Angular analysis prospects in $\mathbf{b} \rightarrow \mathbf{s}\mu\mu$

Biplab Dey

Marseille Workshop 2015

Prospects in $b \rightarrow s \mu \mu$

The $b \to s \ell^+ \ell^-$ "industry" at the LHC

- Flavor-changing-neutral-current (FCNC).
- No tree-level diagram in the SM. Many ways where NP can enter.

- Several ways to explore this:
 - $B_s \rightarrow \mu^+ \mu^-$ BF @ LHCb/CMS
 - $B
 ightarrow K^{*J} \gamma_{
 m pol}$ @ LHCb
 - $B_d \rightarrow K^{(*)} \ell^- \ell^+$ @ LHCb/CMS/ATLAS
 - $B_s \to \phi \mu^+ \mu^-$, $\Lambda_b \to \Lambda^{(*)} \mu^+ \mu^- \dots$

SUITE OF ANOMALIES...

MOTIVATION FOR ANGULAR ANALYSES

• Lesson from P'_5 : anomalies can show up in hitherto unexpected places.

• Angular observables being interference terms have more sensitivity than rates. Good bet for NP hunting.

$B_d \to K \pi \mu \mu$ and friends

• $b \to X(\to h_1h_2)\ell_1\ell_2$ topology: $\Phi \in \{m_X, q^2, \theta_\ell, \theta_V, \chi\}$

- Focus of this talk: wider window in the m_X spectrum.
- Higher waves in the dihadron system ⇒ more observables to play around with.

The golden modes

- $\overline{B} \to K^- \pi^+ \mu \mu$
- Flavor-tagged, but unpolarized.
- After LHCb Run II $\sim 12000 \ K^*$.
- Everybody's favorite EWP!

- $\overline{B} \to {\pi\pi, D^*}\ell^-\overline{\nu}_\ell$, hadronic tagged
- Fully flavor-tagged and polarized.
- Belle II $\rho \sim 50000$. D^* : $\times 20$.
- RH currents, incl./excl. $|V_{ub}|/|V_{cb}|$ puzzle.

• Experimentally, easiest/cleanest. Percent-level resolutions in both.

Biplab Dey

The not-so optimal

- $B_s \rightarrow KK\mu\mu$: flavor-averaging is a dampener. Also, not polarized. After LHCb Run II, ~ 2500 KK ($\phi + f'(1525) + ...$) events.
- For every two B_d 's in LHCb acceptance, we produce one Λ_b . Richer spinor angular structure than the pseudoscalars in $B_{d/s}$.
 - $\Lambda_b \rightarrow p K \mu \mu$: flavor-tagged, but unpolarized. Around 1500 signal, after Run II. Very poorly known m(pK) spectrum.
 - $\Lambda_b \rightarrow \Lambda \mu \mu$: flavor-tagged, but unpolarized. Self-analyzing $\Lambda \rightarrow p\pi$ helps. Downstream tracks (no VeLo) have lower efficiency. Roughly 1500 Λ 's expected after Run II.

Setup for $B \to X^J (\to h_1 h_2) \ell_1 \ell_2$

- $X^{J} \in \{\pi\pi, K\pi, KK, D\pi\}$ is in spin-J.
- Helicity amplitudes $H_{\lambda}^{J,\eta}$ tagged by J, $\eta \equiv (\lambda_{\ell_1} \lambda_{\ell_2}) = \pm 1$, and $\lambda \in \{0, \pm 1\}$.
- Amplitude squared reads:

$$|\overline{\mathcal{M}}|^2 = \sum_{\eta=\pm 1} \left| \sum_{\lambda \in \{0,\pm 1\}} \sum_J \sqrt{2J+1} \mathcal{H}^{J,\eta}_{\lambda} d^J_{\lambda,0}(\theta_V) d^1_{\lambda,\eta}(\theta_\ell) e^{i\lambda\chi}
ight|^2$$

DIFFERENCE BETWEEN SL AND EWP MODES

- For SL decays, the LH(RH) $\nu_L(\overline{\nu}_R)$ tags the polarization of both outgoing spinors.
- This is a "complete" measurement. Observables uniquely determine the underlying amplitudes.
- For EWP case, outgoing muon spins not known. Dilution of information due to incoherent summation over $\eta = \pm 1$.
- This is an "*incomplete*" measurement. Observables do *not* uniquely determine the amplitudes.

The two-fold ambiguity and bilinears

- Rate is invariant under the symmetry $\mathcal{H}^{\eta,J}_{\lambda} \to \left(\mathcal{H}^{-\eta,J}_{-\lambda}\right)^*$.
- Generalization of the same "two-fold ambiguty" in determination of sin 2β_(s) from B_d → J/ψK* and B_s → J/ψφ.

