Signal reconstruction in $B_{s}^{0} \rightarrow \tau^{+} \tau^{-}$

A. Mordá, J. Charles
CPPM \& CPT - Marseille
Novel aspects of $b \rightarrow s$ transitions

Marseille - Campus S. Charles
$6^{\text {th }}$ October 2015

Overview

- Motivations
- Challenging aspects of $B_{(s)}^{0} \rightarrow \tau^{+} \tau^{-}$
- Signal reconstruction in $B_{(s)}^{0} \rightarrow \tau^{+} \tau^{-}$
- Kinematic equations
- Discriminating variables
- Latest developments
- Conclusions and Prospects

Measured values of $\mathcal{B R}$ of $B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$rule out large New Physics effects

Still room for New Physics in processes involving $3^{\text {rd }}$ generation

- Third family quite peculiar, required for CP violation
- Anomalous like-sign dimuon charge asymmetry
- Correlations with $\Delta \Gamma_{s} / \Gamma_{s}$
[Dighe et al.PRD82 031502,(2010)]

Can be related to $(\bar{b} \mathcal{O} s)(\bar{\tau} \mathcal{O} \tau)$ operators

- Hints of LFU violation: $\boldsymbol{R}_{\boldsymbol{K}} \equiv \frac{\mathcal{B R}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{\mathcal{B R}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}, \boldsymbol{R}_{\boldsymbol{D}^{(\star)}} \equiv \frac{\mathcal{B R}\left(\bar{B} \rightarrow D^{(\star)} \tau \nu_{\tau}\right)}{\mathcal{B R}\left(\bar{B} \rightarrow D^{(\star)} \ell \nu_{\ell}\right)}$
- Anomalous excess in $h \rightarrow \tau \mu$ channel

$$
\text { Search for } B_{(s)}^{0} \rightarrow \tau^{+} \boldsymbol{\tau}^{-}
$$

Standard Model predictions and current status

In the Standard Model (SM) [Bobeth et al., arXiv:1311.0903v1]:

$$
\begin{aligned}
\mathcal{B R}\left(B_{s}^{0} \rightarrow \tau^{+} \tau^{-}\right) & =(7.73 \pm 0.49) \times 10^{-7} \\
\mathcal{B R}\left(B_{d}^{0} \rightarrow \tau^{+} \tau^{-}\right) & =(2.22 \pm 0.04) \times 10^{-8}
\end{aligned}
$$

- respecting all the constraints on other B_{s}^{0} decays it might be as large as $\mathbf{1 5 \%}$
- in models with a flavor depending Z^{\prime} coupling it might be up to 5%
- in models with scalar Leptoquark it might be up to 0.3%

Model independent analysis [R. Alonso et al., arXiv:1505.05164v1] allows for an enhancement of $\sim 10^{3}$ in $\boldsymbol{\mathcal { B } \mathcal { R }}$ of modes involving $(\bar{b} s)(\bar{\tau} \tau)$ operators

$$
\text { (i.e. } \left.\quad B_{(s)}^{0} \rightarrow \tau \tau, B^{0} \rightarrow K^{\star} \tau \tau\right)
$$

- Current status:
- $\mathcal{B R}\left(B_{d}^{0} \rightarrow \tau^{+} \tau^{-}\right)<4 \cdot 10^{-3} @ 90 \%$ CL by BaBar [PRL 96 (2006) 241802]
- $\mathcal{B} \mathcal{R}\left(B_{s}^{0} \rightarrow \tau^{+} \tau^{-}\right)$has not yet been constrained

Challenging issues of $B_{(s)}^{0} \rightarrow \tau^{+} \tau^{-}$
τ have a very short lifetime \Longrightarrow we must reconstruct them from their daughter particles

At least one neutrino for each τ decay (1 for hadronic or 2 for leptonic channels) \Rightarrow at least 2 undetectable neutrinos
B_{s}

τ

visible tracks

The $\tau \rightarrow 3 \pi \nu_{\tau}$ decay final state

The $\tau \rightarrow 3 \pi \nu_{\tau}$ decay chain
 proceeds through the a_{1} and ρ resonances, i.e.

