Signal reconstruction in $B^0_s ightarrow au^+ au^-$

A. Mordá, J. Charles

CPPM & CPT - Marseille

Novel aspects of $b \rightarrow s$ transitions

Marseille - Campus S. Charles 6th October 2015

Overview

- Motivations
- \bullet Challenging aspects of $B^0_{(s)} \to \tau^+ \tau^-$
- Signal reconstruction in $B^0_{(s)} o au^+ au^-$
 - Kinematic equations
 - Discriminating variables
 - Latest developments
- Conclusions and Prospects

 $-B_{\ell}^{0} \rightarrow \tau^{+} \tau$ -Overview

Measured values of \mathcal{BR} of $B^0_{(s)} \to \mu^+ \mu^-$ rule out large New Physics effects

Still room for New Physics in processes involving 3rd generation

- Third family quite peculiar, required for CP violation
- [Dighe et al.PRD82 031502,(2010)]

• Anomalous like-sign dimuon charge asymmetry • Correlations with $\Delta\Gamma_s/\Gamma_s$ ($\bar{b}\mathcal{O}s$)($\bar{\tau}\mathcal{O}\tau$) • operators

• Hints of LFU violation: $\mathbf{R}_{\mathbf{K}} \equiv \frac{\mathcal{BR}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{BR}(B^+ \to K^+ e^+ e^-)}, \ \mathbf{R}_{\mathbf{D}^{(\star)}} \equiv \frac{\mathcal{BR}(\bar{B} \to D^{(\star)} \tau \nu_{\tau})}{\mathcal{BR}(\bar{B} \to D^{(\star)} \ell \mu_{t})}$

• Anomalous excess in $h \to \tau \mu$ channel

Search for
$$B^0_{(s)} o au^+ au^-$$

Standard Model predictions and current status

In the Standard Model (SM) [Bobeth et al., arXiv:1311.0903v1]:

$$\begin{split} \mathcal{BR}(B^0_s \to \tau^+\tau^-) &= (7.73 \pm 0.49) \times 10^{-7} \\ \mathcal{BR}(B^0_d \to \tau^+\tau^-) &= (2.22 \pm 0.04) \times 10^{-8} \end{split}$$

• respecting all the constraints on other B_s^0 decays it might be as large as 15%

- in models with a flavor depending Z' coupling it might be up to 5%
- in models with scalar Leptoquark it might be up to 0.3%

Model independent analysis [R. Alonso *et al.*, arXiv:1505.05164v1] allows for an enhancement of ~ 10³ in **B** \mathcal{R} of modes involving $(\bar{b}s)(\bar{\tau}\tau)$ operators (*i.e.* $B^0_{(s)} \to \tau\tau, B^0 \to K^*\tau\tau$)

• <u>Current status</u>:

- $\mathcal{BR}(B^0_d \to \tau^+ \tau^-) < 4 \cdot 10^{-3}$ @ 90% CL by BaBar [PRL 96 (2006) 241802]
- **B** $\mathcal{B}\mathcal{R}(B^0_s \to \tau^+ \tau^-)$ has not yet been constrained

Challenging issues of $B^0_{(s)} o au^+ au^-$

 τ have a very short lifetime \Longrightarrow we must reconstruct them from their daughter particles

At least one neutrino for each τ decay (1 for hadronic or 2 for leptonic channels) \Rightarrow at least 2 undetectable neutrinos

The $au o 3\pi \, u_{ au}$ decay final state

Tau decay vertexes

The $\tau \to 3\pi \nu_{\tau}$ decay chain proceeds through the a_1 and ρ resonances, *i.e.*

Only 2 neutrinos

B production vertex

- 2 3-prong vertexes
- Reconstruction of the decay plane: kinematic constraints & partial neutrino momentum reconstruction
- Needs 6-charged tracks in the detector acceptance
- $\mathbf{B}\mathcal{R}(\tau \to 3\pi \,\nu_{\tau}) = 9.31\%$
- $\blacksquare \ \mathcal{BR}^{\mathbf{SM}}(\mathbf{B_s} \to \mathbf{6}\pi\nu\bar{\nu}) \simeq \mathbf{6.7}\times\mathbf{10^{-9}}$

