Production of DM associated to a Higgs decaying into two photons in the ATLAS experiment

Alvaro Lopez Solis

Laboratoire de Physique Nucléaire et des Hautes Énergies

Journées de Rencontres Jeunes Chercheurs 2015

Outline

- Motivation
- EFT and simplified models
- Analysis and results from Run I
- Important performances
- Electromagnetic calorimeter
- Cross-talk studies
 - Calibration \rightarrow Physics method

Motivation

- Dark matter is one of the open mysteries of science:
 - Its existence can be inferred from measurements in galactic clusters
 - Looking at their luminosity/mass ratio (Zwicky, 1937)
 - Gravitational lensing (1980's)
 - Galaxy measurements:
 - Rotational velocity profile of stars around galactic center (Andromeda galaxy, H α line shifts , Vera Rubin and Kent Ford, 1970).
 - Cosmological measurements ($\Omega_{nbm}h^2 = 0.1198 \pm 0.0026$ in the Λ CDM model from PDG)
 - CMB anisotropies
 - Large scale structure.
 - Supernovae Type la

Motivation

Long range cosmology

Motivation

Long range cosmology

EFT and simplified models

EFT theories:

•

- Mediator integrated out.
- Parametrized by a Λ scale representing the UV domain integrated out \rightarrow Non renormalizable.
- Valid for $Q_{tr} < \Lambda$.
- $Q_{tr} > 2m_{DM}$

http://arxiv.org/abs/1312.2592

Short Name	EFT Dimension	Operator	Parameters
xxhhs	4	$\lambda H ^2 \chi \chi$	λ, m_{χ}
xxhhg5	5	$\frac{1}{\Lambda} H ^2\bar{\chi}i\gamma_5\chi$	Λ, m_{χ}
xdxhDh	6	$\frac{1}{\Lambda^2} \chi^{\dagger} i \stackrel{\leftrightarrow}{\partial^{\mu}} \chi H^{\dagger} i D_{\mu} H$	Λ, m_{χ}
xgxFhDh	8	$\frac{1}{\Lambda^4} \bar{\chi} \gamma^\mu \chi B_{\mu\nu} H^\dagger D^\nu H$	Λ, m_{χ}

EFT and simplified models

EFT theories:

- Mediator integrated out.
- Parametrized by a Λ scale representing the UV domain integrated out → Non renormalizable.
- Valid for $Q_{tr} < \Lambda$.
- Q_{tr} > 2m_{DM}

Simplified models:

- Hidden sector connected to SM by a vector boson or a scalar boson as mediators.
- Vector boson → extend SM gauge → Gauge baryonic symmetry
- Coupled to quarks and DM particles.

Short Name	EFT Dimension	Operator	Parameters
xxhhs	4	$\lambda H ^2 \chi \chi$	λ, m_{χ}
xxhhg5	5	$\frac{1}{\Lambda} H ^2\bar{\chi}i\gamma_5\chi$	Λ, m_{χ}
xdxhDh	6	$\frac{1}{\Lambda^2}\chi^{\dagger}i\stackrel{\leftrightarrow}{\partial^{\mu}}\chi H^{\dagger}iD_{\mu}H$	Λ, m_{χ}
xgxFhDh	8	$\frac{1}{\sqrt{4}}\bar{\chi}\gamma^{\mu}\chi B_{\mu\nu}H^{\dagger}D^{\nu}H$	Λ, m_{ν}