$$
\begin{gathered}
\tau^{-} \rightarrow a_{1}^{-} \nu \\
a_{1}^{-} \rightarrow \rho^{0} \pi^{-} \rightarrow \pi^{+} \pi_{1}^{-} \pi_{2}^{-}
\end{gathered}
$$

a_{1} Dalitz plane

Sources of background

- $\tau \rightarrow 3 \pi \nu$ backgrounds:
- combinatorial τ : 3 random π
- true particles: $D_{(s)}^{(\star)} \rightarrow 3 \pi X$

	Mass (MeV)	$\tau\left(10^{-15} s\right)$	Spin
τ	1776	290	$1 / 2$
D	1869	1040	0^{-}
D_{s}	1968	500	0^{-}

- $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$ backgrounds:
- 2 combinatorial τ
- from two b-hadron decays
- from one b-hadron decay:
- hadronic or semileptonic decay of a b-hadron with ≥ 6 charged tracks

What we start with: $M_{6 \pi}$

LHCb reconstructed MC signal vs. background in data

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

In the reconstructed events the following quantities are known:

- B origin vertex
- 3D sides of triangle $\vec{w}_{ \pm}$
- 4 -momenta $p_{ \pm}^{\mu}$ of $(3 \pi)_{ \pm}$system

Can we reconstruct the two τ candidate momenta $p_{ \pm}$?

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

In the reconstructed events the following quantities are known:

- B origin vertex
- 3D sides of triangle $\vec{w}_{ \pm}$
- 4 -momenta $p_{ \pm}^{\mu}$ of $(3 \pi)_{ \pm}$system

Can we reconstruct the two τ candidate momenta $p_{ \pm}$?

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

Example. 1D case:

- τ production and decay vertexes are known: \vec{w}_{τ}
- 4 unknowns: the p_{τ}^{μ} momentum components
- General relation between 4 -vectors:

$$
\boldsymbol{w}_{\boldsymbol{\tau}}=\boldsymbol{h} \boldsymbol{p}_{\boldsymbol{\tau}} \quad, \quad h \equiv \frac{\tau_{\tau}}{m_{\tau}}
$$

- Constraints on $\vec{p}_{\tau} \propto \vec{w}_{\tau}, p_{\tau}^{2}=m_{\tau}$ and $p_{\tau} \cdot p_{3 \pi}$ (with m_{ν} fixed)
- The norm of the τ momentum is defined up to a twofold ambiguity

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

Example. 1D case:

$$
B^{0} \rightarrow K^{\star 0} \tau^{+} \tau^{-}
$$

$$
H \rightarrow \tau^{+} \tau^{-}, Z^{0} \rightarrow \tau^{+} \tau^{-}
$$

- τ production and decay vertexes are known: \vec{w}_{τ}
- 4 unknowns: the p_{τ}^{μ} momentum components
- General relation between 4 -vectors:

$$
\boldsymbol{w}_{\boldsymbol{\tau}}=\boldsymbol{h} \boldsymbol{p}_{\boldsymbol{\tau}} \quad, \quad h \equiv \frac{\tau_{\tau}}{m_{\tau}}
$$

- Constraints on $\vec{p}_{\tau} \propto \vec{w}_{\tau}, p_{\tau}^{2}=m_{\tau}$ and $p_{\tau} \cdot p_{3 \pi}$ (with m_{ν} fixed)
- The norm of the τ momentum is defined up to a twofold ambiguity

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

Example. 1D case:

- τ production and decay vertexes are known: \vec{w}_{τ}
- 4 unknowns: the p_{τ}^{μ} momentum components
- General relation between 4 -vectors:

$$
\boldsymbol{w}_{\boldsymbol{\tau}}=\boldsymbol{h} \boldsymbol{p}_{\boldsymbol{\tau}} \quad, \quad h \equiv \frac{\tau_{\tau}}{m_{\tau}}
$$

- Constraints on $\vec{p}_{\tau} \propto \vec{w}_{\tau}, p_{\tau}^{2}=m_{\tau}$ and $p_{\tau} \cdot p_{3 \pi}$ (with m_{ν} fixed)
- The norm of the τ momentum is defined up to a twofold ambiguity Can we reduce our problem to $2 \otimes$ (1D-case)?

