SENSCHAFT

A. Oyanguren (IFIC – U. Valencia/CSIC)

Novel aspects of $b \rightarrow s$ transtitions, Marseille, Oct '15

nes b-Quarks. Diese Quarksorte ist instabil und kommt daber anders als u und il nicht in normaler Materie vor rondern etwa in B-Mesonen, die in Buchleuruger u enti erfallen. Hier wandelt sich das b-Quark unter Battiligung eines virtuellen W-Bosons und einer P-Quarks in in Photon (1) und ein so

nen

infachte der Physiker

n Sinne der Quantenmechanik als estandteil einer diffusen Wolke, einer, der plötzlich wieder Flektronenbahnen gemalt hat." Withrich hat seine Doktorar-

nicht mehr auf Kreisbahnen um cinen Atomkern vorstellen, sondern

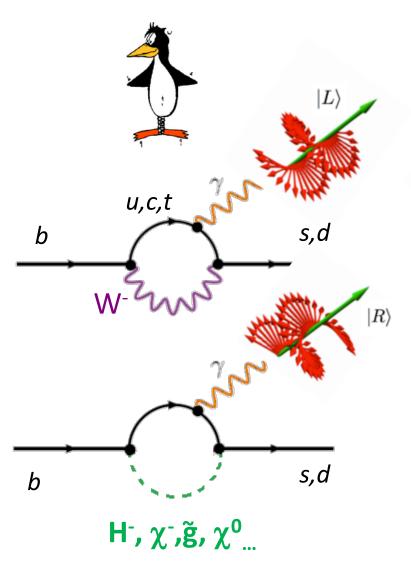
beit über Feynman-Diagram schrieben und die Erge nem Buch veröffendlicht nesis of Feynman Diagrams". 2010). Darin skizziert er, dass es dom innone P

Das geht aber auch noch genauer! Mit Hilfe der Bildchen auf dieser Seite, sogenannt arization

teilchen repräsentieren; Wellen sind die Boten des Flektra

Nurzfristlig zu weiteren virtueilen Telchen verdichtet, was die Reaktion ein wenig anders ablauten lässt als in ihter einlachsten For

the


<u>Outline</u>

- Motivation
- $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$
- $B^0 \rightarrow K^{*0}e^+e^-$
- $B_s \rightarrow \phi \gamma$
- $\bullet \ \Lambda_{\rm b} {\rightarrow} \Lambda \gamma$
- Conclusions

→ Photons in $b \rightarrow s\gamma$ are predicted to be left-handed in the SM (small corrections of order m_s/m_b ~ 2%)

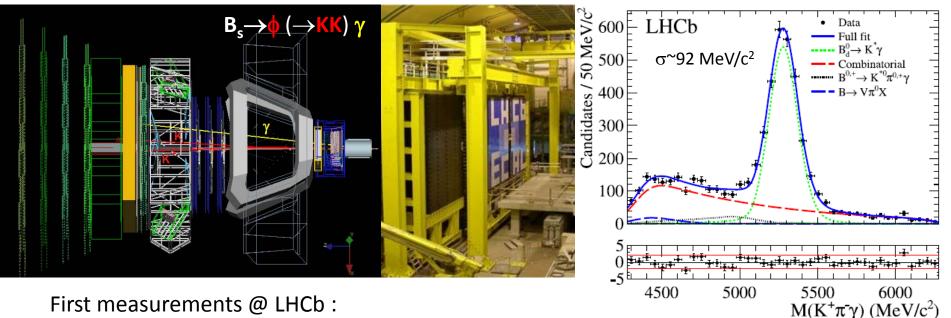
→ Some new physics models, particularly Left-Right Symmetric Models, predict an anomalous component of polarized photons

[D. Atwood, M. Gronau and A. Soni, PRL79(97)185][M. Gronau, D. Pirjol, PRD66(02)054008][F. Yu, E. Kou, C. Lü, JHEP12(2013)102]

 \rightarrow Involved Wilson coefficient: $C_7^{(\prime)}$

$$\mathcal{O}_{7}^{(\prime)} = \bigcup_{s_{L(R)}} \mathcal{O}_{7}^{(\prime)} = \frac{m_{b}}{e} (\bar{s}\sigma_{\mu\nu}P_{\mathrm{R(L)}}b)F^{\mu\nu}$$
A. Oyanguren

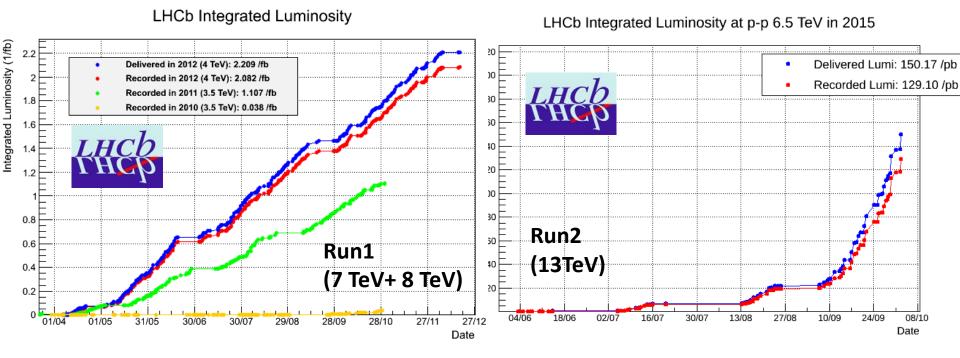
How to access **the photon polarization** in *b*-hadron decays?


