Experimental overview of $b \rightarrow s$ ll decays

$5^{\text {th }}$ October 2015

Mitesh Patel
(Imperial College London)

The Overview...

Branching Ratio

$$
\begin{array}{ll}
\mathrm{B}^{0,+} \rightarrow K^{0,+, *+} \mu^{+} \mu^{-} & (\text {LHCb, Mar 14) } \\
\mathrm{B}^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-} & (\mathrm{CMS}, \text { Jul 15) } \\
\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \phi \mu^{+} \mu^{-} & (\text {LHCb, Jun 15) } \\
\mathrm{B}^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-} & (\text {LHCb, Sep 15) } \\
\Lambda_{b}^{0} \rightarrow \Lambda \mu^{+} \mu^{-} & (\text {LHCb, Mar 15) } \\
\mathrm{B}_{(\mathrm{s})}^{0} \rightarrow \mu^{+} \mu^{-} & (\mathrm{CMS}+\text { LHCb, Jun 15) }
\end{array}
$$

Lepton universality

$\mathrm{B}^{+} \rightarrow K^{+} l^{+} l^{-} \quad(\mathrm{LHCb}$, Jun 14)

Angular

(LHCb, Jan 15
CP asymmetry
$\mathrm{B}^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-} \quad$ (LHCb, Sep 15)
Isospin asymmetry
$\mathrm{B}^{0,+} \rightarrow K^{0,+, *+} \mu^{+} \mu^{-} \quad$ (LHCb, Mar 14)

LHCb, Mar 15 CMS, Jul 15 BaBar, Aug 15)
$\mathrm{B}^{+} \rightarrow K^{*+} l^{+} l^{-} \quad$ (BaBar, Aug 15)
$\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \phi \mu^{+} \mu^{-} \quad$ (LHCb, Jun 15)
$\Lambda_{b}^{0} \rightarrow \Lambda \mu^{+} \mu^{-} \quad$ (LHCb, Mar 15)

The Overview...

Branching Ratio

Branching fractions

$\mathrm{B}^{0,+} \rightarrow \mathrm{K}^{0,+, *+} \mu^{+} \mu^{-}$

- Although larger theoretical uncertainties from form factors - previous measurements show some tension with SM predictions
[JHEP 06 (2014) 133]

$\mathrm{B}_{\mathrm{s}} \rightarrow \phi \mu^{+} \mu^{-}$

- Recent LHCb measurements of $\mathrm{B}_{\mathrm{s}} \rightarrow \phi \mu^{+} \mu^{-}$show similar trend in low q^{2} region
- Narrow ϕ resonance gives clean signal
-3.3σ from SM prediction in $1<q^{2}<6 \mathrm{GeV}^{2}$
[JHEP09 (2015) 179]

$\mathrm{B}^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$

- Have also now added diff. BF and $A_{C P}$ measurements of $\mathrm{b} \rightarrow \mathrm{d}$ transition, $\mathrm{B}^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$
- Agree with SM but on low side
- HKR15 calcn takes into account low q^{2} resonances for which we see a hint
- Determine $\left|\mathbf{V}_{\mathrm{td}} / \mathbf{V}_{\mathrm{ts}}\right|^{2}$
- Find,

$$
A_{C P}=-0.11 \pm 0.12 \text { (stat) } \pm 0.01 \text { (syst) }
$$

$\Lambda_{b} \rightarrow \Lambda^{0} \mu^{+} \mu^{-}$

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*}{ }^{0} \mu^{+} \mu^{-}$

[arXiv:1507.08126]

- Recent CMS measurements of $B^{0} \rightarrow K^{*} \mu^{+} \mu^{-} B F$
- Compatible with both SM prediction and previous measurements

Upcoming LHCb measurements

Angular analyses

- [LHCb-CONF-2015-002]
- $1 \mathrm{fb}^{-1}$ angular analysis statistically dominated, have added $2 \mathrm{fb}^{-1}$ data
- Allows us to refine q^{2} binning scheme, selection procedure
- Previously had systematic uncertainties from efficiency correction, S-wave contamination - have established better control of both
$\rightarrow 3 \mathrm{fb}^{-1}$ still completely statistically dominated
(will not discuss details of analysis or systs etc.)
- Make simultaneous determination of all eight CP-averaged observables in a single fit (\rightarrow provide correlation matrices)