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

The answer is "yes" (at least formally) if

- manifest Lorentz-covariance is kept
- particular choice of unknown momenta are made

Let's define:

$$
w_{ \pm} \equiv\left(\boldsymbol{w}_{ \pm}^{0}, \vec{w}_{ \pm}\right)
$$

and

$$
W \equiv\left(w_{+}, w_{-}\right) \quad, \quad P \equiv\left(p_{+}, p_{-}\right)
$$

$$
W=H \cdot P
$$

\longleftarrow Formally equal to the 1D case
with $\left(\hat{\tau}_{i} \equiv \frac{\tau_{i}}{m_{i}}\right)$

$$
\begin{aligned}
& \qquad \boldsymbol{H} \equiv\left(\begin{array}{cc}
\hat{\tau}_{B}+\hat{\tau}_{+} & \hat{\tau}_{B} \\
\hat{\tau}_{B} & \hat{\tau}_{B}+\hat{\tau}_{-}
\end{array}\right) \\
& \text {Note: if } \tau_{B} \rightarrow 0,2 \otimes 1 \text { D-case trivially }
\end{aligned}
$$

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

H is a real 2×2 symmetric matrix. Diagonalizing:

$$
\begin{gathered}
H=\left(\begin{array}{cc}
\hat{\tau}_{B}+\hat{\tau}_{+} & \hat{\tau}_{B} \\
\hat{\tau}_{B} & \hat{\tau}_{B}+\hat{\tau}_{-}
\end{array}\right)=R(\theta) \cdot\left(\begin{array}{cc}
h_{+} & 0 \\
0 & h_{-}
\end{array}\right) \cdot R^{-1}(\theta) \\
\left(\hat{\tau}_{B}, \hat{\tau}_{ \pm}\right) \leftrightarrow\left(\theta, h_{ \pm}\right)
\end{gathered}
$$

θ-distribution for Signal MC
$\cos (\theta) \simeq \cos \left(\frac{\pi}{4}\right)+\mathcal{O}\left(\hat{\tau}_{+}-\hat{\tau}_{-}\right)$
θ sensitive to the asymmetry of the triangle in the proper time dimension of each τ

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

Using the "rotated" sides \& momenta

$$
\binom{\tilde{w}_{+}}{\tilde{w}_{-}} \equiv R^{-1}(\theta) \cdot\binom{w_{+}}{w_{-}} \quad, \quad\binom{\tilde{p}_{+}}{\tilde{p}_{-}} \equiv R^{-1}(\theta) \cdot\binom{p_{+}}{p_{-}}
$$

the following relation holds:

$$
\binom{\tilde{w}_{+}}{\tilde{w}_{-}}=\left(\begin{array}{cc}
h_{+} & 0 \\
0 & h_{-}
\end{array}\right) \cdot\binom{\tilde{p}_{+}}{\tilde{p}_{-}}
$$

Formally equal to $2 \otimes 1 D$ cases

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

Constraints:
■ "mass-shell" condition for $\tilde{p}_{ \pm}^{2}=m_{\tau}^{2} \pm p_{+} p_{-} \sin (2 \theta)$

- direction of $\overrightarrow{\tilde{p}}_{ \pm}=\sigma_{ \pm} \overrightarrow{\tilde{w}}_{ \pm}$, with $\sigma_{ \pm} \equiv h_{ \pm}^{-1}$
- $p_{ \pm} \cdot p^{(3 \pi)^{ \pm}}=\frac{m_{\tau}^{2}+m_{3 \pi \pm}^{2}}{2}$

These constraints give 2 equations of $2^{\text {nd }}$ degree in $\sigma_{ \pm}$,

$$
\mathcal{P}_{ \pm}^{(2)}\left(\sigma_{ \pm}, \theta\right)=0
$$

which linearly depend on $p_{+} p_{-}$

An additional constraint (trivially linear in $p_{+} p_{-}$) can be imposed on

$$
p_{+} p_{-}=\frac{M_{B}^{2}-2 m_{\tau}^{2}}{2}=11.24 \frac{G e V^{2}}{c^{4}}
$$

$$
\text { In total } 3 \text { equations for } 3 \text { unknowns }\left(\sigma_{ \pm}, \theta\right)
$$

What has been done so far...

