LFV in B decays

Diego Guadagnoli
LAPTh Annecy (France)

LFV in B decays

Diego Guadagnoli
LAPTh Annecy (France)

Dain line of argument based on Glashow, DG, Lane, PRL 2015

Motivation:

LHCb's $\mathrm{b} \rightarrow \mathrm{s}$ data

Renewed interest in B-decay LFV is motivated by the following pieces of exp info (LHCb):

Motivation:

LHCb's $\mathrm{b} \rightarrow \mathrm{s}$ data

Renewed interest in B-decay LFV is motivated by the following pieces of exp info (LHCb):
(1) $\quad R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%) \quad\binom{$ whereas the $S M$ predicts unity within }{ any foreseeable exp accuracy }

Motivation:

LHCb's $\mathrm{b} \rightarrow \mathrm{s}$ data

Renewed interest in B-decay LFV is motivated by the following pieces of exp info (LHCb):
(1) $\quad R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%) \quad\binom{$ whereas the $S M$ predicts unity within }{ any foreseeable exp accuracy }
(2) $B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}=(1.19 \pm 0.07) \cdot 10^{-7}$ vs.

$$
\begin{array}{r}
B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}^{\mathrm{SM}}=1.75_{-0.29}^{+0.60} \times 10^{-7} \\
{[\text { Bobeth, Hiller, van Dick (2012)] }}
\end{array}
$$

Motivation:

LHCb's $b \rightarrow s$ data

Renewed interest in B-decay LFV is motivated by the following pieces of exp info (LHCb):
(1) $R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%)$
$\binom{$ whereas the SM predicts unity within }{ any foreseeable exp accuracy }
(2) $B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}=(1.19 \pm 0.07) \cdot 10^{-7}$
vs.

$$
B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}^{\mathrm{SM}}=1.75_{-0.29}^{+0.60} \times 10^{-7}
$$

[Bobeth, Hiller, van Dick (2012)]
(3) $B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}$
agrees with the SM (within large errors)

Motivation:

LHCb's $b \rightarrow s$ data

Renewed interest in B-decay LFV is motivated by the following pieces of exp info (LHCb):
(1) $R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%)$
$\binom{$ whereas the SM predicts unity within }{ any foreseeable exp accuracy }
(2) $\quad B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}=(1.19 \pm 0.07) \cdot 10^{-7}$ vs.

$$
B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}^{\mathrm{SM}}=1.75_{-0.29}^{+0.60} \times 10^{-7}
$$

[Bobeth, Hiller, van Dick (2012)]
(3) $B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}$
agrees with the SM (within large errors)

Note

- muons are among the most reliable objects within LHCb

Motivation:

LHCb's $b \rightarrow s$ data

Renewed interest in B-decay LFV is motivated by the following pieces of exp info (LHCb):
(1) $R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%)$
$\binom{$ whereas the SM predicts unity within }{ any foreseeable exp accuracy }
(2) $B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}=(1.19 \pm 0.07) \cdot 10^{-7}$ vs.

$$
B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}^{\mathrm{SM}}=1.75_{-0.29}^{+0.60} \times 10^{-7}
$$

[Bobeth, Hiller, van Dick (2012)]
(3) $B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}$
agrees with the SM (within large errors)

Note

- muons are among the most reliable objects within LHCb
- the electron channel would be an obvious culprit (brems + low stats).
But there is no disagreement

Motivation:

LHCb's $\mathrm{b} \rightarrow \mathrm{s}$ data

Renewed interest in B-decay LFV is motivated by the following pieces of exp info (LHCb):
(1) $R_{K}=\frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}}{B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}}=0.745 \cdot(1 \pm 13 \%)$
whereas the SM predicts unity within any foreseeable exp accuracy
(2)

vs.

$$
B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{[1,6]}^{S M}=1.75_{-0.29}^{+0.60} \times 10^{-7}
$$

[Bobeth, Hiller, van Dick (2012)]
(3) $B R\left(B^{+} \rightarrow K^{+} e e\right)_{[1,6]}$
agrees with the SM (within large errors)

Note

- muons are among the most reliable objects within LHCb
- the electron channel would be an obvious culprit (brems + low stats).
But there is no disagreement

D. Guadagnoli, LFV in B decays

Motivation 2

Actually, after some effective-theory insights, two further pieces of info support the above picture
(4) P_{5}^{\prime} deficit in angular $B \rightarrow K^{*} \mu \mu$ data it occurs also in the low- q^{2} range

Motivation 2

Actually, after some effective-theory insights, two further pieces of info support the above picture
(4) P_{5}^{\prime} deficit in angular $B \rightarrow K^{*} \mu \mu$ data it occurs also in the low- q^{2} range
(5) $\quad \frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}}{B R\left(B_{s} \rightarrow \mu \mu\right)_{S M}}=0.77 \pm 0.20$

Motivation 2

Actually, after some effective-theory insights, two further pieces of info support the above picture
(4) P_{5}^{\prime} deficit in angular $B \rightarrow K^{*} \mu \mu$ data
it occurs also in the low- q^{2} range
(5) $\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{sm}}}=0.77 \pm 0.20$

- Each of the above points, taken singly, is at best a 3σ effect
\Rightarrow Early to get excited

Motivation 2

Actually, after some effective-theory insights, two further pieces of info support the above picture
(4) P_{5}^{\prime} deficit in angular $B \rightarrow K^{*} \mu \mu$ data
it occurs also in the low- q^{2} range
(5) $\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp }}}{B R\left(B_{s} \rightarrow \mu \mu\right)_{s M}}=0.77 \pm 0.20$

- Each of the above points, taken singly, is at best a 3σ effect
\Rightarrow Early to get excited
- Yet:
- Q1: Can we (easily) make sense of $\mathbf{1}$ to $\boldsymbol{⿶}$?
- Q2: What are the most immediate signatures to expect ?

Concerning Q2: most immediate signatures to expect

Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_{K} is signaling $L F N U$ at a non-SM level, we may also expect $L F V$ at a non-SM level.

Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_{K} is signaling $L F N U$ at a non-SM level, we may also expect $L F V$ at a non-SM level.

In fact:

- Consider a new, LFNU interaction above the EWSB scale, e.g. with new vector bosons: $\bar{\ell} Z^{\prime} \ell \quad$ or leptoquarks: $\bar{\ell} \phi q$
D. Guadagnoli, LFV in B decays

Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_{K} is signaling $L F N U$ at a non-SM level, we may also expect $L F V$ at a non-SM level.

In fact:

- Consider a new, LFNU interaction above the EWSB scale, e.g. with new vector bosons: $\bar{\ell} Z^{\prime} \ell \quad$ or leptoquarks: $\bar{\ell} \phi q$
- In what basis are quarks and leptons in the above interaction?

Generically, it's not the mass eigenbasis.
(This basis doesn't yet even exist. We are above the EWSB scale.)

Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_{K} is signaling $L F N U$ at a non-SM level, we may also expect $L F V$ at a non-SM level.

In fact:

- Consider a new, LFNU interaction above the EWSB scale, e.g. with new vector bosons: $\bar{\ell} Z^{\prime} \ell \quad$ or leptoquarks: $\bar{\ell} \phi q$
- In what basis are quarks and leptons in the above interaction?

Generically, it's not the mass eigenbasis.
(This basis doesn't yet even exist. We are above the EWSB scale.)

- Rotating q and ℓ to the mass eigenbasis generates LFV interactions.

Frequently made objection:

what about the SM? It has LFNU, but no LFV

Frequently made objection:

what about the SM? It has LFNU, but no LFV

Take the SM with zero v masses.

- Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Frequently made objection:

what about the SM? It has LFNU, but no LFV

Take the SM with zero v masses.

- Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Or more generally, take the SM plus a minimal mechanism for v masses.

- Physical LFV will appear in W couplings, but it's suppressed by powers of $\left(m_{v} / m_{w}\right)^{2}$

Frequently made objection:

what about the SM? It has LFNU, but no LFV

Take the SM with zero v masses.

- Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Or more generally, take the SM plus a minimal mechanism for v masses.

- Physical LFV will appear in W couplings, but it's suppressed by powers of $\left(m_{v} / m_{w}\right)^{2}$

Bottom line: in the $S M+v$ there is LFNU, but LFV is nowhere to be seen (in decays)

Frequently made objection:

what about the SM? It has LFNU, but no LFV

Take the SM with zero v masses.

- Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Or more generally, take the SM plus a minimal mechanism for v masses.

- Physical LFV will appear in W couplings, but it's suppressed by powers of $\left(m_{v} / m_{w}\right)^{2}$

Bottom line: in the $S M+v$ there is LFNU, but LFV is nowhere to be seen (in decays)

- But nobody ordered that the reason (=tiny $m_{\sqrt{ }}$) behind the above conclusion be at work also beyond the SM

Frequently made objection:

what about the SM? It has LFNU, but no LFV

Take the SM with zero v masses.

- Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Or more generally, take the SM plus a minimal mechanism for v masses.

- Physical LFV will appear in W couplings, but it's suppressed by powers of $\left(m_{v} / m_{w}\right)^{2}$

Bottom line: in the $S M+v$ there is LFNU, but LFV is nowhere to be seen (in decays)

- But nobody ordered that the reason (=tiny m_{1}) behind the above conclusion be at work also beyond the SM

[^0]
Some Exceptions

Some Exceptions

Alonso, Grinstein, Martin-Camalich, 1505.05164

- Take Minimal Flavor Violation (MFV) in the lepton sector
- By def, in MFV the only sources of flavor violation are the SM ones, i.e. the SM Yukawas

Some Exceptions

Alonso, Grinstein, Martin-Camalich, 1505.05164

- Take Minimal Flavor Violation (MFV) in the lepton sector
- By def, in MFV the only sources of flavor violation are the SM ones, i.e. the SM Yukawas
- Tricky to define MFV in the lepton sector:
we don't know whether LH v are Dirac or Majorana and whether RH vexist at all. Must-read ref: Cirigliano-Grinstein-Isidori-Wise, NPB 2005

Some Exceptions

Alonso, Grinstein, Martin-Camalich, 1505.05164

- Take Minimal Flavor Violation (MFV) in the lepton sector
- By def, in MFV the only sources of flavor violation are the SM ones, i.e. the SM Yukawas
- Tricky to define MFV in the lepton sector:
we don't know whether LH v are Dirac or Majorana and whether RH vexist at all. Must-read ref: Cirigliano-Grinstein-Isidori-Wise, NPB 2005
- Bottom line: In such scenarios, LFV couplings are related to LH v masses. (Neglecting CPV in the LH v mass matrix, the above statement is generic within MLFV.)

Some Exceptions

Alonso, Grinstein, Martin-Camalich, 1505.05164

- Take Minimal Flavor Violation (MFV) in the lepton sector
- By def, in MFV the only sources of flavor violation are the SM ones, i.e. the SM Yukawas
- Tricky to define MFV in the lepton sector: we don't know whether LH v are Dirac or Majorana and whether RH vexist at all. Must-read ref: Cirigliano-Grinstein-Isidori-Wise, NPB 2005
- Bottom line: In such scenarios, LFV couplings are related to LH v masses. (Neglecting CPV in the LH v mass matrix, the above statement is generic within MLFV.)

Low-energy LFV processes are generally small, being suppressed by LH v masses. (This brings back to the previous slide)

Some Exceptions

Alonso, Grinstein, Martin-Camalich, 1505.05164

- Take Minimal Flavor Violation (MFV) in the lepton sector
- By def, in MFV the only sources of flavor violation are the SM ones, i.e. the SM Yukawas
- Tricky to define MFV in the lepton sector: we don't know whether LH v are Dirac or Majorana and whether RH v exist at all. Must-read ref: Cirigliano-Grinstein-Isidori-Wise, NPB 2005
- Bottom line: In such scenarios, LFV couplings are related to LH v masses. (Neglecting CPV in the LH v mass matrix, the above statement is generic within MLFV.)

