Experimental overview of b→sll decays

5th October 2015

Mitesh Patel (Imperial College London)

Imperial College London

The Overview...

Branching Ratio

${\rm B}^{0,+}\to K^{0,+,*+}\mu^+\mu^-$	(LHCb, Mar 14)
$\mathrm{B}^{0} \to K^{*0} \mu^{+} \mu^{-}$	(CMS, Jul 15)
$\rm B^0_s \to \phi \mu^+ \mu^-$	(LHCb, Jun 15)
$\mathrm{B^+} \to \pi^+ \mu^+ \mu^-$	(LHCb, Sep 15)
$\Lambda_b^0 ightarrow \Lambda \mu^+ \mu^-$	(LHCb, Mar 15)
$\mathrm{B}^{0}_{(\mathrm{s})} \rightarrow \mu^{+}\mu^{-}$	(CMS+LHCb, Jun 15)

CP asymmetry

 $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ (LHCb, Sep 15)

Isospin asymmetry

 $B^{0,+} \rightarrow K^{0,+,*+} \mu^+ \mu^-$ (LHCb, Mar 14)

Lepton universality

 $B^+ \rightarrow K^+ l^+ l^-$ (LHCb, Jun 14)

 $b \rightarrow (s/d)(\mu^+\mu^-/e^+e^-)$

Angular	(LHCb, Jan 15
$\mathbf{B^0} \to K^{*0} l^+ l^-$	LHCb, Mar 15 CMS, Jul 15 BaBar, Aug 15)
$B^+ \to K^{*+} l^+ l^-$	(BaBar, Aug 15)
$\mathrm{B^0_s} \to \phi \mu^+ \mu^-$	(LHCb, Jun 15)
$\Lambda_b^0 ightarrow \Lambda \mu^+ \mu^-$	(LHCb, Mar 15)

The Overview...

Branching fractions

 $B^{0,+} \rightarrow K^{0,+,*+} \mu^+ \mu^-$

 Although larger theoretical uncertainties from form factors – previous measurements show some tension with SM predictions [JHEP 06 (2014) 133]

 $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$

- Recent LHCb measurements of B⁰_s→ \u03c6µ⁺µ⁻ show similar trend in low q² region

 - 3.3 σ from SM prediction in 1<q²<6 GeV²

[JHEP09 (2015) 179]

- Have also now added diff. BF and A_{CP} measurements of b→d transition, B⁺→π⁺μ⁺μ⁻
 - Agree with SM but on low side

 $B^+ \rightarrow \pi^+ \mu^+ \mu^-$

- HKR15 calcn takes into account low q² resonances for which we see a hint
- Determine $|V_{td}/V_{ts}|^2$
- Find,

 $A_{CP} = -0.11 \pm 0.12 \text{ (stat)} \pm 0.01 \text{(syst)}$

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

[arXiv:1507.08126]

- Recent CMS measurements of $B^0 \rightarrow K^{*0}\mu^+\mu^-$ BF
- Compatible with both SM prediction and previous measurements

Upcoming LHCb measurements

Angular analyses

$B^0 \rightarrow K^{*0} \mu^+ \mu^- - Introduction$

- [LHCb-CONF-2015-002]
- 1fb⁻¹ angular analysis statistically dominated, have added 2fb⁻¹ data
 - Allows us to refine q^2 binning scheme, selection procedure
 - Previously had systematic uncertainties from efficiency correction,
 S-wave contamination have established better control of both
 - → 3fb⁻¹ still completely statistically dominated (will not discuss details of analysis or systs etc.)
- Make simultaneous determination of all eight CP-averaged observables in a single fit (→ provide correlation matrices)

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ signal selection

 Even in finer q² binning scheme, signal well-established in every q² bin :

- Detector and selection distort the angular and q² distribution
 - Momentum/IP requirements
- Fit signal distribution modified by 4D efficiency function, ε, ε(cos θ_I, cos θ_K, φ, q²)
- Function of all underlying variables → can determine with a phase-space simulation
- Cross-check with $B^0 \rightarrow K^{*0}J/\psi$...