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

- Fix $p_{+} p_{-}$to its signal value, approximate θ (see next slide) and solve

$$
\mathcal{P}_{ \pm}^{(2)}\left(\sigma_{ \pm}, \theta\right)=0
$$

- This system geometrically represents the intersection of two hyperbola
- Solutions $\sigma_{ \pm}$are expressed in term of the root of a $4^{\text {th }}$ degree polynomial:

$$
P(\xi)=\sum_{i=0}^{4} a^{(i)}(\theta) \xi^{i}=0
$$

with $a^{(i)}(\theta)$ functions of measurable quantities and the θ angle
There exist analytical solutions

- For signal events there must exist real solutions ξ with $\sigma_{ \pm} \geq 0$

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

Some options to deal with θ-dependence:

- substitute θ with its average value $\bar{\theta}=\frac{\pi}{4}$
- it's much better for signal than for exclusive backgrounds (with D and τ)
- approximate $\boldsymbol{\theta}$ by using measurable quantities
- θ as a (Lorentz invariant) function of \vec{w}_{+}and \vec{w}_{-}

Due to

- approximation of θ
- detector resolution
- radiation emission from $\pi^{ \pm}$
imaginary solutions of $P(\xi)=0$ will appear also for signal events

Discriminating variables

- In principle: only the two reconstructed eigenvalues $h_{ \pm}$of the H matrix ($m_{\tau, \nu, B}$ used as external constraints)
- In practice: also other functions of measurable quantities (e.g. the four complex ξ solutions) can be used to discriminate signal against background

Signal MC, Background

- The most discriminating ones are used as input of a Decision Tree whose output is used for the signal search

Latest developments

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

Explore other ways to exploit the available information

- use in a different way the kinematic equations
- in total 3 equations, can be re-arranged into
- two $p_{+} p_{-}$independent equations: $\mathcal{S}_{ \pm}\left(\sigma_{ \pm}, \theta\right)=\mathbf{0}$
- one $p_{+} p_{-}$linearly dependent equations: $p_{+} p_{-}=\mathcal{S}_{0}\left(\sigma_{ \pm}, \theta\right)$
- $\mathcal{S}_{ \pm, 0}\left(\sigma_{ \pm}, \theta\right)=0$ equations of hyperbola
- improve the approximation of θ

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

$$
\left\{\begin{array}{c}
\mathcal{S}_{ \pm}\left(\sigma_{ \pm}, \theta\right)=0 \\
p_{+} p_{-}=\mathcal{S}_{0}\left(\sigma_{ \pm}, \theta\right)
\end{array}\right.
$$

Two possible strategies:

- full reconstruction: use $\mathcal{S}_{ \pm}\left(\sigma_{ \pm}, \theta\right)=0$ to find $\sigma_{ \pm}(\theta)$ and fix θ with $\mathcal{S}_{0}\left(\sigma_{ \pm}, \theta\right)$
- only the $\tau_{B, \tau^{ \pm}}$as discriminating variables

■ use a Dirac peak $\left(p_{+} p_{-}\right)$to approximate a non-trivial function (θ) - $p_{+} p_{-}$as a function of θ : find $\sigma_{ \pm}(\theta)$ with $\mathcal{S}_{ \pm}\left(\sigma_{ \pm}, \theta\right)=0$, use $\mathcal{S}_{0}\left(\sigma_{ \pm}, \theta\right)$ to approximate $p_{+} p-$

- $p_{+} p_{-}$is more discriminating that decay time
- use a non-trivial distribution to approximate a Dirac peak
- needs an approximation of θ