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \mu^{+} \mu^{-}$signal selection ${ }^{\text {LHCh }}$

- Even in finer q^{2} binning scheme, signal well-established in every q^{2} bin :

Correcting for the efficiency

- Detector and selection distort the angular and q^{2} distribution
- Momentum/IP requirements
- Fit signal distribution modified by 4D efficiency function, ε,

$$
\varepsilon\left(\cos \theta_{l}, \cos \theta_{K}, \phi, q^{2}\right)
$$

- Function of all underlying variables \rightarrow can determine with a phase-space simulation
- Cross-check with $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \mathrm{~J} / \psi \ldots$

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \mathrm{~J} / \psi$ angular fit

- Reproduce angular observables measured elsewhere [PRD 88 (2013) 052002]

Determining the S-wave

- Select $K \pi$ in a mass window $795.9<\mathrm{m}_{\mathrm{K} \pi}<995.9 \mathrm{MeV} / \mathrm{c}^{2}$ - PID \rightarrow no ambiguity $\pi \mathrm{K}$ vs $\mathrm{K} \pi \quad$ [cf CMS: 8% wrong assignments]
- Get contribution from S-wave confign., as well as P-wave \rightarrow fraction of S-wave, F_{S}, dilutes P -wave observables

$$
\begin{aligned}
\left.\frac{1}{\mathrm{~d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \vec{\Omega}}\right|_{\mathrm{P}}=\frac{9}{32 \pi} & {\left[\frac{3}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K}+F_{\mathrm{L}} \cos ^{2} \theta_{K}\right.} \\
& +\frac{1}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{l} \\
& -F_{\mathrm{L}} \cos ^{2} \theta_{K} \cos 2 \theta_{l}+S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \cos 2 \phi \\
& +S_{4} \sin 2 \theta_{K} \sin 2 \theta_{l} \cos \phi+S_{5} \sin 2 \theta_{K} \sin \theta_{l} \cos \phi \\
& +\frac{4}{3} A_{\mathrm{FB}} \sin ^{2} \theta_{K} \cos \theta_{l}+S_{7} \sin 2 \theta_{K} \sin \theta_{l} \sin \phi \\
& \left.+S_{8} \sin 2 \theta_{K} \sin 2 \theta_{l} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \sin 2 \phi\right]
\end{aligned}
$$

- Introduces two new amplitudes and six new observables
- Make simultaneous fit of $m_{k_{\pi}}$ distribution to constrain F_{S}

Determining the S-wave

- Select $K \pi$ in a mass window $795.9<\mathrm{m}_{K_{\pi}<}<995.9 \mathrm{MeV} / \mathrm{c}^{2}$ - PID \rightarrow no ambiguity $\pi \mathrm{K}$ vs $\mathrm{K} \pi \quad$ [cf CMS: 8% wrong assignments]
- Get contribution from S-wave confign., as well as P-wave \rightarrow fraction of S-wave, F_{S}, dilutes P-wave observables

$$
\begin{aligned}
\left.\frac{1}{\mathrm{~d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \vec{\Omega}}\right|_{\mathrm{S}+\mathrm{P}}= & \left.\left(1-F_{\mathrm{S}}\right) \frac{1}{\mathrm{~d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \vec{\Omega}}\right|_{\mathrm{P}} \\
& +\frac{3}{16 \pi} F_{\mathrm{S}} \sin ^{2} \theta_{\ell} \\
& +\frac{9}{32 \pi}\left(S_{11}+S_{13} \cos 2 \theta_{\ell}\right) \cos \theta_{K} \\
& +\frac{9}{32 \pi}\left(S_{14} \sin 2 \theta_{\ell}+S_{15} \sin \theta_{\ell}\right) \sin \theta_{K} \cos \phi \\
& +\frac{9}{32 \pi}\left(S_{16} \sin \theta_{\ell}+S_{17} \sin 2 \theta_{\ell}\right) \sin \theta_{K} \sin \phi
\end{aligned}
$$