\square
Low-energy LFV processes are generally small, being suppressed by LH v masses. (This brings back to the previous slide)

- "Generally small" means:

Barring MFV models where sizable LFV and small LH v masses can be engineered to be so by tuning a dimensionful parameter to be small. (Back to fine tuning.)
D. Guadagnoli, LFV in B decays

Some Exceptions

Celis et al., PRD 2015

Some Exceptions

Celis et al., PRD 2015

- Take a Branco-Grimus-Lavoura (BGL) global symmetry.
- BGL models are a proposal to solve the monstrous flavor problem of general 2HDM (tree-level FCNCs)

Some Exceptions

Celis et al., PRD 2015

- Take a Branco-Grimus-Lavoura (BGL) global symmetry.
- BGL models are a proposal to solve the monstrous flavor problem of general 2HDM (tree-level FCNCs)
- They engineer an Abelian global symmetry that relates all Higgs-quark flavor-changing couplings to CKM entries

Some Exceptions

Celis et al., PRD 2015

- Take a Branco-Grimus-Lavoura (BGL) global symmetry.
- BGL models are a proposal to solve the monstrous flavor problem of general 2HDM (tree-level FCNCs)
- They engineer an Abelian global symmetry that relates all Higgs-quark flavor-changing couplings to CKM entries
- Gauge this symmetry, and require anomaly cancellation.

Some Exceptions

Celis et al., PRD 2015

- Take a Branco-Grimus-Lavoura (BGL) global symmetry.
- BGL models are a proposal to solve the monstrous flavor problem of general 2HDM (tree-level FCNCs)
- They engineer an Abelian global symmetry that relates all Higgs-quark flavor-changing couplings to CKM entries
- Gauge this symmetry, and require anomaly cancellation.
- This requirement yields diagonal charged-lepton Yukawa couplings.

BSM LFNU but no BSM LFV

Some Exceptions

Celis et al., PRD 2015

- Take a Branco-Grimus-Lavoura (BGL) global symmetry.
- BGL models are a proposal to solve the monstrous flavor problem of general 2HDM (tree-level FCNCs)
- They engineer an Abelian global symmetry that relates all Higgs-quark flavor-changing couplings to CKM entries
- Gauge this symmetry, and require anomaly cancellation.
- This requirement yields diagonal charged-lepton Yukawa couplings.

BSM LFNU but no BSM LFV

D. Guadagnoli, LFV in B decays

Let's now turn to Q1:

Can we (easily) make sense of data $\mathbf{(1)}$ to $\boldsymbol{\Xi}$?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data $\mathbf{1}$ to $\boldsymbol{\bullet}$

Let's now turn to Q1:

Can we (easily) make sense of data $\mathbf{(1)}$ to $\boldsymbol{5}$?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data $\mathbf{1}$ to $\boldsymbol{\bullet}$

- Consider the following Hamiltonian

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

Let's now turn to Q1:

Can we (easily) make sense of data $\mathbf{(1)}$ to $\boldsymbol{5}$?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data $\mathbf{1}$ to $\boldsymbol{\bullet}$

- Consider the following Hamiltonian

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)}\left(\bar{\mu} \gamma_{\lambda} \mu\right)+C_{10}^{(\mu)}\left(\bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]\right.
$$

Let's now turn to Q1:

Can we (easily) make sense of data $\mathbf{(1}$ to $\mathbf{5}$?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data $\mathbf{1}$ to $\boldsymbol{\bullet}$

- Consider the following Hamiltonian

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)}\left(\bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]\right.
$$

- Note: $C_{9}^{\mathrm{SM}}\left(m_{b}\right) \approx+4.2$

$$
C_{10}^{S M}\left(m_{b}\right) \approx-4.4
$$

[Bobeth, Misiak, Urban, 99]
[Khodjamirian et al., 10]

Let's now turn to Q1:

Can we (easily) make sense of data $\mathbf{(1)}$ to ?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data $\mathbf{1}$ to $\boldsymbol{\bullet}$

- Consider the following Hamiltonian

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(u)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right] \text { purely vector } \quad \text { lepton current }
$$

i.e. in the SM also the lepton current has nearly $V-A$ structure
[Bobeth, Misiak, Urban, 99]
[Khodjamirian et al., 10]

Let's now turn to Q1:

Can we (easily) make sense of data $\mathbf{(1}$ to $\boldsymbol{5}$?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data $\mathbf{1}$ to $\boldsymbol{\bullet}$

- Consider the following Hamiltonian

$$
\left.H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{S} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} S_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu\right)+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right] \text { purely vector } \quad \text { lepton current }
$$

i.e. in the SM also the lepton current has nearly $V-A$ structure

- Note: $C_{9}^{\mathrm{SM}}\left(m_{b}\right) \approx+4.2$

$$
C_{10}^{\mathrm{SM}}\left(m_{b}\right) \approx-4.4
$$

$$
\square C_{9}^{\mathrm{SM}}\left(m_{b}\right) \approx-C_{10}^{\mathrm{SM}}\left(m_{b}\right)
$$

[Bobeth, Misiak, Urban, 99]
[Khodjamirian et al., 10]

We assume the above $V-A$ structure to hold also beyond the SM, namely

$$
C_{9}^{(\ell)} \approx-C_{10}^{(\ell)} \quad \text { with } \quad C_{9,10}^{(\ell)}=C_{9,10}^{\mathrm{SM}}+C_{9,10}^{(\ell), \mathrm{NP}}
$$

Such an hypothesis provides a successful fit to the discussed data.
See Altmannshofer-Straub, EPJC 2015.
D. Guadagnoli, LFV in B decays

Model example

- In short, our model requirements are: $-C_{9}^{(\ell)} \approx-C_{10}^{(\ell)} \quad$ (V-A structure)
- $\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad$ (LFNU)

Model example

- In short, our model requirements are: $-C_{9}^{(\ell)} \approx-C_{10}^{(\ell)} \quad$ (V-A structure)
- $\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right|$ (LFNU)
- This structure can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

$$
\begin{gathered}
H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
\quad \text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{gathered}
$$

expected e.g. in topcolor models [see C.T. Hill, PLB 1995]