Signal reconstruction for $B_{s} \rightarrow \tau \tau \rightarrow(3 \pi \nu)(3 \pi \nu)$

$$
\left\{\begin{array}{c}
\mathcal{S}_{ \pm}\left(\sigma_{ \pm}, \theta\right)=0 \\
p_{+} p_{-}=\mathcal{S}_{0}\left(\sigma_{ \pm}, \theta\right)
\end{array}\right.
$$

Two possible strategies:

- full reconstruction: use $\mathcal{S}_{ \pm}\left(\sigma_{ \pm}, \theta\right)=0$ to find $\sigma_{ \pm}(\theta)$ and fix θ with $\mathcal{S}_{0}\left(\sigma_{ \pm}, \theta\right)$
- only the $\tau_{B, \tau^{ \pm}}$as discriminating variables
- use a Dirac peak $\left(p_{+} p_{-}\right)$to approximate a non-trivial function (θ)
- $p_{+} p_{-}$as a function of θ : find $\sigma_{ \pm}(\theta)$ with $\mathcal{S}_{ \pm}\left(\sigma_{ \pm}, \theta\right)=0$, use $\mathcal{S}_{0}\left(\sigma_{ \pm}, \theta\right)$ to approximate $p_{+} p-$
- $p_{+} p_{-}$is more discriminating that decay time
- use a non-trivial distribution to approximate a Dirac peak
- needs an approximation of θ
θ approximation and estimation of $\boldsymbol{p}_{+} \boldsymbol{p}_{-}$
Use the relation $W=H P$ in 3D with $P=P_{3 \pi}$:

$$
H_{3 \pi}=\left(P_{3 \pi} P_{3 \pi}^{T}\right)^{-1}\left[P_{3 \pi} P_{3 \pi}^{T} W W^{T}\right]^{\frac{1}{2}}
$$

Use $\theta_{3 \pi}$ which diagonalizes $\boldsymbol{H}_{3 \pi}$ as approximation of the true θ

Find $\sigma_{ \pm}\left(\theta_{3 \pi}\right)$ using $\mathcal{S}_{ \pm}\left(\sigma_{ \pm}, \theta_{3 \pi}\right)=0$
Replace $\sigma_{ \pm}\left(\theta_{3 \pi}\right)$ and $\theta_{3 \pi}$ in $\mathcal{S}_{0}\left(\sigma_{ \pm}, \theta\right)$ to estimate $\boldsymbol{p}_{+} \boldsymbol{p}_{-}$
θ vs $\theta_{3 \pi}$

$\boldsymbol{p}_{+} \boldsymbol{p}_{-}$distribution: multiple solutions in the ideal case 4 pairs $\left(\sigma_{+}, \sigma_{-}\right)$are solutions of $\mathcal{S}_{ \pm}\left(\sigma_{ \pm}, \theta_{3 \pi}\right)=0$

Distribution of $\boldsymbol{p}_{+} \boldsymbol{p}_{-}$for Signal MC (68% of events with real solutions), $B \rightarrow D \tau \nu$ background (44% of events with real solutions)

$M_{B_{s}^{0}}$ distribution: choice of the best solution in the ideal case
Distribution of $M_{B_{s}}$ for Signal $\mathrm{MC}, B \rightarrow D \tau \nu$ background for events with real solutions and choosing $p_{+} p_{-}$closest to the exact signal value ($11.24 \frac{G e V^{2}}{c^{4}}$) ToyMC signal vs. B->Div

This choice does not create a false peak in the signal region for background!
$M_{B_{s}^{0}}$ distribution: detector resolution effect

Distribution of $M_{B_{s}}$ for Signal MC, Signal MC with detector resolution
Only small $M_{B_{s}^{0}}$ resolution degradation due to detector resolution is observed
$M_{B_{s}^{0}}$ distribution: $B \rightarrow D^{\star} \tau \nu_{\tau}$

LHCb MC reconstructed signal vs. $B->D^{*}$ Tv

Distribution of $M_{B_{s}}$ for Signal MC ($\mathbf{3 6 \%}$ of events with real solutions), $B^{0} \rightarrow D^{\star} \tau \nu_{\tau}$ background (24% of events with real solutions)
$M_{B_{s}^{0}}$ distribution: generic background from data

