Time dependence in $B \rightarrow V\ell\ell$

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS & Université Paris-Sud, 91405 Orsay, France

Novel aspects of $b \rightarrow s$ transitions Marseille, 7 Oct 2015

New observables for $b \rightarrow s\ell\ell$

Need for new $b \rightarrow s\ell\ell$ observables

- cross-check hadronic and/or NP contributions
- try different incoming and outgoing states
- more information on $B \rightarrow V\ell\ell$?

transversity amplitudes, but redundancy in the information

• Angular analysis of $B \to V\ell\ell$ provides interferences between

- Add another phase/amplitude to interfere and lift the redundancy ?
- Similar to CP-violation in B-decays: interference between decay and mixing adds information compared to decay alone

Time-dependent analysis of $B \rightarrow V\ell\ell$ where V decays into a CP-eigenstate

SDG and J. Virto, JHEP 1504 (2015) 045 [1502.05509]

Decays of interest

Need V to decay into CP-eigenstate

- Not possible for flavour specific decays $B_d \to K^{*0} (\to K^- \pi^+) \ell^+ \ell^-$
- Accessible via flavour non-specific decays

Three main examples in the following

$$B_d \rightarrow K^*(\rightarrow K_S \pi^0) \ell^+ \ell^-$$

$$B_s \rightarrow \phi(\rightarrow K_S K_L) \ell^+ \ell^-$$

$$B_s \rightarrow \phi(\rightarrow K^+ K^-) \ell^+ \ell^-$$

Last one already studied at LHCb (time integrated)

JHEP 1307, 084 (2013)

Kinematics for non-flavour specific decays

For untagged non-flavour-specific decays

- ullet no possibility of distinguishing between B and \bar{B} decays
- need for consistent kinematic conventions
- the angles cannot be defined with respect to information on the flavour of the initial B (contrary to flavour-specific decays)

$$\frac{d\Gamma[B \to V(\to M_1 M_2)\ell^+\ell^-]}{ds \ d\cos\theta_\ell \ d\cos\theta_M \ d\phi} = \sum_i J_i(s) f_i(\theta_\ell, \theta_M, \phi)$$

$$\frac{d\Gamma[\bar{B} \to \bar{V}(\to \bar{M}_1 \bar{M}_2)\ell^+\ell^-]}{ds \ d\cos\theta_\ell \ d\cos\theta_M \ d\phi} = \sum_i \zeta_i \bar{J}_i(s) f_i(\theta_\ell, \theta_M, \phi)$$

$$\theta_k$$

- $f_i(\theta_\ell, \theta_M, \phi)$ are kinematical functions
- *J* interf. of A_X and A_Y , with $X, Y \in \{L0, R0, L||, R||, L \perp, R \perp, t, S\}$
- \bar{J} with $\bar{A}_X = A_X(\bar{B} \to \bar{M}_1 \bar{M}_2 \ell \ell) = A_X[\varphi_{weak} \to -\varphi_{weak}]$
- $\zeta_i = 1$ for i = 1s, 1c, 2s, 2c, 3, 4, 7, $\zeta_i = -1$ for i = 5, 6s, 6c, 8, 9

Two CP-related amplitudes

 M_1M_2 CP eigenstate: two amplitudes CP-related to $A_X(B \to M_1M_2\ell\ell)$

Theoretical: CP-conjugated amplitudes

$$ar{A}_X = A_X(ar{B}
ightarrow ar{M}_1 ar{M}_2 \ell \ell) = A_X[arphi_{weak}
ightarrow - arphi_{weak}]$$

ullet Phenomenological: Decay from $ar{B}$ into the same final state

$$\widetilde{A}_X = A_X(\overline{B} \to M_1 M_2 \ell \ell)$$

From [Dunietz et al. 1991] transversity analysis for $B o A(o A_1A_2)C(o C_1C_2)$

$$\widetilde{A}_X = \eta_X \overline{A}_X$$
 $\eta_{L0,L||,R0,R||,t} = \eta$ $\eta_{L\perp,R\perp,S} = -\eta$ $\eta = 1$ so that $\widetilde{J}_i = \zeta_i \overline{J}_i$, and $d\Gamma[\overline{B} o \overline{V}(o \overline{M}_1 \overline{M}_2)\ell^+\ell^-]$ involves \widetilde{J}_i

Untagged $d\Gamma(B \to V\ell\ell) + d\Gamma(\bar{B} \to \bar{V}\ell\ell)$ yields $J_i + J_i = J_i + \zeta_i \bar{J}_i$, with both CP-conserving ($\zeta_i = 1$) and CP-violating quantities ($\zeta_i = -1$)