Model example

- In short, our model requirements are: $-C_{9}^{(\ell)} \approx-C_{10}^{(\ell)} \quad$ (V-A structure)
- $\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad$ (LFNU)
- This structure can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

$$
\begin{aligned}
& H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
& \quad \text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{aligned}
$$

expected e.g. in topcolor models [see C.T. Hill, PLB 1995]

- Note: primed fields
- Fields are in the gauge basis (= primed)

Model example

- In short, our model requirements are: $-C_{9}^{(\ell)} \approx-C_{10}^{(e)} \quad$ (V-A structure)
- $\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad$ (LFNU)
- This structure can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

$$
\begin{aligned}
& H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
& \quad \text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{aligned}
$$

expected e.g. in topcolor models [see C.T. Hill, PLB 1995]

- Note: primed fields
- Fields are in the gauge basis (= primed)
- They need to be rotated to the mass eigenbasis

$$
\begin{gathered}
b_{L}^{\prime} \equiv\left(d^{\prime}\right)_{3}=\left(U_{L}^{d}\right)_{3 i} \underbrace{\substack{\text { mass } \\
\text { basis }}}_{\left(d_{L}\right)_{i}} \\
\tau_{L}^{\prime} \equiv\left(\ell_{L}^{\prime}\right)_{3}=\left(U_{L}^{\ell}\right)_{3 i}\left(\ell_{L}\right)_{i}
\end{gathered}
$$

Model example

- In short, our model requirements are: $-C_{9}^{(\ell)} \approx-C_{10}^{(e)} \quad$ (V-A structure)
- $\left|C_{9, \mathrm{NP}}^{(\mu)}\right| \gg\left|C_{9, \mathrm{NP}}^{(e)}\right| \quad$ (LFNU)
- This structure can be generated from a purely $3^{\text {rd }}$-generation interaction of the kind

$$
\begin{gathered}
H_{\mathrm{NP}}=G \bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime} \\
\text { with } G=1 / \Lambda_{\mathrm{NP}}^{2} \ll G_{F}
\end{gathered}
$$

expected e.g. in topcolor models [see C.T. Hill, PLB 1995]

- Note: primed fields
- Fields are in the gauge basis (= primed)
- They need to be rotated to the mass eigenbasis
- This rotation induces LFNU and LFV effects

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
k_{\mathrm{SM}} C_{9}^{(u)}=k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{S M}(S M \text { norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \overline{\mathrm{~s}} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
k_{\mathrm{SM}} C_{9}^{(u)}=k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{S M} \text { (SM norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \overline{\mathrm{~s}} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
\begin{aligned}
k_{\mathrm{SM}} C_{9}^{(u)} & =k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2} \\
& =\beta_{\mathrm{SM}}
\end{aligned}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{S M} \text { (SM norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \overline{\mathrm{~s}} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
\begin{aligned}
k_{\mathrm{SM}} C_{9}^{(u)} & =k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2} \\
& =\beta_{\mathrm{SM}}+\quad \beta_{\mathrm{NP}}
\end{aligned}
$$

The NP contribution has opposite sign than the SM one if

$$
G\left(U_{L}^{d}\right)_{32}<0
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{S M} \text { (SM norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \overline{\mathrm{~s}} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
\begin{aligned}
k_{\mathrm{SM}} C_{9}^{(u)} & =k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2} \\
& =\beta_{\mathrm{SM}}+\quad \beta_{\mathrm{NP}}
\end{aligned}
$$

The NP contribution has opposite sign than the SM one if

$$
G\left(U_{L}^{d}\right)_{32}<0
$$

- On the other hand, in the ee-channel

$$
k_{\mathrm{SM}} C_{9}^{(e)}=k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{S M}(S M \text { norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
\begin{aligned}
k_{\mathrm{SM}} C_{9}^{(u)} & =k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2} \\
& =\beta_{\mathrm{SM}}+\quad \beta_{\mathrm{NP}}
\end{aligned}
$$

The NP contribution has opposite sign than the SM one if

$$
G\left(U_{L}^{d}\right)_{32}<0
$$

The NP contrib. in the eechannel is negligible, provided $\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2} \ll\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- Recalling our full Hamiltonian

$$
k_{S M}(S M \text { norm. factor) }
$$

$$
H_{\mathrm{SM}+\mathrm{NP}}(\bar{b} \rightarrow \bar{s} \mu \mu)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{b}_{L} \gamma^{\lambda} s_{L} \cdot\left(C_{9}^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu+C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_{5} \mu\right)\right]
$$

the shift to the C_{9} Wilson coeff. in the $\mu \mu$-channel becomes

$$
\begin{aligned}
k_{\mathrm{SM}} C_{9}^{(u)} & =k_{\mathrm{SM}} C_{9, \mathrm{SM}}+\frac{G}{2}\left(U_{L}^{d}\right)_{33}^{*}\left(U_{L}^{d}\right)_{32}\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2} \\
& =\beta_{\mathrm{SM}}+\quad \beta_{\mathrm{NP}}
\end{aligned}
$$

