# Angular analysis prospects in $b \rightarrow s \mu \mu$ 

## Biplab Dey

## Marseille Workshop 2015



## The $b \rightarrow s \ell^{+} \ell^{-}$"Industry" AT The LHC

- Flavor-changing-neutral-current (FCNC).
- No tree-level diagram in the SM. Many ways where NP can enter.
- Several ways to explore this:
- $B_{s} \rightarrow \mu^{+} \mu^{-}$BF @ LHCb/CMS
- $B \rightarrow K^{* J} \gamma_{\mathrm{pol}} @$ LHCb
- $B_{d} \rightarrow K^{(*)} \ell^{-} \ell^{+}$@ LHCb/CMS/ATLAS
- $B_{s} \rightarrow \phi \mu^{+} \mu^{-}, \Lambda_{b} \rightarrow \Lambda^{(*)} \mu^{+} \mu^{-} \ldots$



## Suite of anomalies...



## Motivation for angular analyses

- Lesson from $P_{5}^{\prime}$ : anomalies can show up in hitherto unexpected places.

- Angular observables being interference terms have more sensitivity than rates. Good bet for NP hunting.


## $B_{d} \rightarrow K \pi \mu \mu$ AND FRIENDS

- $b \rightarrow X\left(\rightarrow h_{1} h_{2}\right) \ell_{1} \ell_{2}$ topology: $\Phi \in\left\{m_{X}, q^{2}, \theta_{\ell}, \theta_{V}, \chi\right\}$

- Focus of this talk: wider window in the $m_{X}$ spectrum.
- Higher waves in the dihadron system $\Rightarrow$ more observables to play around with.


## The golden modes

- $\bar{B} \rightarrow K^{-} \pi^{+} \mu \mu$
- Flavor-tagged, but unpolarized.
- After LHCb Run II ~ 12000 K*.
- Everybody's favorite EWP!
- $\bar{B} \rightarrow\left\{\pi \pi, D^{*}\right\} \ell^{-} \bar{\nu}_{\ell}$, hadronic tagged
- Fully flavor-tagged and polarized.
- Belle II $\rho \sim 50000$. $D^{*}: \times 20$.
- RH currents, incl./excl. $\left|V_{u b}\right| /\left|V_{c b}\right|$ puzzle.

- Experimentally, easiest/cleanest. Percent-level resolutions in both.


## The not-so optimal

- $B_{s} \rightarrow K K \mu \mu$ : flavor-averaging is a dampener. Also, not polarized. After LHCb Run II, $\sim 2500$ KK $\left(\phi+f^{\prime}(1525)+\ldots\right)$ events.
- For every two $B_{d}$ 's in LHCb acceptance, we produce one $\Lambda_{b}$. Richer spinor angular structure than the pseudoscalars in $B_{d / s}$.
- $\Lambda_{b} \rightarrow p K \mu \mu$ : flavor-tagged, but unpolarized. Around 1500 signal, after Run II. Very poorly known $m(p K)$ spectrum.
- $\Lambda_{b} \rightarrow \Lambda \mu \mu$ : flavor-tagged, but unpolarized. Self-analyzing $\Lambda \rightarrow p \pi$ helps. Downstream tracks (no VeLo) have lower efficiency. Roughly 1500 I's expected after Run II.


## Setup for $B \rightarrow X^{J}\left(\rightarrow h_{1} h_{2}\right) \ell_{1} \ell_{2}$

- $X^{J} \in\{\pi \pi, K \pi, K K, D \pi\}$ is in spin-J.
- Helicity amplitudes $H_{\lambda}^{J, \eta}$ tagged by $J, \eta \equiv\left(\lambda_{\ell_{1}}-\lambda_{\ell_{2}}\right)= \pm 1$, and $\lambda \in\{0, \pm 1\}$.
- Amplitude squared reads:

$$
|\overline{\mathcal{M}}|^{2}=\sum_{\eta= \pm 1}\left|\sum_{\lambda \in\{0, \pm 1\}} \sum_{J} \sqrt{2 J+1} \mathcal{H}_{\lambda}^{J, \eta} d_{\lambda, 0}^{J}\left(\theta_{V}\right) d_{\lambda, \eta}^{1}\left(\theta_{\ell}\right) e^{i \lambda \chi}\right|^{2}
$$

## Difference between SL and EWP modes

- For SL decays, the $\mathrm{LH}(\mathrm{RH}) \nu_{L}\left(\bar{\nu}_{R}\right)$ tags the polarization of both outgoing spinors.
- This is a "complete" measurement. Observables uniquely determine the underlying amplitudes.
- For EWP case, outgoing muon spins not known. Dilution of information due to incoherent summation over $\eta= \pm 1$.
- This is an "incomplete" measurement. Observables do not uniquely determine the amplitudes.