• Consider the complex matrices:
$$n_{\lambda}^{J} \equiv \begin{pmatrix} \mathcal{H}_{\lambda}^{\eta,J} \\ (\mathcal{H}_{-\lambda}^{-\eta,J})^{*} \end{pmatrix}$$

• All observables occur as bilinears $\Gamma \sim n_i^{\dagger} n_j$, respecting this symmetry.

EXAMPLE: SPD WAVES IN THE $[K\pi]$ SYSTEM

• 7 two-component matrices that produce 56 real bilinears:

$$\begin{split} s &= \left(\begin{array}{c} S^{L} \\ S^{R*} \end{array}\right) \\ h_{\parallel} &= \left(\begin{array}{c} H_{\parallel}^{L} \\ H_{\parallel}^{R*} \end{array}\right) \ h_{\perp} &= \left(\begin{array}{c} H_{\perp}^{L} \\ -H_{\perp}^{R*} \end{array}\right) \ h_{0} &= \left(\begin{array}{c} H_{0}^{L} \\ H_{0}^{R*} \end{array}\right) \\ d_{\parallel} &= \left(\begin{array}{c} D_{\parallel}^{L} \\ D_{\parallel}^{R*} \end{array}\right) \ d_{\perp} &= \left(\begin{array}{c} D_{\perp}^{L} \\ -D_{\perp}^{R*} \end{array}\right) \ d_{0} &= \left(\begin{array}{c} D_{0}^{L} \\ D_{0}^{R*} \end{array}\right) \end{split}$$

• Rate comprises 41 angular observables, like:

Relations amongst the observables

- I can sandwich a unitary matrix inside the product as: $n_i^{\dagger} U^{\dagger} U n_j$.
- 3 generators + 1 phase, so $n_{gen} = 4$ symmetry relations.
- 14 complex amplitudes mean n_{obs} = 2 × 14 4 = 24 independent observables.
- This means, 17 relations amongst the 41 Γ_i .

• Some are simple:
$$\Gamma_{25} = -\sqrt{\frac{7}{3}}\Gamma_{27}$$
. Some are messy:

$$\begin{aligned} 0 &= \left[\left(\sqrt{\frac{5}{3}} f_{23} + \frac{\sqrt{5} f_{10} + f_5}{3} \right) \left(f_{14}^2 + \frac{f_{41}^2}{5} \right) - \left(\frac{f_5/2 - \sqrt{5} f_{10}}{54} \right) \left((f_{29} + \sqrt{5} f_{31})^2 + 5(f_{24} + \sqrt{5} f_{24})^2 \right) \\ &+ \frac{2}{3\sqrt{15}} \left[\left(f_{37} f_{14} + f_{18} f_{41} \right) \left(f_{24} + \sqrt{5} f_{31} \right) + \left(f_{37} f_{41} - 5 f_{18} f_{14} \right) \left(f_{24} + \sqrt{5} f_{24} \right) \right] \\ &- \left(\sqrt{\frac{5}{3}} f_{23} - \frac{\sqrt{5} f_{10} + f_5}{3} \right) \left[\left(\frac{f_5/2 - \sqrt{5} f_{10}}{2} \right) \left(\sqrt{\frac{5}{3}} f_{23} + \frac{\sqrt{5} f_{10} + f_5}{3} \right) + \left(\frac{f_{37}^2}{5} + f_{18}^2 \right) \right] \end{aligned}$$

RELATIONS AMONGST THE OBSERVABLES (CNTD.)

- The pure *P*-wave case is special. 6 real bilinears, directly solvable from the observables.
- Aside from the two-fold ambiguity, things are determined.
- "Almost" true for *SP*-wave case (see Matias). $Im(s^{\dagger}h_0)$ absent in the observables, but all relations known.
- For SPD waves (and higher), several problems:
 - Unlike, *SP* case, the pure *S*, *P*, *D*-waves do *not* decouple. Eg.: $(|S|^2 + |H_0|^2)$ occurs together, so we might not have *F_S*.
 - 56 real bilinears, but only 41 observables. Many missing.
 - Deriving the relations between observables yet unsolved.

The Moments Method: introduction

- De facto reference: arXiv:1505.02873
- Recap: higher waves and full 4-D fit difficult because we don't know the minimal set of independent observables.
- Constrained fits could be one way: take FF predictions and float a few Wilson coeffcients.
- Other way is to bypass doing a fit at all: the moments method.
- Rewrite $|\mathcal{M}|^2 = \sum_i \Gamma_i(q^2) f_i(\theta_\ell, \theta_V, \chi)$ in an orthonormal f_i basis.
- Orthonormality guarantees $\langle f_i \rangle \equiv \overline{\Gamma}_i$.
- Convenient basis: products of $Y_l^m \equiv Y_l^m(\theta_\ell, \chi)$ and $P_l^m \equiv \sqrt{2\pi} Y_l^m(\theta_V, 0)$.

