Signal Region optimisation
 - Background evaluation:
 - SM contribution
 - Evaluation in Control Region (orthogonal to SR) with data-driven/MC methods
 - Validation Region
 - Statistical comparison of Expected (bkg) events vs. Observed

- Event selection:
 - Two passing identification (shower shapes) and isolated photons
 - Event Cleaning (jet cleaning, cosmic muon cleaning)

 \rightarrow Inclusive signature: no explicit requests on jets, leptons

- Four Signal Regions optimised:
 - Two for strong production (SH, SL)
 - $m(\tilde{g}, \tilde{\chi}_{1}^{0})(1300, 1050)$ GeV and (1300, 150) GeV
 - Two for ew production (WH, WL)
 - m($\tilde{\chi}_{1}^{\pm 1}/\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}$) (600, 500) GeV and (600, 100) GeV.
 - Using variables:
 - p_T^{γ}
 - E_T^{miss} , $\Delta \phi(\gamma, E_T^{miss})$, $\Delta \phi(jet, E_T^{miss})$
 - H_T (=total transverse energy of all visible objects)
 - m_{eff} (scalar sum of H_T and E_T^{miss})

Signal Region BWH	$SR_{S-L}^{\gamma\gamma}$	$SR_{S-H}^{\gamma\gamma}$	$SR_{W-L}^{\gamma\gamma}$	
No. photons $(E_T [GeV])$	>1 (> 75)	> 1 (> 75)	> 1 (> 75)	> 1 (> 75)
E_{T}^{miss} [GeV]	> 150	> 250	> 150	> 200
$H_{\rm T}$ [GeV]	_	_	> 600	> 400
$m_{\rm eff}$ [GeV]	> 1800	> 1500	-	-
$\Delta \phi_{\min}(\text{jet}, E_T^{\text{miss}})$ (No. leading jets)	> 0.5 (2)	> 0.5 (2)	> 0.5 (2)	> 0.5 (2)
$\Delta \phi_{\min}(\gamma, E_{\mathrm{T}}^{\mathrm{miss}})$	-	> 0.5	-	> 0.5

- QCD background:
 - Instrumental E_T^{miss}
 - SM $\gamma\gamma$, $\gamma+jet$
- QCD sample:
 - $\gamma\gamma$: di-photon MC sample \rightarrow 75%
 - $\dot{\gamma+}$ jet: pseudo-photon control sample ightarrow 25%
 - use control region in which one photon fails some of the shower shape requirements and pass looser isolation criteria
 - $\bullet \ \ {\rm leptons} \ {\rm veto} \ \rightarrow \ {\rm avoid} \ {\rm W} \ {\rm events}$
- Control Region: scale factor in region $0 < E_T^{miss} < 60$ GeV tight-tight photon and $H_T, m_{eff}, \Delta \phi(\gamma, E_T^{Miss}), \Delta \phi(jet, E_T^{Miss})$ request
- Validation Region: side-bands $100 < E_T^{miss} < 150$ GeV in bins of 300 GeV in H_T
- Systematic uncertainties:
 - $\bullet\,$ varying the relative contribution $\gamma\gamma\text{-}\mathsf{QCD}$ control sample

Signal Regions	$\mathrm{SR}_{\mathrm{S-L}}^{\gamma\gamma}$	$\mathrm{SR}_{\mathrm{S-H}}^{\gamma\gamma}$	$\mathrm{SR}_{\mathrm{W-L}}^{\gamma\gamma}$	$\mathrm{SR}_{\mathrm{W-H}}^{\gamma\gamma}$
QCD	$0.00^{+0.24}_{-0.00}$	$0.00^{+0.24}_{-0.00}$	$0.32_{-0.32}^{+0.45}$	$0.22^{+0.33}_{-0.22}$

- EW background
 - Genuine E_T^{miss}
 - W+ γ (W \rightarrow e ν), Z+ γ (Z \rightarrow $\tau^{+}\tau^{-}$), $t\bar{t}$ + γ (t \rightarrow be ν)
- electron faking photon:
 - tag-and-probe method using $Z \rightarrow ee$
 - request tag electron (25<p_7<50 GeV and Tight++) and search for an electron/photon (p_7>50 GeV)
 - evaluate scale factor $f = \frac{N_{e\gamma}}{N_{ee}}$
 - scale factor depends on the amount of material in front of the calorimeter
 - $\rightarrow~$ for five $\eta~$ bins (-2.47, -1.52], (-1.37, -0.6], (-0.6, 0.6), [0.6, 1.37), [1.52, 2.47)
- Control Region: electron-photon control sample with the request of a tight photon and a tight electron with $p_T > 75$ GeV
- Systematic uncertainties:
 - varying the fitting window of Z peak
 - $\bullet\,$ varying the $p_{\mathcal{T}}\,$ request for the probe

Signal Regions	$\mathrm{SR}_{\mathrm{S-L}}^{\gamma\gamma}$	$SR_{S-H}^{\gamma\gamma}$	$\mathrm{SR}_{\mathrm{W-L}}^{\gamma\gamma}$	$SR_{W-H}^{\gamma\gamma}$
EW	0.02 ± 0.02	0.0 ± 0.0	0.64 ± 0.27	0.13 ± 0.08

(日) (同) (三) (三)

• Z+ $\gamma\gamma$ (Z $\rightarrow \nu\nu$)