 $V \supset a|H|^2S + b|H|^2S^2 + \lambda_h|H|^4 - y_\chi\bar\chi\chi S$

 $g_q \bar q \gamma^\mu q Z'_\mu + g_\chi \bar \chi \gamma^\mu \chi Z'_\mu$

http://arxiv.org/abs/1312.2592

$H \rightarrow \gamma \gamma + E_{\tau}^{miss}$ analysis in Run I

- **Event selection** •
 - m_{γγ} ∈ [105,160] GeV
 - Two final states photons pT > 25 GeV & $|\eta| <$ 2.37
 - $p_T^{\gamma} > 0.35 (0.25) m_{\gamma\gamma}$ —
 - $\quad p_{_{T}}{}^{\gamma\gamma} > 90 \; GeV \; \& \; E_{_{T}}{}^{miss} > 90 \; GeV$
- **Resonant background contributions** •
 - HZ & HW
 - ggH, ttH and VBF production modes
- Non resonant background •
 - Wyy, Zyy ($lv_1 & vv$)
 - Wy and Zy \rightarrow One e⁻ misidentified as photon.
 - γγ<u>+</u>jets *t t*

http://arxiv.org/abs/1506.01081

$H \rightarrow \gamma \gamma + E_{\tau}^{miss}$ analysis in Run I

- **Event selection** •
 - m_{γγ} ∈ [105,160] GeV
 - Two final states photons pT > 25 GeV & $|\eta| <$ 2.37
 - $p_T^{\gamma} > 0.35 (0.25) m_{\gamma\gamma}$
 - $\quad p_{_{T}}{}^{\gamma\gamma} > 90 \; GeV \; \& \; E_{_{T}}{}^{miss} > 90 \; GeV$
- **Resonant background contributions** •
 - HZ & HW
 - ggH, ttH and VBF production modes
- Non resonant background ٠
 - Wyy, Zyy ($l v_1 \& vv$)
 - Wy and Zy \rightarrow One e⁻ misidentified as photon.
 - γγ<u>+</u>jets *t t*

http://arxiv.org/abs/1506.01081

$H \rightarrow \gamma \gamma + E_T^{miss}$ analysis in Run I

- Event selection
 - $m_{\gamma\gamma} \in [105, 160] \text{ GeV}$
 - Two final states photons pT > 25 GeV & |η| <
 2.37
 - $p_T^{\gamma} > 0.35 (0.25) m_{\gamma\gamma}$
 - $p_{T}^{\gamma\gamma} > 90 \text{ GeV } \& E_{T}^{miss} > 90 \text{ GeV}$
- Resonant background contributions
 - HZ & HW
 - ggH, ttH and VBF production modes
- Non resonant background
 - **Wγγ**, **Ζγγ** ($l v_l \& vv$)
 - Wγ and Zγ → One e⁻ misidentified as photon.
 - $\gamma \gamma + jets$
 - _ t

Number of events observed in data represent 1.4 σ deviation from SM predictions.

http://arxiv.org/abs/1506.01081

$H \rightarrow \gamma \gamma + E_{T}^{miss}$ analyses interpretation

Limits to EFT:

Limits to simplified models

http://arxiv.org/abs/1506.01081

11

$H \rightarrow \gamma \gamma + E_{T}^{miss}$: a performance driven channel

http://arxiv.org/pdf/1207.7214v2.pdf http://arxiv.org/pdf/1406.3827.pdf

Photon reconstruction and identification

- Photon clusters :
 - Cluster energy is the sum of cell energies in a Δη X Δφ region.
 - Cluster shape \rightarrow shower shapes
- Shower shape → photon identification (Pierre's talk)
 - Precisely measured by highly segmented calorimeter.
 - Reject jets from e/γ

Di-photon pair invariant mass reconstruction

 Improvements on the photon energy reconstruction and identification

→ Improve resolution of Higgs peak and remove a part of the background

Peak width completely dominated by resolution effect (Γ_{sm} = 4 MeV)

$H \rightarrow \gamma \gamma + E_{T}^{miss}$: a performance driven channel

Missing energy reconstruction

- Missing transverse momentum :
 - Reconstructed using jet,e,γ,μ,τ + Softterms
 - Soft-terms : low energy clusters and/or tracks not associated to any object.
- Caveat : Pile-up \rightarrow MET degradation.