Moments: what results we will provide

- For $B_d \to K \pi \mu \mu$ SPD analysis, we will provide the 40 normalized Γ_i 's and 40 × 40 cov. matrix in "some" $\{q^2, m(K\pi)\}$ binning.
- Straightforward to compare to these to theory \Rightarrow core results.
- Some specific components extractable:

$$|d_0|^2 = \frac{7}{9} \left(\frac{f_5}{2} - \sqrt{5} f_{10} \right)$$
$$|d_{\parallel}|^2 = \frac{7}{4} \left(\sqrt{\frac{5}{3}} f_{23} - \frac{1}{3} \left(\sqrt{5} f_{10} + f_5 \right) \right)$$
$$|d_{\perp}|^2 = \frac{7}{4} \left(-\sqrt{\frac{5}{3}} f_{23} - \frac{1}{3} \left(\sqrt{5} f_{10} + f_5 \right) \right)$$

Moments: Toy studies

- Many toy studies done, both LHCb and *BABA*R. Method works beautifully.
- Covariance matrix element between Γ_i and Γ_j checked by looking at pulls in (Γ_i + Γ_j).

More advertisement

- Not having to do a fit *is* a big deal! Just count.
- $B^- \to \pi^+ \pi^- \ell^- \overline{\nu}_\ell$ in BABAR with S + P waves under the ρ .
- *Highly* statistics limited, yet toys seem to perform very well. Full moments paper in the pipeline.

• Without the moments method, pulling out F_S is semi-impossible.

The $\Lambda_b \to \{ pK, \Lambda \} \mu \mu$ case

- In addition to the muons, we now have a proton whose polarization is being averaged over.
- Exacerbates "incompleteness" of the measurement.
- $\Lambda_b \to \Lambda \mu \mu$: BF, $A_{FB}^{\ell,h}$ published.
- $\Lambda_b \to p K \mu \mu$: BF and $A_{FB}^{\ell,h}$ in the pipeline.

$\Lambda_b \to \Lambda \mu \mu$ moments analysis

- Go beyond $A_{FB}^{\ell,h}$. Assuming Λ_b almost unpolarized, full 4-D rate in the Korner paper.
- 12 complex amplitudes: $H_{\lambda_A,\lambda}^{V,A}$, where λ is the "usual" helicity of the spin-1 dimuon.
- Very preliminary calculation gives 10 moments.

i	$f_i(\Omega)$	$\Gamma_i(q^2)$
1	$P_0^0 Y_0^0$	$\left[2\sqrt{2\pi}(U+L)+2\sqrt{2\pi}(U-L)/3\right]$
5	$P_0^0 Y_2^0$	$\left[4\sqrt{2\pi}(U-L)/5\right]$
10	$\sqrt{2}P_1^1 \operatorname{Im}(Y_1^1)$	$[-4\sqrt{\pi}/3I_3]$

• As before, the moments are not independent, with possible very complicated inter-relations.

Biplab Dey

Prospects in $b \rightarrow s \mu \mu$

Summary: $B_d \rightarrow K \pi \mu \mu$

- Run I analysis till $m(K\pi) = 1530$ MeV, including SPD-waves making good progress.
- $\{q^2, m(K\pi)\}$ binning under discussion.
- Run II will include F and G-waves as well. Moments calculations in progress.
- Same tools for $B_s \rightarrow KK\mu\mu$ in Run II.
- We already have reasonable statistics. Need theory predictions.

SUMMARY: $\Lambda_b \to \Lambda \mu \mu$ and $\Lambda_b \to p K \mu \mu$

- Extend the Run I paper with the full set of moments.
- From MC studies, expect \sim 400 [*pK*] events in Run I.
- Large suite of poorly known Λ^* 's makes the moments derivation complicated.
- Thrust is to retain the full set of available moments and come up with a global χ^2 against theory.

More ideas...

- Charm-loop effects:
 - can we go closer to the $c\bar{c}$ resonances?
 - any specific observable sensitive to the non-factorizable part?
 - can we measure the relative phase between pen. and $c\bar{c}$?
- *ee* analyses (lots of ongoing effort): - $R(K^*)$, $R(\phi)$ and $R(K\pi)$. R(K) in $q^2 > 1$ GeV².

– joint *ee* and $\mu\mu$ angular analyses? Bin-migration.

• I assumed $4 \times$ more statistics after Run II. Of course, this can increase as well.

BACKUP: NON SPIN-1 DILEPTON STATES

- The Zwicky paper considers non-P-wave in the dilepton system as well.
- For the au this is well known (see Ligeti), or even at $q^2
 ightarrow m_{\mu}^2$.
- For the massless case $\eta \equiv (\lambda_{\ell_1} \lambda_{\ell_2}) = \pm 1$ for spin-1, and $\eta = 0$ for spin-0.
- In addition to helicity suppression, the $\eta = 0$ component can add only incoherently to $\eta = \pm 1$. No interference means NLO effect.