Time dependence

Time-dependence of decay amplitudes is straightforward, involving decays into the same CP-eigenstate

$$egin{array}{lll} A_X(t) &=& A_X(B(t)
ightarrow V(
ightarrow f_{CP})
ightarrow \ell^+\ell^-) = g_+(t)A_X + rac{q}{
ho}g_-(t)\widetilde{A}_X \; , \ &\widetilde{A}_X(t) &=& A_X(ar{B}(t)
ightarrow V(
ightarrow f_{CP})\ell^+\ell^-) = rac{p}{a}g_-(t)A_X + g_+(t)\widetilde{A}_X \; , \end{array}$$

where $g_{\pm}(t)$ are time-evolution functions and $q/p=e^{i\phi}$

Time dependence of angular coefficients is given by

$$J_{i}(t) + \widetilde{J}_{i}(t) = e^{-\Gamma t} \Big[(J_{i} + \widetilde{J}_{i}) \cosh(y\Gamma t) - h_{i} \sinh(y\Gamma t) \Big]$$

$$J_{i}(t) - \widetilde{J}_{i}(t) = e^{-\Gamma t} \Big[(J_{i} - \widetilde{J}_{i}) \cos(x\Gamma t) - s_{i} \sin(x\Gamma t) \Big]$$

- $y = \Delta\Gamma/(2\Gamma)$ (small for B_d and B_s)
- $x = \Delta m/\Gamma$ ($x_d \simeq 0.77, x_s \simeq 27$)

Observables from time dependence

$$\begin{split} J_i(t) + \widetilde{J}_i(t) &= e^{-\Gamma t} \Big[(J_i + \widetilde{J}_i) \cosh(y \Gamma t) - h_i \sinh(y \Gamma t) \Big] \;, \\ J_i(t) - \widetilde{J}_i(t) &= e^{-\Gamma t} \Big[(J_i - \widetilde{J}_i) \cos(x \Gamma t) - s_i \sin(x \Gamma t) \Big] \;, \end{split}$$

Similarly to CP-violation in interf between mixing and decay, new observables from interf between 2 decay ampli. and mixing (phase ϕ)

$$\begin{split} J_8 &= \frac{1}{\sqrt{2}} \beta_\ell^2 \left[\mathrm{Im} (A_0^L A_\perp^{L^*} + A_0^R A_\perp^{R^*}) \right] \,, \\ \widetilde{J}_8 &= \frac{1}{\sqrt{2}} \beta_\ell^2 \left[\mathrm{Im} (\widetilde{A_0^L} \widetilde{A_\perp^{L^*}} + \widetilde{A_0^R} \widetilde{A_\perp^{R^*}}) \right] = -\frac{1}{\sqrt{2}} \beta_\ell^2 \left[\mathrm{Im} (\overline{A_0^L} \overline{A_\perp^{L^*}} + \overline{A_0^R} \overline{A_\perp^{R^*}}) \right] \,, \\ h_8 &= \frac{1}{\sqrt{2}} \beta_\ell^2 \mathrm{Im} [e^{i\phi} \{ \widetilde{A_0^L} A_\perp^{L^*} + \widetilde{A_0^R} A_\perp^{R^*} \} + e^{-i\phi} \{ A_0^L \widetilde{A_\perp^{L^*}} + A_0^R \widetilde{A_\perp^{R^*}} \}] \\ s_8 &= -\frac{1}{\sqrt{2}} \beta_\ell^2 \mathrm{Re} [e^{i\phi} \{ \widetilde{A_0^L} A_\perp^{L^*} + \widetilde{A_0^R} A_\perp^{R^*} \} - e^{-i\phi} \{ A_0^L \widetilde{A_\perp^{L^*}} + A_0^R \widetilde{A_\perp^{R^*}} \}] \end{split}$$

 h_i 's boil down to J_i 's in the limit where weak phases neglected

Sorting out observables

$$J_{i}(t) + \widetilde{J}_{i}(t) = e^{-\Gamma t} \Big[(J_{i} + \widetilde{J}_{i}) \cosh(y \Gamma t) - h_{i} \sinh(y \Gamma t) \Big] ,$$

$$J_{i}(t) - \widetilde{J}_{i}(t) = e^{-\Gamma t} \Big[(J_{i} - \widetilde{J}_{i}) \cos(x \Gamma t) - s_{i} \sin(x \Gamma t) \Big] ,$$

- $y \ll 1$: h_i difficult to extract
- from $(d\Gamma + d\bar{\Gamma})/dq^2$, one gets $3(2h_{1s} + h_{1c}) (2h_{2s} + h_{2c})$ (boils down to the corresponding J's if $\varphi_{\text{weak}} \to 0$)
- s_i for i = 1s, 1c, 2s, 2c, 3, 4, 7: CP-asymmetries $J_i \bar{J}_i$
- s_i for i = 5, 6s, 6c, 8, 9: CP-averaged angular coefficients $J_i + \bar{J}_i$.