$H \rightarrow \gamma \gamma + E_{T}^{miss}$: a performance driven channel

Missing energy reconstruction

- Missing transverse momentum :
 - Reconstructed using jet,e,γ,μ,τ + Softterms
 - Soft-terms : low energy clusters and/or tracks not associated to any object.
- Caveat : Pile-up $\rightarrow E_{T}^{miss}$ degradation.

- If improvement in vertex association → Feasible to use clusters to calculate the soft-terms.
- Arrival time to detector → Use to estimate vertex

A part of my work was devoted to study performance of E_{T}^{miss} reconstruction. Reduce timing resolution \rightarrow Estimate vertex association improvement

Electromagnetic calorimeter

- Measure electromagnetic showers from e⁻ or γ and EM part of hadronic showers.
- LAr/Lead calorimeter
- Electrodes retrieve charges → Signal amplitude α Energy deposit
- Three sub-detectors:
 - One barrel (|η| < 1.475)
 - Two end-cap wheels (1.375 < |η| < 3.2)
 - Forward calorimeter $(3.2 < |\eta| < 4.9)$
- Segmented in three layers
 - First (highly segmented) → measure impact point.
 - Second → Measure main energy deposit
 - Third \rightarrow Measure energy and leakage

Electromagnetic calorimeter

Electromagnetic calorimeter

Improvement in performance : Cross-talk in EM barrel

- Charge transfer between cells.
- Couplings in the detector : close cells or readout chain.
- Cross-talk introduces distortion to signal shapes.
 - Increases energy and time uncertainty for that cell.
- Cross-talk also distorts shower shapes
 - Introduces sizeable signal in cells receiving no energy from the EM shower.

- According to previous studies , effect of cross-talk in the time resolution of the LAr Barrel is around 94 ps.
- At c, 100 ps = 3 cm in the vertex identification
- Interaction point spread has a $\sigma \sim 6$ cm.
- Reducing cross-talk → Improve time resolution (150 ps → 50 ps for 60 GeV e⁻ if all cells in a cluster are taken into account)

- Capacitive :
 - High segmentation provokes couplings between cells.
 - Higher when segmentations is finer.

Strip n

Resistive

STOC Counts 400 400 1200

1000

800 600 400

200 -200 -400 HV layer providing calorimeter with high readout voltage is presents serigraphed resistors between the first and second layer.

Physics (RTM) inductive cross-talk

• Inductive:

- Readout cables are connected to mother boards very closely.
- When current is passing in one cable, a charge is inducted in the others.

Summing board connector

Inductive:

- Readout cables are connected to mother boards very closely.
- When current is passing in one cable, a charge is inducted in the others.
- Long distance :
 - Due to coupling in the cryostat feedthroughs.
 - Charge transfer between cells in different regions of the calorimeter.

Cross-talk studies from ATLAS commissioning

- Studied using calibration signals (different shape than from physics pulses).
 - Studied peak-to-peak and under peakto-peak ratios.
- Calibration signals shape is different from physics signal.
- No energy nor sample-by-sample cross-talk estimation
- My qualification work was to study this crosstalk in detail and to measure its real impact on energy measurement in the LAr Barrel.

Mean cross-talk values	Туре	Peak-to-peak	Under peak-to-peak
Layer $1 \rightarrow 1$	Capacitive	7.15 %	4.5%
Layer 2 → 1	Resistive	0.089%-0.099%	0.070%-0.093%
Layer 2 → 2	Inductive	1.11 %	O.44 %
Layer 2 \rightarrow 3	Inductive	0.88%	O.61 %
Layer 3 → 3	Inductive	1.43%	-0.52 %

- Cross-talk is studied with **special calibration runs**.
- Calibration signal \rightarrow Physics signal
 - Calibration injects decreasing exponential pulse → Physics pulse is a triangle.

- Cross-talk is studied with special calibration runs.
- Calibration signal \rightarrow Physics signal
 - Calibration injects decreasing exponential pulse → Physics signal is a triangle.
 - Physics signal produced by particles entering the front part of detector.