- Introduces two new amplitudes and six new observables
- Make simultaneous fit of $m_{k \pi}$ distribution to constrain F_{S}

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \mu^{+} \mu^{-}$likelihood fit

- Maximum likelihood fit to decay angles and $m_{\kappa \pi \mu \mu}$ in q^{2} bins, simultaneously fitting $m_{k \pi}$ to constrain F_{S}

$$
\begin{aligned}
\log \mathcal{L}= & \sum_{i} \log \left[\epsilon\left(\vec{\Omega}, q^{2}\right) f_{\mathrm{sig}} \mathcal{P}_{\mathrm{sig}}(\vec{\Omega}) \mathcal{P}_{\mathrm{sig}}\left(m_{K \pi \mu \mu}\right)\right. \\
& \left.+\left(1-f_{\mathrm{sig}}\right) \mathcal{P}_{\mathrm{bkg}}(\vec{\Omega}) \mathcal{P}_{\mathrm{bkg}}\left(m_{K \pi \mu \mu}\right)\right] \\
& +\sum_{i} \log \left[f_{\mathrm{sig}} \mathcal{P}_{\mathrm{sig}}\left(m_{K \pi}\right)+\left(1-f_{\mathrm{sig}}\right) \mathcal{P}_{\mathrm{bkg}}\left(m_{K \pi}\right)\right]
\end{aligned}
$$

- where, $\quad \mathcal{P}_{\text {sig }}(\Omega)=\left.\frac{1}{\mathrm{~d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \vec{\Omega}}\right|_{\mathrm{S}+\mathrm{P}}$
$\mathcal{P}_{\mathrm{bkg}}(\Omega)=2^{\text {nd }}$ order (chebychev) polynominal
$\mathcal{P}_{\text {sig }}\left(m_{K \pi}\right)=$ Breit-Wigner + LASS parameterisation

Fit projection $1.1<q^{2}<6.0 \mathrm{GeV}^{2}$ 䶂象

Fit results: $\mathrm{F}_{\mathrm{L}}, \mathrm{S}_{3}, \mathrm{~S}_{4}, \mathrm{~S}_{5}$

Fit results: $\mathrm{A}_{\mathrm{FB}}, \mathrm{S}_{7}, \mathrm{~S}_{8}, \mathrm{~S}_{9}{ }^{(\mathrm{Hch} \cdot \mathrm{H}}$

The tension in P_{5}^{\prime}

- Tension seen in $P_{5}{ }^{\prime}$ in $1 \mathrm{fb}^{-1}$ data confirmed with $3 \mathrm{fb}^{-1}$:

- $4.0<q^{2}<6.0$ and $6.0<q^{2}<8.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ bins each show deviations of 2.9σ

The tension in P_{5}^{\prime}

- Tension seen in $P_{5}{ }^{\prime}$ in $1 \mathrm{fb}^{-1}$ data confirmed with $3 \mathrm{fb}^{-1}$:

- $4.0<q^{2}<6.0$ and $6.0<q^{2}<8.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ bins each show deviations of 2.9o

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \mu^{+} \mu^{-}$

[arXiv:1507.08126]

- CMS make 2 d angular fit to θ_{L} and θ_{K}
- Measurements in good agreement with SM and with LHCb data

$\Lambda_{b} \rightarrow \Lambda^{0} \mu^{+} \mu^{-}$

- Where signal significance is $>3 \sigma$, use angular analysis to determine $A_{F B}$ in both hadronic and leptonic systems

[JHEP 06 (2015) 115]

- A_{FB} is in good agreement with SM prediction [PRD 87 (2013) 074502]
- $\mathrm{A}^{\prime}{ }_{F B}$ is consistently above the SM prediction (large $c \bar{c}$?)