LHCb MC reconstructed signal vs. data background

Distribution of $M_{B_{s}}$ for Signal MC ($\mathbf{3 6 \%}$ of events with real solutions), background in data (16% of events with real solutions)

Conclusions \& Prospects - $B_{(s)}^{0} \rightarrow \tau^{+} \tau^{-}$
$B_{(s)}^{0} \rightarrow \tau^{+} \tau^{-}$is a window to test several New Physics scenarios

- Pioneer analysis:
- missing energy makes signal reconstruction very challenging
- a method for the $M_{B_{s}^{0}}$ has been presented
- some discriminating variables already used in the experimental search
- new strategies under study to leave $M_{B_{s}^{0}}$ a free variable
- issues about multiple and complex solutions and ways to estimate θ
- Still to study how to use these variables from the latest development in the experimental search

Backup

$4^{\text {th }}$ degree equation

$$
a x^{4}+b x^{3}+c x^{2}+d x+e=0
$$

Solutions:

$$
\begin{aligned}
& x_{1,2}=-\frac{b}{4 a}-S \pm \frac{1}{2} \sqrt{-4 S^{2}-s p+\frac{q}{S}} \\
& x_{3,4}=-\frac{b}{4 a}+S \pm \frac{1}{2} \sqrt{-4 S^{2}-s p+\frac{q}{S}}
\end{aligned}
$$

with

- $p=\frac{8 a c-3 b^{2}}{8 a^{2}}$
- $q=\frac{b^{3}-4 a b c+8 a^{2} d}{8 a^{3}}$
- $S=\frac{1}{2} \sqrt{-\frac{2}{3} p+\frac{1}{3 a}\left(Q+\frac{\Delta_{0}}{Q}\right)}$
- $Q=\sqrt{\frac{\Delta_{1}+\sqrt{\Delta_{1}^{2}-4 \Delta_{0}^{3}}}{2}}$
- $\Delta_{0}=c^{2}-3 b d+12 a e$
- $\Delta_{1}=2 c^{3}-9 b c d+27 b^{2} e+27 a d^{2}-72 a c e$

Distribution of the 4 solutions - $\theta=\theta_{\text {true }}$

Distributions of the real part of the 4 solutions

Figure: Distribution of $\operatorname{Re}\left(\xi_{i}\right)$ and of $\xi_{\text {true }}$ superimposed

Distribution of the 4 solutions - $\theta=\theta_{\text {true }}$

Figure: Behavior of the solutions for $\theta=\theta_{\text {true }}$

θ approximation

Define a matrix \bar{H} function of measurables quantities with the following structure

$$
\bar{H}=\left(\begin{array}{cc}
1+\bar{t}_{+} & 1 \\
1 & 1+\bar{t}_{-}
\end{array}\right)
$$

with $\bar{t}_{ \pm}$functions of $\left(\vec{w}_{+}, \vec{w}_{-}\right)$
Use $\bar{\theta}$ (which diagonalizes \bar{H}) to approximate θ

- For analogy with the H matrix :
- \bar{H} must trasform as H for exchange $+\leftrightarrow-$ (i.e. $\bar{H}_{11} \leftrightarrow \bar{H}_{22}$),
- the functions $\bar{t}_{ \pm}\left(\vec{w}_{+}, \vec{w}_{-}\right)$must be adimensional and
- Lorentz invariant
- The functions

$$
\bar{t}_{ \pm} \equiv \frac{\left|\vec{w}_{ \pm}\right|}{\left|\vec{w}_{+}+\vec{w}_{-}\right|}
$$

have the required properties

- An improved approximation $\theta_{\text {imp }}$ has been found using a recursive method with $z^{2}{ }^{t h}{ }^{\text {th }}$ order $\bar{\theta}$.