$B^0 \rightarrow K^{*0} J/\psi$ angular fit

Reproduce angular observables measured elsewhere

Determining the S-wave

- Select $K\pi$ in a mass window 795.9< $m_{K\pi}$ <995.9 MeV/c²
 - PID \rightarrow no ambiguity πK vs $K\pi$ [cf CMS: 8% wrong assignments]
- Get contribution from S-wave confign., as well as P-wave \rightarrow fraction of S-wave, $F_{\rm S}$, dilutes P-wave observables

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\vec{\Omega}} \Big|_{\mathrm{P}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K + F_{\mathrm{L}} \cos^2 \theta_K + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_l + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_L \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi + \frac{4}{3} A_{\mathrm{FB}} \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi_l \sin 2\phi_l \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi_l \sin 2\phi_l \sin 2\phi_l \sin 2\phi_l \sin 2\phi_l \sin 2\phi_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi_l \sin 2\phi_l \sin 2\phi_l \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi_l \sin 2\phi_l \sin \phi + S_8 \sin 2\theta_K \sin^2 \theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi_l \sin 2\phi_l \sin \phi + S_8 \sin^2 \theta_L \sin^2$$

- Introduces two new amplitudes and six new observables
- Make simultaneous fit of $m_{K\pi}$ distribution to constrain F_s

Determining the S-wave

- Select $K\pi$ in a mass window 795.9< $m_{K\pi}$ <995.9 MeV/c²
 - PID \rightarrow no ambiguity πK vs $K\pi$ [cf CMS: 8% wrong assignments]
- Get contribution from S-wave confign., as well as P-wave \rightarrow fraction of S-wave, $F_{\rm S}$, dilutes P-wave observables

$$\begin{split} \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\bar{\Omega}} \bigg|_{\mathrm{S+P}} &= (1-F_{\mathrm{S}}) \, \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\bar{\Omega}} \bigg|_{\mathrm{P}} \\ &+ \frac{3}{16\pi} F_{\mathrm{S}} \sin^2 \theta_{\ell} \\ &+ \frac{9}{32\pi} (S_{11} + S_{13} \cos 2\theta_{\ell}) \cos \theta_{K} \\ &+ \frac{9}{32\pi} (S_{14} \sin 2\theta_{\ell} + S_{15} \sin \theta_{\ell}) \sin \theta_{K} \cos \phi \\ &+ \frac{9}{32\pi} (S_{16} \sin \theta_{\ell} + S_{17} \sin 2\theta_{\ell}) \sin \theta_{K} \sin \phi \end{split}$$

- Introduces two new amplitudes and six new observables
- Make simultaneous fit of $m_{K\pi}$ distribution to constrain F_{S}

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ likelihood fit

• Maximum likelihood fit to decay angles and $m_{K\pi\mu\mu}$ in q² bins, simultaneously fitting $m_{K\pi}$ to constrain F_S

$$\log \mathcal{L} = \sum_{i} \log \left[\epsilon(\vec{\Omega}, q^2) f_{\text{sig}} \mathcal{P}_{\text{sig}}(\vec{\Omega}) \mathcal{P}_{\text{sig}}(m_{K\pi\mu\mu}) + (1 - f_{\text{sig}}) \mathcal{P}_{\text{bkg}}(\vec{\Omega}) \mathcal{P}_{\text{bkg}}(m_{K\pi\mu\mu}) \right] \\ + \sum_{i} \log \left[f_{\text{sig}} \mathcal{P}_{\text{sig}}(m_{K\pi}) + (1 - f_{\text{sig}}) \mathcal{P}_{\text{bkg}}(m_{K\pi}) \right]$$

• where, $\mathcal{P}_{sig}(\Omega) = \frac{1}{d(\Gamma + \overline{\Gamma})/dq^2} \frac{d^3(\Gamma + \overline{\Gamma})}{d\overline{\Omega}}\Big|_{S+P}$ $\mathcal{P}_{bkg}(\Omega) = 2^{nd} \text{ order (chebychev) polynominal}$ $\mathcal{P}_{sig}(m_{K\pi}) = \text{Breit-Wigner + LASS parameterisation}$