A. Mordá (CPPM & CPT)

Sources of background

- $\tau \rightarrow 3\pi\nu$ backgrounds:
 - combinatorial τ : 3 random π

• true particles:
$$D_{(s)}^{(\star)} \to 3\pi X$$

	Mass (MeV)	$ au~(10^{-15}s~)$	Spin
au	1776	290	1/2
D	1869	1040	0-
D_s	1968	500	0-

- $B_s \to \tau \tau \to (3\pi\nu)(3\pi\nu)$ backgrounds:
 - 2 combinatorial au
 - from two *b*-hadron decays
 - from one *b*-hadron decay:
 - hadronic or semileptonic decay of a *b*-hadron with ≥ 6 charged tracks

What we start with: $M_{6\pi}$

Signal reconstruction in $B_s^0 \to \tau^+ \tau^ \Box B_{(s)}^0 \to \tau^+ \tau^ \Box$ Signal reconstruction

Signal reconstruction for $B_s \rightarrow \tau \tau \rightarrow (3\pi\nu)(3\pi\nu)$

In the reconstructed events the following quantities are known:

Can we reconstruct the two au candidate momenta p_{\pm} ?

Signal reconstruction in $B_s^0 \to \tau^+ \tau^ \Box B_{(s)}^0 \to \tau^+ \tau^ \Box$ Signal reconstruction

Signal reconstruction for $B_s \rightarrow \tau \tau \rightarrow (3\pi\nu)(3\pi\nu)$

In the reconstructed events the following quantities are known:

Can we reconstruct the two au candidate momenta p_{\pm} ?

Signal reconstruction in $B_s^0 \to \tau^+ \tau^ \Box B_{(s)}^0 \to \tau^+ \tau^ \Box$ Signal reconstruction

Signal reconstruction for $B_s \to \tau \tau \to (3\pi\nu)(3\pi\nu)$ Example. 1D case:

- au production and decay vertexes are known: $\vec{w_{\tau}}$
- 4 unknowns: the p_{τ}^{μ} momentum components
- General relation between 4-vectors:

$$w_{\tau} = h p_{\tau}$$
 , $h \equiv \frac{\tau_{\tau}}{m_{\tau}}$

• Constraints on $\vec{p}_{\tau} \propto \vec{w}_{\tau}, p_{\tau}^2 = m_{\tau}$ and $p_{\tau} \cdot p_{3\pi}$ (with m_{ν} fixed)

 \blacksquare The norm of the τ momentum is defined up to a twofold ambiguity

Can we reduce our problem to $2 \otimes (1D\text{-case})$?

Signal reconstruction in $B_s^0 \to \tau^+ \tau^ \Box B_{(s)}^0 \to \tau^+ \tau^ \Box$ Signal reconstruction

Signal reconstruction for $B_s \to \tau \tau \to (3\pi\nu)(3\pi\nu)$ Example. 1D case:

- τ production and decay vertexes are known: \vec{w}_{τ}
- 4 unknowns: the p_{τ}^{μ} momentum components
- General relation between 4-vectors:

$$w_{\tau} = h p_{\tau}$$
 , $h \equiv \frac{\tau_{\tau}}{m_{\tau}}$

• Constraints on $\vec{p}_{\tau} \propto \vec{w}_{\tau}, p_{\tau}^2 = m_{\tau}$ and $p_{\tau} \cdot p_{3\pi}$ (with m_{ν} fixed)

 \blacksquare The norm of the τ momentum is defined up to a twofold ambiguity

Can we reduce our problem to $2 \otimes (1D\text{-case})$?

Signal reconstruction in $B_s^0 \to \tau^+ \tau^ \Box B_{(s)}^0 \to \tau^+ \tau^ \Box$ Signal reconstruction

Signal reconstruction for $B_s \to \tau \tau \to (3\pi\nu)(3\pi\nu)$ Example. 1D case:

- τ production and decay vertexes are known: $\vec{w_{\tau}}$
- 4 unknowns: the p_{τ}^{μ} momentum components
- General relation between 4-vectors:

$$w_{\tau} = h p_{\tau}$$
 , $h \equiv \frac{\tau_{\tau}}{m_{\tau}}$

• Constraints on $\vec{p}_{\tau} \propto \vec{w}_{\tau}, p_{\tau}^2 = m_{\tau}$ and $p_{\tau} \cdot p_{3\pi}$ (with m_{ν} fixed)

• The norm of the τ momentum is defined up to a twofold ambiguity

Can we reduce our problem to $2 \otimes (1D\text{-case})$?