- Cross-talk is studied with special calibration runs.
- Calibration signal \rightarrow Physics signal
 - Calibration injects decreasing exponential pulse \rightarrow Physics signal is a triangle.
 - Physics signal produced by particles entering the front part of detector.

100 200 300 400

shape

400

500 600

- Physics signal extraction can be done with several methods \rightarrow Introduce response functions.
 - Use the nominal one (RTM)

1400

1200

1000

800

- Cross-talk is studied with special calibration runs.
- Calibration signal \rightarrow Physics signal
 - Calibration injects decreasing exponential pulse \rightarrow Physics signal is a triangle.
 - Physics signal produced by particles entering the front part of detector.
- Physics signal extraction can be done with several methods \rightarrow Introduce response functions.
 - Use the nominal one (RTM)

1400

1200

1000

800

Matrix method \rightarrow Used for systematics

Physics cross-talk reconstruction methods

RTM method

- Time domain
- Convolution

 $g_{Phys}^{XTalk} = g_{Calib}^{XTalk} * H(t)_{e \times p \to tri} * H(t)_{MB \to det}$

χ^2 method

• Same as matrix $\rightarrow S(t_n)$ taken from χ^2 minimisation

Matrix method

- Time domain \rightarrow Discrete Laplace domain (Z transform). $\zeta(a[n]) = \sum_{n=0}^{N-1} a_n z^{-n}$
- Multiply response functions
- Apply inverse Z transform
 - Matrix inversion.

$$S(z)_{Phys}^{XTalk} = \frac{S(z)_{Calib}^{XTalk}S(z)_{Phys}}{S(z)_{Calib}} \qquad S(z)_{phys}^{XTalk} = \sum_{n=0}^{N-1} S(t_n)_{Phys}^{XTalk} z^{-n}$$

Energy and time extraction at cluster level

E^{True}, τ^{True} and noise term can be retrieved optimally for each cell in a cluster

Expected performance improvement from cross-talk corrections

Signal shape distortion after cross-talk correction:

 Signal shape is known. Pile-up affected cells could then be identified by bad quality fits and corrected.

Energy improvement :

- Cross-talk is not well simulated in Run I. Crosstalk correction can improve data/MC agreement → reduce systematics.
 Time improvement
- Calorimetric cluster vertex association allows charged + neutral contributions tagging.
- Could open the option to use all cluster cells to extract a cluster time stamp → Reduce intime and out-of-time pile-up.
 Shower shapes distortion improvement
- Improve E1/E2 ratio → One of the main systematics in calibration.
- Improved MVA calibration.
- Better data/MC agreement → Reduce corrections applied to MC.

Conclusion

- Run I analysis sees an excess of 1.4 σ \rightarrow Interpreted as limits on couplings and EFT operators.
- $H \rightarrow \gamma \gamma$ + MET channel is driven by performances.
- LAr detector presents cross-talk.
 - Studied its contribution for physics and energy.
- Cross-talk corrections expected to improve shower shape description and pileup rejection \rightarrow Improve in H $\rightarrow \gamma\gamma$ + MET measurements
 - Better photon reconstruction and ID
 - CST MET less affected by pile-up.

Back-up

- Proton-proton collisions take place in the center of the detector.
 - Beams collimated so that little transverse displacement is achieved.
 - Every 25 ns.

- Pile-up :
 - High collision rate → High probability that disjoint interactions affect each other.
 - Energy and time measurements affected.
 - Lowered performance. 33

ATLAS Tracker and Calorimeter energy resolution

$$\frac{\sigma(p_T)}{p_T} = 0.036\% p_T + 1.3\%$$

$$\frac{\sigma(E)}{E} = \frac{50\%}{\sqrt{E}} + 3\%$$

Energy and time estimation in LAr calorimeter

- In each cell. front end electronic takes 4 • samples of the signal.
- An optimal filtering algorithm •
 - OF coefficients are signal shape dependent.
- Signal peak deposited energy. •

$$\sum_{i=1}^{5} a_i S_i = E \qquad \sum_{i=1}^{5} b_i S_i = E\tau$$

Relation between cluster energy and time and cell energy and time?