Fit projection 1.1<q²<6.0 GeV²

The tension in P_5'

• Tension seen in P₅' in 1fb⁻¹ data confirmed with 3fb⁻¹:

 4.0<q²<6.0 and 6.0<q²<8.0 GeV²/c⁴ bins each show deviations of 2.9σ

The tension in P_5'

• Tension seen in P₅' in 1fb⁻¹ data confirmed with 3fb⁻¹:

• 4.0<q²<6.0 and 6.0<q²<8.0 GeV²/c⁴ bins each show deviations of 2.9 σ

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- CMS make 2d angular fit to θ_{L} and θ_{K}
- Measurements in good agreement with SM and with LHCb data

[arXiv:1507.08126]

 $\Lambda_{\rm b} \rightarrow \Lambda^0 \mu^+ \mu^-$

• Where signal significance is >3 σ , use angular analysis to determine A_{FB} in both hadronic and leptonic systems

- A^h_{FB} is in good agreement with SM prediction [PRD 87 (2013) 074502]
- A^I_{FB} is consistently above the SM prediction (large cc?)

$B^0 \rightarrow K^{*0}e^+e^-$ angular analysis

- Have made 3fb⁻¹ $B^0 \rightarrow K^{*0}e^+e^-$ angular analysis for $0.0004 < q^2 < 1.0 \text{ GeV}^2/c^4$
- Very different experimental challenges: trigger and brem.
- Determine angular observables F_L, A_T², A_T^{Re}, A_T^{Im}

$B^0 \rightarrow K^{*0}e^+e^-$ angular analysis

- Results are in good agreement with SM predictions
- Constraints on $C_7^{(')}$ competitive with radiative decays

Upcoming LHCb measurements

Ratio measurements

- $1 < q^2 < 6 \,\mathrm{GeV}^2/c^4$ window is corrected using MC.
 - Take double ratio with $B^+ \rightarrow J/\psi K^+$ decays to cancel possible systematic biases.

In $3 \, \text{fb}^{-1}$ LHCb determines

 $R_{\rm K} = 0.745^{+0.090}_{-0.074} (\text{stat})^{+0.036}_{-0.036} (\text{syst})$ which is consistent with SMI at 2.6 σ .

(See Francesco's talk, this afternoon...)

T Blake Bare ECNC decays

Upcoming LHCb measurements

Conclusions

- Branching fraction measurements continue to show mild tension with SM in low q² region
- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis
 - New benchmark for the experimental measurement
 - Simultaneous determination of all eight CP-averaged observables in a single fit (correlation matrices)
 - Background suppression; Handling s-wave; Model independent determination of experimental effects
 - P_5' deviation confirmed: Two q² bins with significance of 2.9 σ each; effect in A_{FB} ?
- Lepton-universality challenged by R_K measurement would like to see effect in other channels

Conclusions

• Are the measurements compatible with a consistent underlying effect?

[Altmannshofer, Straub, EPJC (2015) 75: 382] 33

Backup

Angular Analysis of $B^0_d \to K^{*0}\mu^+\mu^$ with the ATLAS Experiment

The ATLAS Collaboration

Abstract

A measurement of the forward-backward asymmetry A_{FB} and the fraction of the K^{*0} longitudinal polarisation F_L in the decay $B_d^0 \rightarrow K^{*0}\mu^+\mu^-$ as a function of the di-muon invariant mass is presented. A data sample of 4.9 fb⁻¹ of integrated luminosity collected with the ATLAS detector at the LHC at CERN taken in the year 2011 is used. The measurement is compared to the expectations from the Standard Model.

A bug has been found in the analysis in the calculation of the kinematic angles (Figure 1 in the conference note; the definition was correct, but the implementation not). This invalidates the presented analysis result.