The NP contribution has opposite sign than the SM one if

$$
G\left(U_{L}^{d}\right)_{32}<0
$$

The NP contrib. in the eechannel is negligible, provided $\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2} \ll\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- The above shifts to the $C_{9,10}$ Wilson coeffs. imply

$$
R_{K} \approx \frac{\left|C_{9}^{(u)}\right|^{2}+\left|C_{10}^{(u)}\right|^{2}}{\left|C_{9}^{(e)}\right|^{2}+\left|C_{10}^{(e)}\right|^{2}}=\frac{2 \cdot\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2}}{2 \cdot \beta_{\mathrm{SM}}^{2}}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- The above shifts to the $C_{9,10}$ Wilson coeffs. imply

$$
R_{K} \approx \frac{\left|C_{9}^{(\mu)}\right|^{2}+\left|C_{10}^{(u)}\right|^{2}}{\left|C_{9}^{(e)}\right|^{2}+\left|C_{10}^{(e)}\right|^{2}}=\frac{2 \cdot\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2}}{\ddots 2 ; \beta_{\mathrm{SM}}^{2}}
$$

equal contributions from $\left|C_{9}\right|^{2}$ and $\left|C_{10}\right|^{2}$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- The above shifts to the $C_{9,10}$ Wilson coeffs. imply

$$
R_{K} \approx \frac{\left|C_{9}^{(u)}\right|^{2}+\left|C_{10}^{(u)}\right|^{2}}{\left|C_{9}^{(e)}\right|^{2}+\left|C_{10}^{(e)}\right|^{2}}=\frac{2 \cdot\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2}}{\ddots \because 2 \beta_{\mathrm{SM}}^{2}}
$$

factors of 2 :
equal contributions from $\left|C_{9}\right|^{2}$ and $\left|C_{10}\right|^{2}$

Approximations

- phase-space factor is about the same in the $\mu \mu$-and in the ee-channel
- dominance of the $\left|C_{9,10}\right|^{2}$ contributions in the concerned q^{2} region

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- The above shifts to the $C_{9,10}$ Wilson coeffs. imply

$$
R_{K} \approx \frac{\left|C_{9}^{(u)}\right|^{2}+\left|C_{10}^{(u)}\right|^{2}}{\left|C_{9}^{(e)}\right|^{2}+\left|C_{10}^{(e)}\right|^{2}}=\frac{2 \cdot\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2}}{\ddots 2 \beta_{\mathrm{SM}}^{2}}
$$

factors of 2 :
equal contributions from $\left|C_{9}\right|^{2}$ and $\left|C_{10}\right|^{2}$

Approximations

- phase-space factor is about the same in the $\mu \mu$-and in the ee-channel
- dominance of the $\left|C_{9,10}\right|^{2}$ contributions in the concerned q^{2} region
- Note as well

$$
0.77 \pm 0.20=\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\exp }}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}+\mathrm{NP}}}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=\frac{\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2}}{\beta_{\mathrm{SM}}^{2}}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- The above shifts to the $C_{9,10}$ Wilson coeffs. imply

$$
R_{K} \approx \frac{\left|C_{9}^{(u)}\right|^{2}+\left|C_{10}^{(u)}\right|^{2}}{\left|C_{9}^{(e)}\right|^{2}+\left|C_{10}^{(e)}\right|^{2}}=\frac{2 \cdot\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2}}{\ddots)^{2} \beta_{\mathrm{SM}}^{2}}
$$

factors of 2 :
equal contributions from $\left|C_{9}\right|^{2}$ and $\left|C_{10}\right|^{2}$

Approximations

- phase-space factor is about the same in the $\mu \mu$-and in the ee-channel
- dominance of the $\left|C_{9,10}\right|^{2}$ contributions in the concerned q^{2} region
- Note as well

$$
0.77 \pm 0.20=\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\exp }}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}+\mathrm{NP}}}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=\frac{\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2}}{\beta_{\mathrm{SM}}^{2}}
$$

implying (within our model) the correlations

$$
\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{exp}}}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}} \simeq R_{K} \simeq \frac{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{\mathrm{exp}}}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)_{\mathrm{SM}}}
$$

Explaining $\mathbf{b} \rightarrow \mathbf{s}$ data

- The above shifts to the $C_{9,10}$ Wilson coeffs. imply

$$
R_{K} \approx \frac{\left|C_{9}^{(u)}\right|^{2}+\left|C_{10}^{(u)}\right|^{2}}{\left|C_{9}^{(e)}\right|^{2}+\left|C_{10}^{(e)}\right|^{2}}=\frac{2 \cdot\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2}}{\ddots \because \beta_{\mathrm{SM}}^{2}}
$$

factors of 2 :
equal contributions from $\left|C_{9}\right|^{2}$ and $\left|C_{10}\right|^{2}$

Approximations

- phase-space factor is about the same in the $\mu \mu$-and in the ee-channel
- dominance of the $\left|C_{9,10}\right|^{2}$ contributions in the concerned q^{2} region
- Note as well
$0.77 \pm 0.20=\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\exp }}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=\frac{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}+\mathrm{NP}}}{B R\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}}}=\frac{\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2}}{\beta_{\mathrm{SM}}^{2}}$
implying (within our model) the correlations

D. Guadagnoli, LFV in B decays

LFV model signatures

$\nabla \frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\frac{\beta_{\mathrm{NP}}^{2}}{\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2}} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\|\left.\left(U_{L}^{\ell}\right)_{32}\right|^{2}} \cdot 2$

LFV model signatures

$\left.\nabla \frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\frac{\beta_{\mathrm{NP}}^{2}}{\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2}} \begin{array}{c}=0.159^{2} \\ \text { according to } \mathrm{R}_{\mathrm{K}}\end{array}\right) \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\|\left.\left(U_{L}^{\ell}\right)_{32}\right|^{2}} \cdot 2$

LFV model signatures

$$
\text { v } \left.\frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\frac{\beta_{\mathrm{NP}}^{2}}{\left(\begin{array}{c}
\left.\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2} \\
=0.159^{2} \\
\text { according to } \mathrm{R}_{\mathrm{K}}
\end{array}\right.} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left.\mid\left(U_{L}^{\ell}\right)_{32}\right)^{2}} \cdot \begin{array}{l}
2 \\
\mu^{+} \mathrm{e}^{-} \& \mu^{-} \mathrm{e}^{+} \\
\text {modes }
\end{array}\right]
$$

LFV model signatures

\(\nabla \frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\frac{\beta_{\mathrm{NP}}^{2}}{\begin{array}{c}\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2}

=0.159^{2}

according to \mathrm{R}_{\mathrm{k}}\end{array}} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\|\left.\left(U_{L}^{\ell}\right)_{32}\right|^{2}} \cdot\)| $\begin{array}{c}2 \\ \mu^{+} \mathrm{e}^{-} \& \mu^{-} \mathrm{e}^{+} \\ \text {modes }\end{array}$ |
| :---: |

$$
\square B R\left(B^{+} \rightarrow K^{+} \mu e\right)<2.2 \times 10^{-8} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}}
$$