## The Two-FOLD AMBIGUITY AND BILINEARS

- Rate is invariant under the symmetry $\mathcal{H}_{\lambda}^{\eta, J} \rightarrow\left(\mathcal{H}_{-\lambda}^{-\eta, J}\right)^{*}$.
- Generalization of the same "two-fold ambiguty" in determination of $\sin 2 \beta_{(s)}$ from $B_{d} \rightarrow J / \psi K^{*}$ and $B_{s} \rightarrow J / \psi \phi$.
- Consider the complex matrices: $n_{\lambda}^{J} \equiv\binom{\mathcal{H}_{\lambda}^{\eta, J}}{\left(\mathcal{H}_{-\lambda}^{-\eta, J}\right)^{*}}$
- All observables occur as bilinears $\Gamma \sim n_{i}^{\dagger} n_{j}$, respecting this symmetry.


## ExAmPLE: SPD wAVES IN THE $[K \pi]$ SYSTEM

- 7 two-component matrices that produce 56 real bilinears:

$$
\begin{aligned}
s & =\binom{S^{L}}{S^{R *}} \\
h_{\|} & =\binom{H_{\|}^{L}}{H_{\|}^{R *}} h_{\perp}=\binom{H_{\perp}^{L}}{-H_{\perp}^{R *}} h_{0}=\binom{H_{0}^{L}}{H_{0}^{R *}} \\
d_{\|} & =\binom{D_{\|}^{L}}{D_{\|}^{R *}} d_{\perp}=\binom{D_{\perp}^{L}}{-D_{\perp}^{R *}} d_{0}=\binom{D_{0}^{L}}{D_{0}^{R *}}
\end{aligned}
$$

- Rate comprises 41 angular observables, like:

| $i$ | $f_{i}(\Omega)$ | $\Gamma_{i}\left(q^{2}\right)$ |
| :---: | :---: | :---: |
| 1 | $P_{0}^{0} Y_{0}^{0}$ | $\left[\|s\|^{2}+\left\|h_{0}\right\|^{2}+\left\|h_{\\|}\right\|^{2}+\left\|h_{\perp}\right\|^{2}+\left\|d_{0}\right\|^{2}+\left\|d_{\\|}\right\|^{2}+\left\|d_{\perp}\right\|^{2}\right]$ |
| 27 | $P_{3}^{0} \sqrt{2} \operatorname{lm}\left(Y_{2}^{2}\right)$ | $-\frac{3}{5} \sqrt{\frac{3}{7}} \operatorname{Im}\left(h_{\\|}^{\dagger} d_{\perp}+d_{\\|}^{\dagger} h_{\perp}\right)$ |
| 41 | $P_{4}^{1} \sqrt{2} \operatorname{lm}\left(Y_{1}^{1}\right)$ | $-\frac{3}{7} \sqrt{10} \operatorname{Im}\left(d_{0}^{\dagger} d_{\\|}\right)$ |

## Relations amongst the observables

- I can sandwich a unitary matrix inside the product as: $n_{i}^{\dagger} U^{\dagger} U n_{j}$.
- 3 generators +1 phase, so $n_{\text {gen }}=4$ symmetry relations.
- 14 complex amplitudes mean $n_{\text {obs }}=2 \times 14-4=24$ independent observables.
- This means, 17 relations amongst the $41 \Gamma_{i}$.
- Some are simple: $\Gamma_{25}=-\sqrt{\frac{7}{3}} \Gamma_{27}$. Some are messy:

$$
\begin{aligned}
0= & {\left[\left(\sqrt{\frac{5}{3}} f_{23}+\frac{\sqrt{5} f_{10}+f_{5}}{3}\right)\left(f_{14}^{2}+\frac{f_{41}^{2}}{5}\right)-\left(\frac{f_{5} / 2-\sqrt{5} f_{10}}{54}\right)\left(\left(f_{29}+\sqrt{5} f_{31}\right)^{2}+5\left(f_{24}+\sqrt{5} f_{24}\right)^{2}\right)\right.} \\
& +\frac{2}{3 \sqrt{15}}\left[\left(f_{37} f_{14}+f_{18} f_{41}\right)\left(f_{24}+\sqrt{5} f_{31}\right)+\left(f_{37} f_{41}-5 f_{18} f_{14}\right)\left(f_{24}+\sqrt{5} f_{24}\right)\right] \\
& -\left(\sqrt{\frac{5}{3}} f_{23}-\frac{\sqrt{5} f_{10}+f_{5}}{3}\right)\left[\left(\frac{f_{5} / 2-\sqrt{5} f_{10}}{2}\right)\left(\sqrt{\frac{5}{3}} f_{23}+\frac{\sqrt{5} f_{10}+f_{5}}{3}\right)+\left(\frac{f_{37}^{2}}{5}+f_{18}^{2}\right)\right]
\end{aligned}
$$

## RELATIONS AMONGST THE OBSERVABLES (CNTD.)

- The pure $P$-wave case is special. 6 real bilinears, directly solvable from the observables.
- Aside from the two-fold ambiguity, things are determined.
- "Almost" true for $S P$-wave case (see Matias). $\operatorname{Im}\left(s^{\dagger} h_{0}\right)$ absent in the observables, but all relations known.
- For SPD waves (and higher), several problems:
- Unlike, $S P$ case, the pure $S, P, D$-waves do not decouple. Eg.: $\left(|S|^{2}+\left|H_{0}\right|^{2}\right)$ occurs together, so we might not have $F_{S}$.
- 56 real bilinears, but only 41 observables. Many missing.
- Deriving the relations between observables yet unsolved.


## The Moments Method: introduction

- De facto reference: arXiv:1505.02873
- Recap: higher waves and full 4-D fit difficult because we don't know the minimal set of independent observables.
- Constrained fits could be one way: take FF predictions and float a few Wilson coeffcients.
- Other way is to bypass doing a fit at all: the moments method.
- Rewrite $|\mathcal{M}|^{2}=\sum_{i} \Gamma_{i}\left(q^{2}\right) f_{i}\left(\theta_{\ell}, \theta_{V}, \chi\right)$ in an orthonormal $f_{i}$ basis.
- Orthonormality guarantees $\left\langle f_{i}\right\rangle \equiv \bar{\Gamma}_{i}$.
- Convenient basis: products of $Y_{I}^{m} \equiv Y_{I}^{m}\left(\theta_{\ell}, \chi\right)$ and $P_{I}^{m} \equiv \sqrt{2 \pi} Y_{I}^{m}\left(\theta_{V}, 0\right)$.


## Moments: What Results We will provide

- For $B_{d} \rightarrow K \pi \mu \mu S P D$ analysis, we will provide the 40 normalized $\Gamma_{i}$ 's and $40 \times 40$ cov. matrix in "some" $\left\{q^{2}, m(K \pi)\right\}$ binning.
- Straightforward to compare to these to theory $\Rightarrow$ core results.
- Some specific components extractable:

$$
\begin{aligned}
& \left|d_{0}\right|^{2}=\frac{7}{9}\left(\frac{f_{5}}{2}-\sqrt{5} f_{10}\right) \\
& \left|d_{\|}\right|^{2}=\frac{7}{4}\left(\sqrt{\frac{5}{3}} f_{23}-\frac{1}{3}\left(\sqrt{5} f_{10}+f_{5}\right)\right) \\
& \left|d_{\perp}\right|^{2}=\frac{7}{4}\left(-\sqrt{\frac{5}{3}} f_{23}-\frac{1}{3}\left(\sqrt{5} f_{10}+f_{5}\right)\right)
\end{aligned}
$$

## Moments: toy studies

- Many toy studies done, both LHCb and BABAR. Method works beautifully.
- Covariance matrix element between $\Gamma_{i}$ and $\Gamma_{j}$ checked by looking at pulls in ( $\Gamma_{i}+\Gamma_{j}$ ).