• Sherpa cross section (10.1 fb) rescaled to MadGraph at NLO (2.8 LO, K-factor 2)

• W+ $\gamma\gamma$ (W $\rightarrow e\nu$)

- Sherpa distribution (after full detector simulation) normalised to data in Control Region:
 - $50 < E_T^{miss} < 150 \text{ GeV}$
 - photon wiht $p_T > 50$ GeV
 - $p_T^{\gamma\gamma\ell} > 100 \text{ GeV}$

Signal Regions	$SR_{S-L}^{\gamma\gamma}$	$SR_{S-H}^{\gamma\gamma}$	$\mathrm{SR}_{\mathrm{W-L}}^{\gamma\gamma}$	$SR_{W-H}^{\gamma\gamma}$
$\overline{(W \to \ell \nu)\gamma\gamma}$	0.04 ± 0.02	0.05 ± 0.04	1.01 ± 0.62	0.53 ± 0.34
$(Z \rightarrow \nu \nu) \gamma \gamma$	0.00 ± 0.00	0.01 ± 0.01	0.07 ± 0.04	0.13 ± 0.07

CERN-PH-EP-2015-168

• $Z + \gamma \gamma \ (Z \rightarrow \nu \nu)$

• Sherpa cross section (10.1 fb) rescaled to MadGraph at NLO (2.8 LO, K-factor 2)

• W+ $\gamma\gamma$ (W $\rightarrow e\nu$)

• Sherpa distribution (after full detector simulation) normalised to data in Control Region:

• $50 < E_T^{miss} < 150 \text{ GeV}$

• photon wiht $p_T > 50$ GeV

• $p_T^{\gamma\gamma\ell} > 100 \text{ GeV}$

Signal Regions	$SR_{S-L}^{\gamma\gamma}$	$SR_{S-H}^{\gamma\gamma}$	$\mathrm{SR}_{\mathrm{W-L}}^{\gamma\gamma}$	$SR_{W-H}^{\gamma\gamma}$
Expected background events	$0.06\substack{+0.24 \\ -0.03}$	$0.06\substack{+0.24 \\ -0.04}$	$2.04\substack{+0.82 \\ -0.75}$	$1.01 \ ^{+0.48}_{-0.42}$
QCD	$0.00^{+0.24}_{-0.00}$	$0.00^{+0.24}_{-0.00}$	$0.32^{+0.45}_{-0.32}$	$0.22^{+0.33}_{-0.22}$
EW	0.02 ± 0.02	0.0 ± 0.0	0.64 ± 0.27	0.13 ± 0.08
$(W \rightarrow \ell \nu) \gamma \gamma$	0.04 ± 0.02	0.05 ± 0.04	1.01 ± 0.62	0.53 ± 0.34
$(Z \rightarrow \nu \nu)\gamma\gamma$	0.00 ± 0.00	0.01 ± 0.01	0.07 ± 0.04	0.13 ± 0.07

□ > < □ > < ⊇ CERN-PH-E₽-2015-168

Signal region	$N_{\rm obs}$	$N_{\rm exp}^{\rm SM}$	$S_{ m obs}^{95}$	$\langle \epsilon \sigma \rangle^{95}_{\rm obs} [{\rm fb}]$
$SR_{S-L}^{\gamma\gamma}$	0	$0.06^{+0.24}_{-0.03}$	3.0	0.15
$SR_{S-H}^{\gamma\gamma}$	0	$0.06^{+0.24}_{-0.04}$	3.0	0.15
$SR_{W-L}^{\gamma\gamma}$	5	$2.04^{+0.82}_{-0.75}$	8.2	0.41
$SR_{W-H}^{\gamma\gamma}$	1	$1.01\substack{+0.48\\-0.42}$	3.7	0.18

- No statistically significant deviation from the SM is observed
- For each signal region 95% CL upper limit is set on the visible cross section:
 - SL (SH) 0.15 (0.15) fb
 - WL (WH) 0.25 (0.18) fb
- 95% CL lower limits are set on
 - $m_{\tilde{g}}$ at 1290 GeV (at $-1\sigma_{Theory}^{SUSY}$)
 - $m_{(\tilde{\chi}_1^{\pm 1}, \tilde{\chi}_2^0)}$ at 590 GeV (at -1 σ_{Theory}^{SUSY})

Run2 ($\sqrt{s} = 13$ TeV) Prospect

• Considering a single signal point, gluino with mass 1400 GeV, just above the 8 TeV exclusion limit:

- Signal: $\sigma(13 TeV) / \sigma(8 TeV) \sim 30$
- Background: $\sigma(13 TeV) / \sigma(8 TeV) \sim 2 3$
- $S/\sqrt{B} \sim 20$ times bigger than at 8 TeV (at the same L)
- The sensitivity of the 8 TeV analysis will be reached with L=1-2 fb⁻¹ at 13 TeV

Nikola Makovec

- The results of the di-photon + E_T^{miss} analysis at $\sqrt{s} = 8$ TeV are presented
 - $m_{\tilde{g}}$ excluded up to 1290 GeV
 - $m_{(\tilde{\chi}_1^{\pm 1}, \tilde{\chi}_2^0)}$ excluded up to 590 GeV
- Run 2 at $\sqrt{s} = 13$ TeV analysis ongoing:
 - Signal region optimization
 - Data-driven background evaluation
 - Statistical framework

Stay tuned!

<ロ> (四) (四) (三) (三) (三)