Signal reconstruction in $B^0_s \to \tau^+ \tau^ \Box B^0_{(s)} \to \tau^+ \tau^ \Box$ Signal reconstruction

Signal reconstruction for $B_s o au au o (3\pi u)(3\pi u)$

The answer is "yes" (at least formally) if

- manifest Lorentz-covariance is kept
- **particular choice of unknown** momenta are made

Let's define:

$$w_{\pm} \equiv (\boldsymbol{w}_{\pm}^{\mathbf{0}}, \vec{w}_{\pm})$$

and

$$W\equiv (w_+,w_-) \quad,\quad P\equiv (p_+,p_-)$$

 $W = H \cdot P \qquad \longleftarrow \text{ Formally equal to the 1D case}$ with $(\hat{\tau}_i \equiv \frac{\tau_i}{m_i})$ $H \equiv \begin{pmatrix} \hat{\tau}_B + \hat{\tau}_+ & \hat{\tau}_B \\ \hat{\tau}_B & \hat{\tau}_B + \hat{\tau}_- \end{pmatrix}$

Note: if $\tau_B \to 0$, 2 \otimes 1D-case trivially

Signal reconstruction in $B^0_s \to \tau^+ \tau^ \Box B^0_{(s)} \to \tau^+ \tau^ \Box$ Signal reconstruction

Signal reconstruction for $B_s o au au o (3\pi u)(3\pi u)$

H is a real 2×2 symmetric matrix. Diagonalizing:

$$H = \begin{pmatrix} \hat{\tau}_B + \hat{\tau}_+ & \hat{\tau}_B \\ \hat{\tau}_B & \hat{\tau}_B + \hat{\tau}_- \end{pmatrix} = R(\theta) \cdot \begin{pmatrix} h_+ & 0 \\ 0 & h_- \end{pmatrix} \cdot R^{-1}(\theta)$$

 $(\hat{ au}_B,\hat{ au}_\pm) \leftrightarrow (heta,h_\pm)$

 θ -distribution for Signal MC

$$\cos{(heta)}\simeq \cos(rac{\pi}{4})+\mathcal{O}(\hat{ au}_+-\hat{ au}_-)$$

heta sensitive to the asymmetry of the triangle in the proper time dimension of each au

Signal reconstruction in $B_s^0 \to \tau^+ \tau^ \Box B_{(s)}^0 \to \tau^+ \tau^ \Box$ Signal reconstruction

Signal reconstruction for $B_s o au au o (3\pi u)(3\pi u)$

Using the "rotated" sides & momenta

$$\begin{pmatrix} \tilde{w}_+\\ \tilde{w}_- \end{pmatrix} \equiv R^{-1}(\theta) \cdot \begin{pmatrix} w_+\\ w_- \end{pmatrix} \quad , \quad \begin{pmatrix} \tilde{p}_+\\ \tilde{p}_- \end{pmatrix} \equiv R^{-1}(\theta) \cdot \begin{pmatrix} p_+\\ p_- \end{pmatrix}$$

the following relation holds:

$$\begin{pmatrix} \tilde{w}_+ \\ \tilde{w}_- \end{pmatrix} = \begin{pmatrix} h_+ & 0 \\ 0 & h_- \end{pmatrix} \cdot \begin{pmatrix} \tilde{p}_+ \\ \tilde{p}_- \end{pmatrix}$$

Formally equal to $2 \otimes 1D$ cases

Signal reconstruction in $B_s^0 \to \tau^+ \tau^ \Box B_{(s)}^0 \to \tau^+ \tau^ \Box$ Signal reconstruction

Signal reconstruction for $B_s \to \tau au \to (3\pi
u)(3\pi
u)$ Constraints:

- "mass-shell" condition for $\tilde{p}_+^2 = m_\tau^2 \pm p_+ p_- \sin(2\theta)$
- direction of $\vec{p}_{\pm} = \sigma_{\pm} \vec{w}_{\pm}$, with $\sigma_{\pm} \equiv h_{\pm}^{-1}$ • $p_{\pm} \cdot p^{(3\pi)^{\pm}} = \frac{m_{\tau}^2 + m_{3\pi^{\pm}}^2}{m_{\pi}^2 + m_{3\pi^{\pm}}^2}$

These constraints give 2 equations of 2^{nd} degree in σ_{\pm} , $\mathcal{P}_{\pm}^{(2)}(\sigma_{\pm}, \theta) = 0$, which <u>linearly</u> depend on p_+p_-

An additional constraint (trivially <u>linear</u> in p_+p_-) can be imposed on

$$p_+p_- = \frac{M_B^2 - 2m_\tau^2}{2} = 11.24 \frac{GeV^2}{c^4}$$

In total 3 equations for 3 unknowns (σ_{\pm}, θ)

A. Mordá (CPPM & CPT) Signal reconstruction in $B_{a}^{0} \rightarrow \tau^{+}\tau^{-}$

What has been done so far...

Signal reconstruction in $B_s^0 \to \tau^+ \tau^ B_{(s)}^0 \to \tau^+ \tau^-$ Signal reconstruction

Signal reconstruction for $B_s o au au o (3\pi u)(3\pi u)$

• Fix p_+p_- to its signal value, approximate θ (see next slide) and solve

 $\mathcal{P}^{(2)}_{\pm}(\sigma_{\pm}, heta)=0$

- This system geometrically represents the intersection of two hyperbola
- Solutions σ_{\pm} are expressed in term of the root of a 4th degree polynomial:

$$P(\xi) = \sum_{i=0}^{4} a^{(i)}(\theta)\xi^{i} = 0$$

with $a^{(i)}(\theta)$ functions of measurable quantities and the θ angle

There exist analytical solutions

• For signal events there must exist real solutions ξ with $\sigma_{\pm} \geq 0$

Signal reconstruction for $B_s o au au o (3\pi u)(3\pi u)$

Some options to deal with θ -dependence:

- substitute θ with its average value $\overline{\theta} = \frac{\pi}{4}$
 - it's much better for signal than for exclusive backgrounds (with D and τ)
- approximate θ by using measurable quantities
 - θ as a (Lorentz invariant) function of \vec{w}_+ and \vec{w}_-

Due to

- approximation of θ
- detector resolution
- radiation emission from π^{\pm}

imaginary solutions of $P(\xi) = 0$ will appear also for signal events

Discriminating variables

• In principle: only the two reconstructed eigenvalues h_{\pm} of the *H* matrix $(m_{\tau,\nu,B} \text{ used as external constraints})$

• In practice: also other functions of measurable quantities (*e.g.* the four complex ξ solutions) can be used to discriminate signal against background

 $Im(\xi)$

 $\operatorname{Re}(\xi)$

Signal MC, Background

• The most discriminating ones are used as input of a Decision Tree whose output is used for the signal search

A. Mordá (CPPM & CPT)

Signal reconstruction in $B^0_s \to \tau^+ \tau^-$

Latest developments

Signal reconstruction for $B_s \to \tau \tau \to (3\pi\nu)(3\pi\nu)$

Explore other ways to exploit the available information

- use in a different way the kinematic equations
 - in total 3 equations, can be re-arranged into
 - two p_+p_- independent equations: $S_{\pm}(\sigma_{\pm}, \theta) = 0$
 - one p_+p_- linearly dependent equations: $p_+p_- = \mathcal{S}_0(\sigma_\pm, \theta)$
 - $S_{\pm,0}(\sigma_{\pm},\theta) = 0$ equations of hyperbola
- \bullet improve the approximation of θ

Signal reconstruction in $B_s^0 \to \tau^+ \tau$ $\sqsubseteq B_{(s)}^0 \to \tau^+ \tau^ \sqsubseteq$ Signal reconstruction