The current $B R(B+\rightarrow K+\mu e)$ limit yields the weak bound

$$
\left|\left(U_{L}^{\ell}\right)_{31} /\left(U_{L}^{\ell}\right)_{32}\right|<3.7
$$

LFV model signatures

$\left.\nabla \frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\frac{\beta_{\mathrm{NP}}^{2}}{\begin{array}{c}\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2} \\ =0.159^{2} \\ \text { according to } \mathrm{R}_{\mathrm{K}}\end{array}} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}} \cdot \begin{array}{|c}2 \\ \mu^{+} \mathrm{e}^{-} \& \mu^{-} \mathrm{e}^{+} \\ \text {modes }\end{array}\right]$

$$
\stackrel{\square}{\square} B R\left(B^{+} \rightarrow K^{+} \mu e\right)<2.2 \times 10^{-8} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}} \quad\left\{\begin{array}{l}
\text { The current } B R(B+\rightarrow K+\mu e) \\
\text { limit yields the weak bound }
\end{array} \quad \begin{array}{l}
\left|\left(U_{L}^{\ell}\right)_{31} /\left(U_{L}^{\ell}\right)_{32}\right|<3.7
\end{array}\right.
$$

$\checkmark \quad B R\left(B^{+} \rightarrow K^{+} \mu \tau\right) \quad$ would be even more promising, as it scales with $\left|\left(U_{L}^{\ell}\right)_{33} /\left(U_{L}^{\ell}\right)_{32}\right|^{2}$

LFV model signatures

v $\left.\frac{B R\left(B^{+} \rightarrow K^{+} \mu e\right)}{B R\left(B^{+} \rightarrow K^{+} \mu \mu\right)}=\frac{\beta_{\mathrm{NP}}^{2}}{\begin{array}{c}\left.\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2} \\ =0.159^{2} \\ \text { according to } \mathrm{R}_{\mathrm{K}}\end{array}} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\|\left.\left(U_{L}^{\ell}\right)_{32}\right|^{2}} \cdot \begin{array}{|c}2 \\ \mu^{+} \mathrm{e}^{-} \& \mu^{-} \mathrm{e}^{+} \\ \text {modes }\end{array}\right]$

The current $B R(B+\rightarrow K+\mu e)$ limit yields the weak bound

$$
\left|\left(U_{L}^{\ell}\right)_{31} /\left(U_{L}^{\ell}\right)_{32}\right|<3.7
$$

$\checkmark \quad B R\left(B^{+} \rightarrow K^{+} \mu \tau\right)$ would be even more promising, as it scales with $\left|\left(U_{L}^{\ell}\right)_{33} /\left(U_{L}^{\ell}\right)_{32}\right|^{2}$

A reliable prediction of the $B R$ requires some more work:

- phase-space factors are substantially different than in the $\mu \mu$ and ee cases
(but can easily be accounted for)

LFV model signatures

$$
\nabla \quad \frac{B R\left(B_{\mathrm{s}} \rightarrow \mu e\right)}{B R\left(B_{\mathrm{s}} \rightarrow \mu \mu\right)}=\frac{\beta_{\mathrm{NP}}^{2}}{\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2}} \cdot \frac{\left|\left(U_{\mathrm{L}}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}}
$$

LFV model signatures

$\nabla \frac{B R\left(B_{s} \rightarrow \mu e\right)}{B R\left(B_{\mathrm{s}} \rightarrow \mu \mu\right)}=\frac{\beta_{\mathrm{NP}}^{2}}{\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2}} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}}$

V Again, $B_{s} \rightarrow \mu \tau$ would be even more promising, because it scales as $\left|\left(U_{L}^{\ell}\right)_{33} I\left(U_{L}^{\ell}\right)_{32}\right|^{2}$ (a potential enhancement factor, actually)

LFV model signatures

$\nabla \frac{B R\left(B_{s} \rightarrow \mu e\right)}{B R\left(B_{\mathrm{s}} \rightarrow \mu \mu\right)}=\frac{\beta_{\mathrm{NP}}^{2}}{\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2}} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}}$
$\nabla \quad$ Again, $B_{s} \rightarrow \mu \tau$ would be even more promising, because it scales as $\left|\left(U_{L}^{\ell}\right)_{33} /\left(U_{L}^{\ell}\right)_{32}\right|^{2}$ (a potential enhancement factor, actually)

V
An interesting signature outside B physics would be $K \rightarrow \pi \ell \ell^{\prime}$

LFV model signatures

$\nabla \frac{B R\left(B_{s} \rightarrow \mu e\right)}{B R\left(B_{s} \rightarrow \mu \mu\right)}=\frac{\beta_{\mathrm{NP}}^{2}}{\left(\beta_{\mathrm{SM}}+\beta_{\mathrm{NP}}\right)^{2}} \cdot \frac{\left|\left(U_{L}^{\ell}\right)_{31}\right|^{2}}{\left|\left(U_{L}^{\ell}\right)_{32}\right|^{2}}$
$\checkmark \quad$ Again, $B_{s} \rightarrow \mu \tau$ would be even more promising, because it scales as $\left.\left|\left(U_{L}^{\ell}\right)_{33}\right|\left(U_{L}^{\ell}\right)_{32}\right|^{2}$ (a potential enhancement factor, actually)

V An interesting signature outside B physics would be $K \rightarrow \pi \ell \ell^{\prime}$

Note, instead, that the "K-physics analogue" of R_{κ} :

$$
\begin{array}{ll}
\frac{B R(K \rightarrow \pi \mu \mu)}{B R(K \rightarrow \pi e ~ e)} & \begin{array}{l}
\text { less interesting } \\
\text { as it is long-distance dominated } \\
\text { [see D'Ambrosio et al., 1998] }
\end{array}
\end{array}
$$