If vanishing phases ($\varphi_{\rm weak} \to 0$, decay amplitudes real)

- s_i for i = 1s, 1c, 2s, 2c, 3, 4, 5, 6s, 6c vanish: $s_i \sim \text{Im}(e^{i\phi}\bar{A}_X A_Y^*)$
- $s_7 = 0$ (no phases in decay amplitudes is enough)
- $(J_i J_i)_{i=8,9}$ vanish [Im] whereas $s_{8,9}$ expected to be large [Re]

 \Longrightarrow s_8 and s_9 are the most interesting coefficients

New information?

Not all observables contain new information : there is some redundancy already in the J_i 's

[Matias, Mescia, Ramon, Virto 2012]

 In the flavour-specific case (massless case without scalar contributions), unitary transformation U of

$$n_i = \begin{pmatrix} A_i^L \\ \sigma_i A_i^{R*} \end{pmatrix} \rightarrow U n_i \qquad \sigma_0 = \sigma_{||} = 1, \sigma_{\perp} = -1$$

leave the angular coefficient J_i unchanged: only observables invariant under these unitarity transformations can be measured

- in the limit of vanishing weak phases, h_i do not contain genuinely new information compared to the J_i
 - (but useful as independent cross-checks of J_i measurements)
- s_{5,6c,8,9} contain new pieces of information

 \Longrightarrow s_8 and s_9 are the most interesting coefficients

Time dependent vs time integrated

From time-integrated observables? Time integration different for hadronic machines and *B*-factories (quantum entanglement)

$$\langle X \rangle_{\text{Hadronic}} = \int_{0}^{\infty} e^{-\Gamma t} \dots \langle X \rangle_{\text{B-factory}} = \int_{-\infty}^{\infty} e^{-\Gamma |t|} \dots$$

$$\langle J_{i} + \widetilde{J}_{i} \rangle_{\text{Hadronic}} = \frac{1}{\Gamma} \left[\frac{1}{1 - y^{2}} \times (J_{i} + \widetilde{J}_{i}) - \frac{y}{1 - y^{2}} \times h_{j} \right] ,$$

$$\langle J_{i} - \widetilde{J}_{i} \rangle_{\text{Hadronic}} = \frac{1}{\Gamma} \left[\frac{1}{1 + x^{2}} \times (J_{i} - \widetilde{J}_{i}) - \frac{x}{1 + x^{2}} \times s_{j} \right] ,$$

$$\langle J_{i} + \widetilde{J}_{i} \rangle_{\text{B-fact}} = \frac{2}{\Gamma} \frac{1}{1 - y^{2}} [J_{i} + \widetilde{J}_{i}] , \qquad \langle J_{i} - \widetilde{J}_{i} \rangle_{\text{B-fact}} = \frac{2}{\Gamma} \frac{1}{1 + x^{2}} [J_{i} - \widetilde{J}_{i}]$$

 s_i and h_i from time-integrated measurements

- \bullet only at hadronic machines (but tagging needed for s_i)
- suppressed by y or in observables suppressed by $1/(1+x^2)$
- needed to analyse LHCb $B_s \to \phi \ell \ell$ in terms of transversity ampl.

Optimised observables from time dependence

 s_8, s_9

- contain information that is not accessible otherwise
- come from $J_i \widetilde{J}_i$, and thus require tagging
- but are not present in time-integrated measurement at B-factory
- \Longrightarrow hadronic with tagging or B-factory with time-dependence

It is possible to define optimised observables at large hadronic recoil, with a limited sensitivity to form factors

$$Q_8^- = rac{s_8}{\sqrt{-2(J_{2c} + \widetilde{J}_{2c})[2(J_{2s} + \widetilde{J}_{2s}) - (J_3 + \widetilde{J}_3)]}},$$

$$Q_9 = rac{s_9}{2(J_{2s} + \widetilde{J}_{2s})}.$$

similarly to what is done to translate J_i into P_i

Q_8, Q_9 : SM predictions

- In SM, $Q_9 \simeq -\cos(\phi 2\beta_s)$, modified in presence of RHC
- In SM, zero of Q_8 given at LO by: $\frac{s_0}{m_B^2} \simeq \frac{-2C_7(2C_7+C_9)}{C_{10}^2+(2C_7+C_9)C_9}$