- Energy in a cluster is the sum of all its cells energies.
- Cluster time is τ of the most energetic cell.

LAr absorber

- Lead accordion-shaped absorbers
 - Two outer stainless-steel layers glued → mechanical rigidity.
 - Glass-fiber glue used.
- At $|\eta| > 0.8$, different absorber
 - More material → Lower sampling fraction in LAr .
 - Reduced lead thickness.

Summing board connector

Optimal filtering coefficients

- Created in **paper** for optimal signal peak estimation against noise and pile-up in high interaction rate ionization detector.
- 5 samples (4 in Run II) of signals are retrieved.
- A factor to estimate the signal peak is applied, different for each sample (signal shape dependence)
- Calculated using Lagrange multipliers.
- Based on signal shape properties
 - Shape peak to 1.

$$- S_i = (Eg(t-\tau))_i = Eg_i(t) - E\tau g'_i$$

i=1

- Supposing noise suppression.
- Minimize the variance of E and τ

$$\sum_{i=1}^{5} a_i S_i = E \qquad \sum_{i=1}^{5} b_i S_i = E\tau$$

$$\sum_{i=1}^{5} a_i g_i = 1 \qquad ; \qquad \sum_{i=1}^{5} a_i g'_i = 0$$

$$\sum_{5}^{5} b_i g_i = 0 \qquad ; \qquad \sum_{5}^{5} b_i g'_i = -1$$

i=1

- OFCs are predicted using delay calibration runs.
- In layer 1, cross-talk effect is quite big (~ 7% of total energy).
 - Signals are distorted due to it.
 - OFCs must be recalculated adding the neighbors cross-talk signals.
 - This is not done neither in the second nor third layers.
- Ramps are also recalculated since due to cross-talk in the strips, ADC peak was badly estimated and ADC \rightarrow DAC conversion was not accurate. $\times 10^{-2}$

https://indico.cern.ch/event/423133/contribution /s1t5/attachments/893206/1257761/Calibration.ppt

Some CMS limits (monojets search)

Figure 5: Upper limits on the DM-nucleon cross section, at 90% CL, plotted against DM particle mass and compared with previously published results. Left: limits for the vector and scalar operators from the previous CMS analysis [11], together with results from the CoGeNT [66], SIMPLE [67], COUPP [68], CDMS [69, 70], SuperCDMS [71], XENON100 [72], and LUX [73] collaborations. The solid and hatched yellow contours show the 68% and 90% CL contours respectively for a possible signal from CDMS [74]. Right: limits for the axial-vector operator from the previous CMS analysis [11], together with results from the SIMPLE [67], COUPP [68], Super-K [75], and IceCube [76] collaborations.

Some CMS limits (monojets search)

Figure 6: Observed limits on the mediator mass divided by coupling, $M/\sqrt{g_{\chi}g_{q}}$, as a function of the mass of the mediator, M, assuming vector interactions and a dark matter mass of 50 GeV (blue, filled) and 500 GeV (red, hatched). The width, Γ , of the mediator is varied between M/3 and $M/8\pi$. The dashed lines show contours of constant coupling $\sqrt{g_{\chi}g_{q}}$.

Some CMS limits (Z' resonances decaying into HZ)

 $\sigma_{z'}$ depends on Lagrangian term : $g_q \bar{q} \gamma^{\mu} q Z'_{\mu}$

Figure 9: Expected and observed upper limits on the production cross sections for $Z' \rightarrow HZ$ (left) and $W' \rightarrow HW$ (right), including all five decay categories. Branching fractions of H and V decays have been taken into account. The theoretical predictions of the HVT model scenario B are also shown.