More quantitative LFV predictions

- More quantitative LFV predictions require knowledge of the $U_{L}{ }^{\ell}$

More quantitative LFV predictions

- More quantitative LFV predictions require knowledge of the $U_{L}{ }^{\ell}$

Reminder:

$$
\left(U_{L}^{\ell}\right)^{\dagger} Y_{\ell} U_{R}^{\ell}=\hat{Y}_{\ell}
$$

More quantitative LFV predictions

- More quantitative LFV predictions require knowledge of the $U_{L}{ }^{\ell}$
- One approach: DG, Lane, 1507.01412

Reminder:

$$
\left(U_{L}^{\ell}\right)^{\dagger} Y_{e} U_{R}^{\ell}=\hat{Y}_{\ell}
$$

More quantitative LFV predictions

- More quantitative LFV predictions require knowledge of the $U_{L}{ }^{\ell}$

Reminder:

$$
\left(U_{L}^{\ell}\right)^{\dagger} Y_{t} U_{\mathrm{R}}^{\ell}=\hat{Y}_{t}
$$

- One approach:

DG, Lane, 1507.01412

- Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones allows to predict one SM Yukawa in terms of the other two.

More quantitative LFV predictions

- More quantitative LFV predictions require knowledge of the $U_{L}{ }^{\ell}$

Reminder:

$$
\left(U_{L}^{\ell}\right)^{\dagger} Y_{t} U_{R}^{\ell}=\hat{Y}_{\ell}
$$

- One approach:

DG, Lane, 1507.01412

- Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones allows to predict one SM Yukawa in terms of the other two.
- One can thereby determine Y_{t} in terms of Y_{u} and Y_{d}

More quantitative LFV predictions

- More quantitative LFV predictions require knowledge of the $U_{L}{ }^{\ell}$

Reminder:

$$
\left(U_{L}^{\ell}\right)^{\dagger} Y_{\ell} U_{R}^{\ell}=\hat{Y}_{\ell}
$$

- One approach:

DG, Lane, 1507.01412

- Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones allows to predict one SM Yukawa in terms of the other two.
- One can thereby determine Y_{t} in terms of Y_{u} and Y_{d}
- But we don't know Y_{u} and Y_{d} entirely, so we take an (independently motivated) model for them, reproducing quark masses and the CKM matrix [Martin-Lane, PRD 2005].

More quantitative LFV predictions

- More quantitative LFV predictions require knowledge of the $U_{L}{ }^{\ell}$

Reminder:

$$
\left(U_{L}^{\ell}\right)^{\dagger} Y_{\ell} U_{R}^{\ell}=\hat{Y}_{\ell}
$$

- One approach:

DG, Lane, 1507.01412

- Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones allows to predict one SM Yukawa in terms of the other two.
- One can thereby determine Y_{t} in terms of Y_{u} and Y_{d}
- But we don't know Y_{u} and Y_{d} entirely, so we take an (independently motivated) model for them, reproducing quark masses and the CKM matrix [Martin-Lane, PRD 2005].
- Another approach:

Boucenna, Valle, Vicente, PLB 2015

More quantitative LFV predictions

- More quantitative LFV predictions require knowledge of the $U_{L}{ }^{\ell}$

Reminder:

$$
\left(U_{L}^{\ell}\right)^{\dagger} Y_{\ell} U_{R}^{\ell}=\hat{Y}_{\ell}
$$

- One approach:

DG, Lane, 1507.01412

- Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones allows to predict one SM Yukawa in terms of the other two.
- One can thereby determine Y_{t} in terms of Y_{u} and Y_{d}
- But we don't know Y_{u} and Y_{d} entirely, so we take an (independently motivated) model for them, reproducing quark masses and the CKM matrix [Martin-Lane, PRD 2005].
- Another approach:

Boucenna, Valle, Vicente, PLB 2015

- One has $\left(U_{L}^{t}\right)^{t} U_{L}^{v}=$ PMNS matrix

More quantitative LFV predictions

- More quantitative LFV predictions require knowledge of the $U_{L}{ }^{\ell}$

Reminder:

$$
\left(U_{L}^{\ell}\right)^{\dagger} Y_{\ell} U_{R}^{\ell}=\hat{Y}_{\ell}
$$

- One approach:

DG, Lane, 1507.01412

- Appelquist-Bai-Piai ansatz:
the flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones allows to predict one SM Yukawa in terms of the other two.
- One can thereby determine Y_{t} in terms of Y_{u} and Y_{d}
- But we don't know Y_{u} and Y_{d} entirely, so we take an (independently motivated) model for them, reproducing quark masses and the CKM matrix [Martin-Lane, PRD 2005].
- Another approach:

Boucenna, Valle, Vicente, PLB 2015

- One has $\left(U_{L}^{\ell}\right)^{\dagger} U_{L}^{\nu}=$ PMNS matrix
- Taking $U_{L}^{\nu}=1, U_{L}^{\ell}$ can be univocally predicted

More quantitative LFV predictions

LFV predictions in one of the two scenarios of [DG, Lane]

	$B^{+} \rightarrow K^{+} \mu^{ \pm} r^{\mp}$	$B^{+} \rightarrow K^{+} e^{ \pm} T^{\mp}$	$B^{+} \rightarrow K^{+} e^{ \pm} \mu^{\mp}$
	1.14×10^{-8}	3.84×10^{-10}	0.52×10^{-9}
Exp:	$<4.8 \times 10^{-5}$	$<3.0 \times 10^{-5}$	$<9.1 \times 10^{-8}$

More quantitative LFV predictions

LFV predictions in one of the two scenarios of [DG, Lane]

	$B^{+} \rightarrow K^{+} \mu^{ \pm} \tau^{\mp}$	$B^{+} \rightarrow K^{+} e^{ \pm} \tau^{\mp}$	$B^{+} \rightarrow K^{+} e^{ \pm} \mu^{\mp}$
	1.14×10^{-8}	3.84×10^{-10}	0.52×10^{-9}
Exp:	$<4.8 \times 10^{-5}$	$<3.0 \times 10^{-5}$	$<9.1 \times 10^{-8}$

	$B_{s} \rightarrow \mu^{ \pm} \tau^{\mp}$	$B_{s} \rightarrow e^{ \pm} \tau^{\mp}$	$B_{s} \rightarrow e^{ \pm} \mu^{\mp}$
1.37×10^{-8}	4.57×10^{-10}	1.73×10^{-12}	
Exp:	-	-	$<1.1 \times 10^{-8}$

All predictions are phase-space corrected.