Q_8, Q_9 : General NP scenarios

- LHC: C_7 , C_9 , C_{10} only, RHC: $C_{7'}$, $C_{9'}$, $C_{10'}$ only, General NP: All
- ullet varying in 3 σ ranges of [SDG, Matias, Virto 2013] (see backup)

Q_8, Q_9 : Benchmark points

 $\bullet \ A: \mathcal{C}_7, \mathcal{C}_9 \ best \ fit, \ B: \mathcal{C}_9, \mathcal{C}_{9'} \ best \ fit$

• C: $C_{9(')}$, $C_{10(')}$ scenarios, D: general best fit

(see backup)

Conclusion

Time-dependent analysis of $B \rightarrow V\ell\ell$ with V into CP eigenstate

- Mixing allowing richer pattern of interferences
- Concerns both $B_d \to K^*(\to K_S\pi^0)\ell^+\ell^-$ and $B_s \to \phi(\to K_SK_L)\ell^+\ell^-$, $B_s \to \phi(\to K^+K^-)\ell^+\ell^-$
- Two interesting new observables s_8 and s_9
- Hadronic colliders with tagging or B-factory with time dep.

Optimised versions Q_8 and Q_9

- Accurate predictions in the SM
- $Q_9 + \cos(\phi \beta_s) = 0$ test of right-handed currents
- Good sensitivity to NP scenarios

How realistic to get them measured?

Backup

General NP scenarios (Fig p13)

$$C_i = C_i^{\text{SM}} + C_i^{\text{NP}} ,$$

taking 3 σ ranges fro fit to $b o s\gamma$ and $b o s\ell\ell$ in [SDG, Matias, Virto 2013]

$$\begin{array}{l} \mathcal{C}_{7}^{\text{NP}} \in \left(-0.08, 0.03\right)\,, \quad \mathcal{C}_{9}^{\text{NP}} \in \left(-2.1, -0.2\right)\,, \quad \mathcal{C}_{10}^{\text{NP}} \in \left(-2.0, 3.0\right)\,, \\ \mathcal{C}_{7'}^{\text{NP}} \in \left(-0.14, 0.10\right)\,, \quad \mathcal{C}_{9'}^{\text{NP}} \in \left(-1.2, 1.8\right)\,, \quad \mathcal{C}_{10'}^{\text{NP}} \in \left(-1.4, 1.2\right)\,. \end{array}$$

- LHC (Left-Handed Currents) scenario (orange, dashed): NP contributions to C_7 , C_9 , C_{10} only.
- RHC (Right-Handed Currents) scenario (red dotted): NP contributions to C_{7'}, C_{9'}, C_{10'} only.
- General NP scenario (green solid): NP contributions to all six coefficients $C_{7(\prime)}, C_{9(\prime)}, C_{10(\prime)}$

NP Benchmarks (Fig p14)

A. Best fit point in the $C_7 - C_9$ scenario of [1307.5683]

$$\mathcal{C}_7^{\text{NP}} = -0.02, \quad \mathcal{C}_9^{\text{NP}} = -1.6 \; . \label{eq:constraint}$$

B. Best fit point in the $C_9 - C_{9'}$ scenario of [1411.3161]

$$\mathcal{C}_9^{\text{NP}} = -1.28, \quad \mathcal{C}_{9'}^{\text{NP}} = 0.47 \; . \label{eq:condition}$$

- C. Z'-motivated $C_{9(')}$, $C_{10(')}$ scenarios [1211.1896,1309.2466]
 - C1: $C_0^{NP} = -C_{10}^{NP} = -1$
 - C2: $C_{9'}^{NP} = -C_{10'}^{NP} = 1$
 - C3: $C_9^{NP} = C_{9'}^{NP} = -C_{10}^{NP} = -C_{10'}^{NP} = -1$
 - C4: $C_9^{NP} = -C_{9'}^{NP} = -C_{10}^{NP} = C_{10'}^{NP} = -1$

C1 and C2 in singlet/triplet and doublet leptoquark models [1408.1627]

D. Best fit point in the general fit of [1307.5683]

$$\begin{array}{lll} \mathcal{C}_7^{\text{NP}} & = & -0.02 \; , \; \mathcal{C}_9^{\text{NP}} = -1.3 \; , \; \mathcal{C}_{10}^{\text{NP}} = 0.3 \; , \\ \mathcal{C}_{7'}^{\text{NP}} & = & -0.01 \; , \; \mathcal{C}_{9'}^{\text{NP}} = 0.3 \; , \; \mathcal{C}_{10'}^{\text{NP}} = 0 \; . \end{array}$$