## More advertisement

- Not having to do a fit is a big deal! Just count.
- $B^{-} \rightarrow \pi^{+} \pi^{-} \ell^{-} \bar{\nu}_{\ell}$ in BABAR with $S+P$ waves under the $\rho$.
- Highly statistics limited, yet toys seem to perform very well. Full moments paper in the pipeline.

- Without the moments method, pulling out $F_{S}$ is semi-impossible.


## The $\Lambda_{b} \rightarrow\{p K, \Lambda\} \mu \mu \mathrm{CASE}$

- In addition to the muons, we now have a proton whose polarization is being averaged over.
- Exacerbates "incompleteness" of the measurement.
- $\Lambda_{b} \rightarrow \Lambda \mu \mu: \mathrm{BF}, A_{F B}^{\ell, h}$ published.
- $\Lambda_{b} \rightarrow p K \mu \mu: \mathrm{BF}$ and $A_{F B}^{\ell, h}$ in the pipeline.


## $\Lambda_{b} \rightarrow \Lambda \mu \mu$ MOMENTS ANALYSIS

- Go beyond $A_{F B}^{\ell, h}$. Assuming $\Lambda_{b}$ almost unpolarized, full 4-D rate in the Korner paper.
- 12 complex amplitudes: $H_{\lambda_{A}, \lambda}^{V, A}$, where $\lambda$ is the "usual" helicity of the spin-1 dimuon.
- Very preliminary calculation gives 10 moments.

| $i$ | $f_{i}(\Omega)$ | $\Gamma_{i}\left(q^{2}\right)$ |
| :---: | :---: | :---: |
| 1 | $P_{0}^{0} Y_{0}^{0}$ | $[2 \sqrt{2 \pi}(U+L)+2 \sqrt{2 \pi}(U-L) / 3]$ |
| 5 | $P_{0}^{0} Y_{2}^{0}$ | $[4 \sqrt{2 \pi}(U-L) / 5]$ |
| 10 | $\sqrt{2} P_{1}^{1} \operatorname{lm}\left(Y_{1}^{1}\right)$ | $[-4 \sqrt{\pi} / 3 / 3]$ |

- As before, the moments are not independent, with possible very complicated inter-relations.


## Summary: $B_{d} \rightarrow K \pi \mu \mu$

- Run I analysis till $m(K \pi)=1530 \mathrm{MeV}$, including SPD-waves making good progress.
- $\left\{q^{2}, m(K \pi)\right\}$ binning under discussion.
- Run II will include $F$ and $G$-waves as well. Moments calculations in progress.
- Same tools for $B_{s} \rightarrow K K \mu \mu$ in Run II.
- We already have reasonable statistics. Need theory predictions.


## Summary: $\Lambda_{b} \rightarrow \Lambda \mu \mu$ AND $\Lambda_{b} \rightarrow p K \mu \mu$

- Extend the Run I paper with the full set of moments.
- From MC studies, expect $\sim 400[p K]$ events in Run I.
- Large suite of poorly known $\Lambda^{*}$ 's makes the moments derivation complicated.
- Thrust is to retain the full set of available moments and come up with a global $\chi^{2}$ against theory.


## More ideas...

- Charm-loop effects:
- can we go closer to the $c \bar{c}$ resonances?
- any specific observable sensitive to the non-factorizable part?
- can we measure the relative phase between pen. and $c \bar{c}$ ?
- ee analyses (lots of ongoing effort):
$-R\left(K^{*}\right), R(\phi)$ and $R(K \pi) . R(K)$ in $q^{2}>1 \mathrm{GeV}^{2}$.
- joint ee and $\mu \mu$ angular analyses? Bin-migration.
- I assumed $4 \times$ more statistics after Run II. Of course, this can increase as well.


## BaCKUP: NON SPIN-1 DILEPTON STATES

- The Zwicky paper considers non- $P$-wave in the dilepton system as well.
- For the $\tau$ this is well known (see Ligeti), or even at $q^{2} \rightarrow m_{\mu}^{2}$.
- For the massless case $\eta \equiv\left(\lambda_{\ell_{1}}-\lambda_{\ell_{2}}\right)= \pm 1$ for spin- 1 , and $\eta=0$ for spin-0.
- In addition to helicity suppression, the $\eta=0$ component can add only incoherently to $\eta= \pm 1$. No interference means NLO effect.