More signatures

- Being defined above the EWSB scale, our assumed operator $G \bar{b}^{\prime}{ }_{L} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}$ must actually be made invariant under $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

More signatures

- Being defined above the EWSB scale, our assumed operator $G \bar{b}^{\prime}{ }_{L} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}$ must actually be made invariant under $\operatorname{SU}(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Bhattacharkara, PLB 15
Shivashanka
shivashankara, PLB 15

$$
\bar{b}_{L}^{\prime} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}
$$

D. Guadagnoli, LFV in B decays

More signatures

- Being defined above the EWSB scale, our assumed operator $G \bar{b}^{\prime}{ }_{L} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}$ must actually be made invariant under $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

```
See:
```

Bhattachankara, PLB 15
Shivashanka

$$
\bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime}
$$

$$
\sum_{\text {inv. }}^{\operatorname{su(2)}} \begin{cases}\bullet \bar{Q}^{\prime}{ }_{L} \gamma^{\lambda} Q^{\prime}{ }_{L} \bar{L}^{\prime}{ }_{L} \gamma_{\lambda} L^{\prime}{ }_{L} & \text { [neutral-current int's only] } \\ \cdot \bar{Q}^{\prime \prime}{ }_{L} \gamma^{\lambda} Q^{\prime j}{ }_{L} \bar{L}^{\prime j}{ }_{L} \gamma_{\lambda} L^{\prime i} & \text { [also charged-current int's] }\end{cases}
$$

- Thus, the generated structures are all of:

$$
t^{\prime} t^{\prime} v_{\tau}^{\prime} v_{\tau}^{\prime}, \quad t^{\prime} t^{\prime} \tau^{\prime} \tau^{\prime}, \quad b^{\prime} b^{\prime} v_{\tau}^{\prime} \nu_{\tau}^{\prime}, \quad b^{\prime} b^{\prime} \tau^{\prime} \tau^{\prime}, \quad t^{\prime} b^{\prime} \tau^{\prime} v_{\tau}^{\prime}
$$

More signatures

- Being defined above the EWSB scale, our assumed operator $G \bar{b}^{\prime}{ }_{L} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}$ must actually be made invariant under $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

```
See:
```

Bhattachankara, PLB 15
Shivashan

$$
\bar{b}_{L}^{\prime} \gamma^{\lambda} b^{\prime}{ }_{L} \bar{\tau}^{\prime}{ }_{L} \gamma_{\lambda} \tau^{\prime}{ }_{L}
$$

SU(2)	$\int \cdot \bar{Q}^{\prime}{ }_{L} \gamma^{\lambda} Q^{\prime}{ }_{L} \bar{L}^{\prime}{ }_{L} \gamma_{\lambda} L^{\prime}{ }_{L}$	[neutral-current int's only]
inv.	$\left(\cdot \bar{Q}^{\prime i}{ }_{L} \gamma^{\lambda} Q_{L}^{\prime j} \bar{L}^{\prime j}{ }_{L} \gamma_{\lambda} L_{L}^{\prime i}\right.$	[also charged-current int's]

- Thus, the generated structures are all of:

$$
t^{\prime} t^{\prime} v_{\tau}^{\prime} v_{\tau}^{\prime}, \quad t^{\prime} t^{\prime} \tau^{\prime} \tau^{\prime}, \quad b^{\prime} b^{\prime} v_{\tau}^{\prime} v_{\tau}^{\prime}, \quad b^{\prime} b^{\prime} \tau^{\prime} \tau^{\prime}, \quad t^{\prime} b^{\prime} \tau^{\prime} v_{\tau}^{\prime},
$$

More signatures

$$
\bar{b}_{L}^{\prime} \gamma^{\lambda} b_{L}^{\prime} \bar{\tau}_{L}^{\prime} \gamma_{\lambda} \tau_{L}^{\prime}
$$

$\underbrace{\mathbf{S U (2)}}_{\text {inv. }} \begin{cases}\bullet \bar{Q}_{L}^{\prime} \gamma^{\prime} \gamma^{\lambda} Q^{\prime}{ }_{L} \bar{L}^{\prime}{ }_{L} \gamma_{\lambda} L^{\prime}{ }_{L} & \text { [neutral-current int's only] } \\ \bullet \bar{Q}^{\prime i} \gamma_{L}^{\lambda} Q^{\prime j} \bar{L}_{L}^{\prime j}{ }_{L} \gamma_{\lambda} L^{\prime i} & \text { [also charged-current int's] }\end{cases}$

- Thus, the generated structures are all of:

$$
t^{\prime} t^{\prime} \nu_{\tau}^{\prime} \nu_{\tau}^{\prime}, \quad t^{\prime} t^{\prime} \tau^{\prime} \tau^{\prime}, \quad b^{\prime} b^{\prime} \nu_{\tau}^{\prime} \nu_{\tau}^{\prime}, \quad b^{\prime} b^{\prime} \tau^{\prime} \tau^{\prime}, \quad t^{\prime} b^{\prime} \tau^{\prime} v^{\prime} \tau
$$

- After rotation to the mass basis (unprimed), the last structure contributes to $\Gamma\left(b \rightarrow c \tau \bar{v}_{i}\right)$
 Can explain BaBar deviations on $\quad R\left(D^{(*)}\right)=\frac{B R\left(\bar{B} \rightarrow D^{(*)+} \tau^{-} \bar{v}_{\tau}\right)}{B R\left(\bar{B} \rightarrow D^{(*)+} \ell^{-} \bar{v}_{\ell}\right)}$
(D^{*} channel confirmed by LHCb)

[^0]: D. Guadagnoli, LFV in B decays