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \mathrm{e}^{+} \mathrm{e}^{-}$angular analysis

- Have made $3 \mathrm{fb}^{-1} \mathrm{~B}^{0} \rightarrow \mathrm{~K}^{* 0} \mathrm{e}^{+} \mathrm{e}^{-}$angular analysis for $0.0004<q^{2}<1.0 \mathrm{GeV}^{2} / \mathrm{c}^{4}$
- Very different experimental challenges: trigger and brem.
- Determine angular observables $F_{L}, A_{T}{ }^{2}, A_{T}{ }^{R e}, A_{T}{ }^{\text {Im }}$

(See Arantza's talk, tomorrow morning...)

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \mathrm{e}^{+} \mathrm{e}^{-}$angular analysis

[arxiv:1501.03038]

obs.	result
F_{L}	$+0.16 \pm 0.06 \pm 0.03$
$A_{\mathrm{T}}^{(2)}$	$-0.23 \pm 0.23 \pm 0.05$
$A_{\mathrm{T}}^{\mathrm{Re}}$	$+0.10 \pm 0.18 \pm 0.05$
$A_{\mathrm{T}}^{T_{\mathrm{m}}}$	$+0.14 \pm 0.22 \pm 0.05$

[JHEP 05 (2013) 043]

obs.	SM prediction
F_{L}	$+0.10_{-0.05}^{+0.11}$
$A_{\mathrm{T}}^{(2)}$	$+0.03_{-0.04}^{+0.05}$
$A_{\mathrm{T}}^{\mathrm{Re}}$	$-0.15_{-0.03}^{+0.04}$
$A_{\mathrm{T}}^{\mathrm{Tm}}$	$\left(-0.2_{-1.2}^{+1.2}\right) \times 10^{-4}$

- Results are in good agreement with SM predictions
- Constraints on $\mathrm{C}_{7}{ }^{(\prime)}$ competitive with radiative decays

Upcoming LHCb measurements

Ratio measurements

R_{K}

- The ratio of branching fractions,

$$
\mathrm{R}_{\mathrm{K}}=\mathrm{B}\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}\right) / \mathrm{B}\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}\right)
$$

$$
\rightarrow-\mathrm{LHCb} \quad-\text { - } \mathrm{BaBar} \pm \text { Belle }
$$

- Precisely predicted in SM,

$$
R_{K}=1.00030^{+0.00010}-0.00007
$$

- But LHCb measurement in $1<q^{2}<6 \mathrm{GeV}^{2}$

$$
\mathrm{R}_{\mathrm{K}}=0.745_{-0.074}^{+0.090}(\text { stat })_{-0.036}^{+0.036}(\text { syst })
$$

$\rightarrow \mathbf{2 . 6} \sigma$ from SM prediction
(See Francesco's talk, this afternoon...)

Upcoming LHCb measurements

Conclusions

- Branching fraction measurements continue to show mild tension with SM in low q^{2} region
- $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \mu^{+} \mu^{-}$angular analysis
- New benchmark for the experimental measurement
- Simultaneous determination of all eight CP-averaged observables in a single fit (correlation matrices)
- Background suppression; Handling s-wave; Model independent determination of experimental effects
- $P_{5}{ }^{\prime}$ deviation confirmed: Two q^{2} bins with significance of 2.9σ each; effect in $A_{F B}$?
- Lepton-universality challenged by R_{K} measurement would like to see effect in other channels

Conclusions

- Are the measurements compatible with a consistent underlying effect?

[Altmannshofer, Straub, EPJC (2015) 75: 382]

Backup

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \mu^{+} \mu^{-}$

ATLAS NOTE

ATLAS-CONF-2013-038
Anril 59013

Withdrawn: June 17, 2015

Angular Analysis of $B_{d}^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$ with the ATLAS Experiment

The ATLAS Collaboration

A measurement of the forward-backward asymmetry $A_{F B}$ and the fraction of the $K^{* 0}$ longitudinal polarisation F_{L} in the decay $B_{d}^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$as a function of the di-muon invariant mass is presented. A data sample of $4.9 \mathrm{fb}^{-1}$ of integrated luminosity collected with the ATLAS detector at the LHC at CERN taken in the year 2011 is used. The measurement is compared to the expectations from the Standard Model.

A bug has been found in the analysis in the calculation of the kinematic angles (Figure 1 in the conference note; the definition was correct, but the implementation not). This invalidates the presented analysis result.