Signal reconstruction for $B_s o au au o (3\pi u)(3\pi u)$

 $egin{cases} oldsymbol{\mathcal{S}_{\pm}}(\sigma_{\pm}, heta) = \mathbf{0} \ p_+ p_- = \mathcal{S}_0(\sigma_{\pm}, heta) \end{cases}$

Two possible strategies:

• full reconstruction: use $S_{\pm}(\sigma_{\pm}, \theta) = 0$ to find $\sigma_{\pm}(\theta)$ and fix θ with $S_0(\sigma_{\pm}, \theta)$

- only the $\tau_{B,\tau^{\pm}}$ as discriminating variables
- use a Dirac peak (p_+p_-) to approximate a non-trivial function (θ)

• p_+p_- as a function of θ : find $\sigma_{\pm}(\theta)$ with $S_{\pm}(\sigma_{\pm}, \theta) = 0$, use $S_0(\sigma_{\pm}, \theta)$ to approximate p_+p_-

- p_+p_- is more discriminating that decay time
- use a non-trivial distribution to approximate a Dirac peak
- \blacksquare needs an approximation of θ

Signal reconstruction in $B_s^0 \to \tau^+ \tau$ $\sqsubseteq B_{(s)}^0 \to \tau^+ \tau^ \sqsubseteq$ Signal reconstruction

Signal reconstruction for $B_s o au au o (3\pi u)(3\pi u)$

 $\begin{cases} \boldsymbol{\mathcal{S}}_{\pm}(\boldsymbol{\sigma}_{\pm},\boldsymbol{\theta}) = \boldsymbol{0} \\ p_{+}p_{-} = \boldsymbol{\mathcal{S}}_{0}(\boldsymbol{\sigma}_{\pm},\boldsymbol{\theta}) \end{cases}$

Two possible strategies:

- full reconstruction: use $S_{\pm}(\sigma_{\pm}, \theta) = 0$ to find $\sigma_{\pm}(\theta)$ and fix θ with $S_0(\sigma_{\pm}, \theta)$
 - only the $\tau_{B,\tau^{\pm}}$ as discriminating variables
 - use a Dirac peak (p_+p_-) to approximate a non-trivial function (θ)

• p_+p_- as a function of θ : find $\sigma_{\pm}(\theta)$ with $S_{\pm}(\sigma_{\pm}, \theta) = 0$, use $S_0(\sigma_{\pm}, \theta)$ to approximate p_+p_-

- p_+p_- is more discriminating that decay time
- use a non-trivial distribution to approximate a Dirac peak
- \blacksquare needs an approximation of θ

Signal reconstruction in $B_s^0 \to \tau^+ \tau^ \Box B_{(s)}^0 \to \tau^+ \tau^ \Box$ Signal reconstruction

heta approximation and estimation of p_+p_-

Use the relation W = HP in 3D with $P = P_{3\pi}$:

 $H_{3\pi} = (P_{3\pi}P_{3\pi}^T)^{-1} [P_{3\pi}P_{3\pi}^T W W^T]^{\frac{1}{2}}$

Use $\theta_{3\pi}$ which diagonalizes $H_{3\pi}$ as approximation of the true θ

Find $\sigma_{\pm}(\theta_{3\pi})$ using $\mathcal{S}_{\pm}(\sigma_{\pm}, \theta_{3\pi}) = 0$

Replace $\sigma_{\pm}(\theta_{3\pi})$ and $\theta_{3\pi}$ in $S_0(\sigma_{\pm}, \theta)$ to estimate p_+p_-

 θ vs $\theta_{3\pi}$

Signal reconstruction in $B_s^0 \to \tau^+ \tau^ \Box B_{(s)}^0 \to \tau^+ \tau^ \Box$ Signal reconstruction

p_+p_- distribution: multiple solutions in the ideal case

Distribution of p_+p_- for Signal MC (68% of events with real solutions), $B \rightarrow D\tau\nu$ background (44% of events with real solutions)

Signal reconstruction in $B_s^0 \to \tau^+ \tau^ \Box_B_{(s)}^0 \to \tau^+ \tau^ \Box_{\text{Signal reconstruction}}$

$M_{B^0_*}$ distribution: choice of the best solution in the ideal case

Distribution of M_{B_s} for Signal MC, $B \to D\tau\nu$ background for events with real solutions and choosing p_+p_- closest to the exact signal value $(11.24 \frac{GeV^2}{c^4})$

This choice does not create a false peak in the signal region for background!