Distribution of the 4 solutions $-\theta=\bar{\theta}$

Figure: Behavior of the solutions for $\theta=\bar{\theta}$

τ-reconstruction

To fix θ the general relation between \tilde{s} and s :

$$
\begin{equation*}
\tilde{s}(\theta)=s \cos 2 \theta \tag{1}
\end{equation*}
$$

can be exploited.
By developing both sides of the previous equation around θ^{\star} the following relation is found:

$$
\begin{equation*}
\tilde{s}\left(\theta^{\star}+\delta \theta\right)=\tilde{s}\left(\theta^{\star}\right)+\delta \theta \frac{d \tilde{s}}{d \theta} \|_{\theta^{\star}}=s\left(\cos ^{2} \theta^{\star}-\sin ^{2} \theta^{\star}-4 \delta \theta \cos \theta^{\star} \sin \theta^{\star}\right) . \tag{2}
\end{equation*}
$$

where the quantities on the l.h.s. are meant to be computed by solving the main equation.

- The value of $\frac{d \tilde{s}}{d \theta} \|_{\theta^{\star}}$ must be evaluated numerically, by solving the fundamental equation with $\theta=\theta^{\star} \pm d \theta$ and for each of these two values computing the value $\tilde{s}\left(\theta^{\star} \pm d \theta\right)$ and then the incremental ratio $\frac{\tilde{s}\left(\theta^{\star}+d \theta\right)-\tilde{s}\left(\theta^{\star}-d \theta\right)}{2 d \theta}$

τ-reconstruction

From the previous equation follows follows that

$$
\begin{equation*}
\delta \theta=\frac{s\left(\cos ^{2} \theta^{\star}-\sin ^{2} \theta^{\star}\right)-\tilde{s}\left(\theta^{\star}\right)}{4 s \cos \theta^{\star} \sin \theta^{\star}+\frac{d \tilde{s}}{d \theta} \|_{\theta^{\star}}} \tag{3}
\end{equation*}
$$

By iterating the process 10 times, with $d \theta_{n}=\frac{0.0075}{2^{n}}$, stopping the process as soon:

- $\left|\delta \theta_{n+1}\right|>\left|\bar{\theta}_{n}\right|$
- $\left|\delta \theta_{n+1}\right|>\left|d \theta_{n}\right|$
- $|\delta \theta|<10^{-4}$

τ-reconstruction

Efficiency to find a real solution $(\operatorname{Im}(\xi) / \operatorname{Re}(\xi)<5 \%): \sim 53 \%$ on 10^{5} events.

θ approximation

Fraction of events with a real solution ε

θ approx	ε
$\pi / 4$	$\sim 21 \%$
$\bar{\theta}$	$\sim 27 \%$
$\bar{\theta}_{i m p}$	$\sim 50 \%$

Distribution of the 4 solutions - $\theta=\bar{\theta}_{\text {recursion }}$

Figure: Behavior of the solutions for $\theta=\bar{\theta}_{\text {recursion }}$

$\theta_{3} \pi$ distribution for signal an $B^{0} \rightarrow D \tau \nu_{\tau}$

Reconstructed $M_{B_{s}^{0}}$ resolution in $\left(\frac{M e V}{c^{2}}\right)$

θ	Mean $M_{B_{s}^{0}}$	$\sigma\left(M_{B_{s}^{0}}\right)$	Median $M_{B_{s}^{0}}$	Median deviation
$\theta_{\text {true }}$	5368.23	92.74	5366.27	1.94
$\theta_{3 \pi}$	5294.95	428.66	5326.86	167.37
$\theta_{3 \pi} \oplus$ resolution	5330.68	530.639	5302.48	210.56

BDT input variables

- The following set of 13 variables has been used to train a new BDT:
- Re_x_3
- Max(Tau_DistZ)
- Min(Tau_DistZ)
- B_corr_mass
- Im _x_1_ar
- Im_stildepm_1_ar
- Im_stildepm_3_ar
- Min(Tau_NumVtxWithinChi2WindowOneTrack)
- Re_stildepm_1_Pi4
- Max(Tau_ENDVERTEX_CHI2)
- Re_xi_1_ar
- theta_bar_W
- B_CDFiso

BDT input variables

BDT input variables

BDT input variables