Signal reconstruction in $B_s^0 \to \tau^+ \tau^ \square B_{(s)}^0 \to \tau^+ \tau^ \square$ Signal reconstruction

$M_{B^0_*}$ distribution: detector resolution effect

Distribution of M_{B_s} for Signal MC, Signal MC with detector resolution

Only small $M_{B_o^0}$ resolution degradation due to detector resolution is observed

A. Mordá (CPPM & CPT) Signal reconstruction in $B_s^0 \to \tau^+ \tau^-$

Signal reconstruction in $B_s^0 \to \tau^+ \tau$ $\sqsubseteq B_{(s)}^0 \to \tau^+ \tau^ \sqsubseteq$ Signal reconstruction

$M_{B^0_s}$ distribution: $B o D^\star au u_ au$

 $B^0 \rightarrow D^* \tau \nu_{\tau}$ background (24% of events with real solutions)

Signal reconstruction in $B_s^0 \to \tau^+ \tau^ \Box B_{(s)}^0 \to \tau^+ \tau^ \Box$ Signal reconstruction

$M_{B_s^0}$ distribution: generic background from data

Distribution of M_{B_s} for Signal MC (36% of events with real solutions), background in data (16% of events with real solutions)

Conclusions & Prospects - $B^0_{(s)} ightarrow au^+ au^-$

 $B^0_{(s)} o au^+ au^-$ is a window to test several New Physics scenarios

- Pioneer analysis:
 - missing energy makes signal reconstruction very challenging
 - \bullet a method for the $M_{B^0_\alpha}$ has been presented
 - some discriminating variables already used in the experimental search
 - new strategies under study to leave $M_{B_s^0}$ a free variable
 - issues about multiple and complex solutions and ways to estimate θ

• Still to study how to use these variables from the latest development in the experimental search

Backup

4^{th} degree equation

$$ax^4 + bx^3 + cx^2 + dx + e = 0$$

Solutions:

$$x_{1,2} = -\frac{b}{4a} - S \pm \frac{1}{2}\sqrt{-4S^2 - sp + \frac{q}{S}}$$
$$x_{3,4} = -\frac{b}{4a} + S \pm \frac{1}{2}\sqrt{-4S^2 - sp + \frac{q}{S}}$$

 with

 $p = \frac{8ac - 3b^2}{8a^2}$ $q = \frac{b^3 - 4abc + 8a^2d}{8a^3}$ $S = \frac{1}{2}\sqrt{-\frac{2}{3}p + \frac{1}{3a}\left(Q + \frac{\Delta_0}{Q}\right)}$ $Q = \sqrt{\frac{\Delta_1 + \sqrt{\Delta_1^2 - 4\Delta_0^3}}{2}}$ $\Delta_0 = c^2 - 3bd + 12ae$ $\Delta_1 = 2c^3 - 9bcd + 27b^2e + 27ad^2 - 72ace$

Distribution of the 4 solutions - $\theta = \theta_{true}$

Distributions of the real part of the 4 solutions

Figure: Distribution of $Re(\xi_i)$ and of ξ_{true} superimposed

Distribution of the 4 solutions - $\theta = \theta_{true}$

Figure: Behavior of the solutions for $\theta = \theta_{true}$

θ approximation

Define a matrix \overline{H} function of measurables quantities with the following structure

$$\overline{H} = \begin{pmatrix} 1 + \overline{t}_+ & 1\\ 1 & 1 + \overline{t}_- \end{pmatrix}$$

with \bar{t}_{\pm} functions of (\vec{w}_+, \vec{w}_-)

Use $\overline{\theta}$ (which diagonalizes \overline{H}) to approximate θ

- For analogy with the H matrix :
 - \overline{H} must trasform as H for exchange $+ \leftrightarrow (i.e. \ \overline{H}_{11} \leftrightarrow \overline{H}_{22}),$
 - the functions $\overline{t}_{\pm}(\vec{w}_+,\vec{w}_-)$ must be adimensional and
 - Lorentz invariant
- The functions

$$\bar{t}_{\pm} \equiv \frac{|\vec{w}_{\pm}|}{|\vec{w}_{+} + \vec{w}_{-}|}$$

have the required properties

• An improved approximation θ_{imp} has been found using a recursive method with $zero^{th}$ order $\bar{\theta}$.

Distribution of the 4 solutions - $\theta = \overline{\theta}$

Figure: Behavior of the solutions for $\theta = \overline{\theta}$

Signal reconstruction in $B_{\alpha}^{0} \rightarrow \tau^{+}\tau$

au-reconstruction

To fix θ the general relation between \tilde{s} and s:

$$\tilde{s}(\theta) = s\cos 2\theta \tag{1}$$

can be exploited.

By developing both sides of the previous equation around θ^{\star} the following relation is found:

$$\tilde{s}(\theta^{\star} + \delta\theta) = \tilde{s}(\theta^{\star}) + \delta\theta \frac{d\tilde{s}}{d\theta} \|_{\theta^{\star}} = s(\cos^2\theta^{\star} - \sin^2\theta^{\star} - 4\delta\theta\cos\theta^{\star}\sin\theta^{\star}).$$
(2)

where the quantities on the l.h.s. are meant to be computed by solving the main equation.

• The value of $\frac{d\tilde{s}}{d\theta}\|_{\theta^*}$ must be evaluated numerically, by solving the fundamental equation with $\theta = \theta^* \pm d\theta$ and for each of these two values computing the value $\tilde{s}(\theta^* \pm d\theta)$ and then the incremental ratio $\frac{\tilde{s}(\theta^* + d\theta) - \tilde{s}(\theta^* - d\theta)}{2d\theta}$

au-reconstruction

From the previous equation follows follows that

$$\delta\theta = \frac{s(\cos^2\theta^\star - \sin^2\theta^\star) - \tilde{s}(\theta^\star)}{4s\cos\theta^\star\sin\theta^\star + \frac{d\tilde{s}}{d\theta}}|_{\theta^\star}$$
(3)

By iterating the process 10 times, with $d\theta_n = \frac{0.0075}{2^n}$, stopping the process as soon:

- $|\delta\theta_{n+1}| > |\bar{\theta}_n|$
- $\bullet |\delta \theta_{n+1}| > |d\theta_n|$
- $\bullet \ |\delta\theta| < 10^{-4}$

au-reconstruction

Efficiency to find a real solution $(Im(\xi)/Re(\xi) < 5\%)$: ~ 53% on 10⁵ events.

A. Mordá (CPPM & CPT)

Signal reconstruction in $B_{a}^{0} \rightarrow \tau^{+}$

θ approximation

Distribution of the 4 solutions - $\theta = \overline{\theta}_{recursion}$

Figure: Behavior of the solutions for $\theta = \bar{\theta}_{recursion}$

$heta_3\pi$ distribution for signal an $B^0 o D au u_ au$

Reconstructed $M_{B_s^0}$ resolution in $(\frac{MeV}{c^2})$

θ	Mean $M_{B_s^0}$	$\sigma(M_{B_s^0})$	Median $M_{B_s^0}$	Median deviation
θ_{true}	5368.23	92.74	5366.27	1.94
$\theta_{3\pi}$	5294.95	428.66	5326.86	167.37
$ heta_{3\pi} \oplus ext{resolution}$	5330.68	530.639	5302.48	210.56

- The following set of 13 variables has been used to train a new BDT:
 - Re_x_3
 - Max(Tau_DistZ)
 - Min(Tau_DistZ)
 - B_corr_mass
 - Im_x_1_ar
 - Im_stildepm_1_ar
 - Im_stildepm_3_ar

- Min(Tau_NumVtxWithinChi2WindowOneTrack)
- Re_stildepm_1_Pi4
- Max(Tau_ENDVERTEX_CHI2)
- Re_xi_1_ar
- theta_bar_W
- B_CDFiso

A. Mordá (CPPM & CPT)

Signal reconstruction in $B_{a}^{0} \rightarrow \tau^{+} \tau$

6 October 2015 43 / 26