- Time dependent analyses, using B-B interference of mixing and decay:
 - Final common state for neutral B and \overline{B} : $B_{(s)} \rightarrow V\gamma$, $V \rightarrow KK$, $\pi\pi$
 - B_s more profitable ($\Delta \Gamma_s > > \Delta \Gamma_d$)
 - @ LHCb: V to charged tracks, better no π^{0} 's, no K_s's (Ex: B_d \rightarrow K^{*0} (K_s π^{0}) γ)
 - $B_s \rightarrow \phi \gamma$, $B_d \rightarrow \rho \gamma$, $B_d \rightarrow \omega \gamma$
 - Observables: TD decay widths, TD CP asymmetries
 - Use of flavour tagging (C, S mixing param.) reduces a lot the statistics (ϵ_{eff} ~5%)

• Angular analyses:

- $B_{(s)}$ to three-body + γ decays (B⁺ \rightarrow K⁻ $\pi^{+}\pi^{+}\gamma$) [PRL 112(2014)161801]
- Decays of Λ_{b} baryons to $\Lambda\gamma$
- Decays with an electron pair in the final state γ → e⁻e⁺
 with γ real: radiative decays with converted photons (B_(s)→Vγ(→ e⁻e⁺))
 or virtual: B→K*e⁺e⁻ analyzed in the low q² region [JHEP04(2015)064]

Radiative decays @ LHCb:


$$\frac{\mathcal{B}(B^0 \to K^{*0} \gamma)}{\mathcal{B}(B^0_s \to \phi \gamma)} = 1.23 \pm 0.06 \text{ (stat.)} \pm 0.04 \text{ (syst.)} \pm 0.10 \text{ (}f_s/f_d\text{)}$$

5279 ± 93 $B_d \rightarrow K^* \gamma$ 691 ± 36 $B_s \rightarrow \phi \gamma$

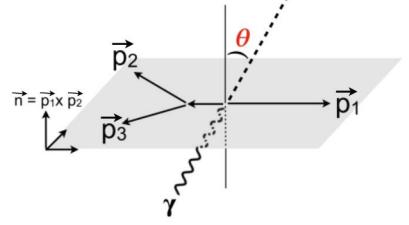
 $\mathcal{A}_{CP}(B^0 \to K^{*0}\gamma) = (0.8 \pm 1.7 \text{ (stat.)} \pm 0.9 \text{ (syst.)})\%.$

(this with 1fb⁻¹, update with 3fb⁻¹ in progress)

A. Oyanguren

LHCb working well, expected 8 fb⁻¹ at the end of Run2

(also gain from B production at higher centre-of-mass energy)


Measuring the photon polarization with:

 $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$

$\underline{\mathsf{B}^{+}} \longrightarrow \mathsf{K}^{+} \pi^{-} \pi^{+} \gamma$

- The photon polarization can be measured in $B_{(s)}$ to three body + γ decays \rightarrow the decay plane defines the direction of the photon
- The photon polarization parameter λ_{γ}

$$\lambda_{\gamma} \equiv \frac{|c_{\rm R}|^2 - |c_{\rm L}|^2}{|c_{\rm R}|^2 + |c_{\rm L}|^2}$$

expected to be -1 (\overline{B}) or +1 (B) with corrections of (m_s/m_b)² (C_R , C_L right and left amplitudes)

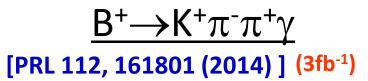
• It can be extracted by studying the three body decay of a $K_J (J^P)$ resonant state in B $\rightarrow K_{res} \gamma$ radiative decays [Kou et al, PRD83 (2011) 094007; Gronau et al, PRL88 (2002) 051802]

 \rightarrow There are two known K₁(1⁺) states, decaying into K $\pi\pi$ final state via K^{*} π and ρ K modes: the K₁(1270) and K₁(1400) resonances, from where the λ_{γ} can be measured.

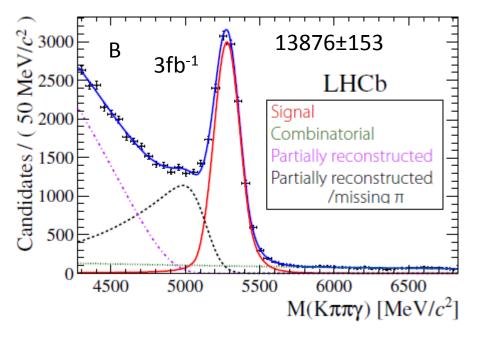
$\underline{\mathsf{B}^{+}} \longrightarrow \mathsf{K}^{+} \pi^{-} \pi^{+} \gamma$

• For a radiative $\mathbf{B} \rightarrow \mathbf{K}_{res} \gamma$, with the \mathbf{K}_{res} a three body decay $\mathbf{K}_{res} \rightarrow \mathbf{P}_1 \mathbf{P}_2 \mathbf{P}_3$

 $\frac{\mathrm{d}\Gamma(\overline{B} \to \overline{K}_{\mathrm{res}}\gamma \to P_1P_2P_3\gamma)}{\mathrm{d}s \,\mathrm{d}s_{13} \,\mathrm{d}s_{23} \,\mathrm{d}\cos\theta}$ with $s_{ij}=(p_i+p_j)^2$; $s=(p_1+p_2+p_3)^2$ is the sum of the helicity amplitudes


The Up-down asymmetry A_{UD}

$$\mathcal{A}_{up-down} = \frac{\int_{0}^{1} d\cos\theta \frac{d\Gamma}{d\cos\theta} - \int_{-1}^{0} d\cos\theta \frac{d\Gamma}{d\cos\theta}}{\int_{-1}^{1} d\cos\theta \frac{d\Gamma}{d\cos\theta}} \propto \lambda_{\gamma}$$

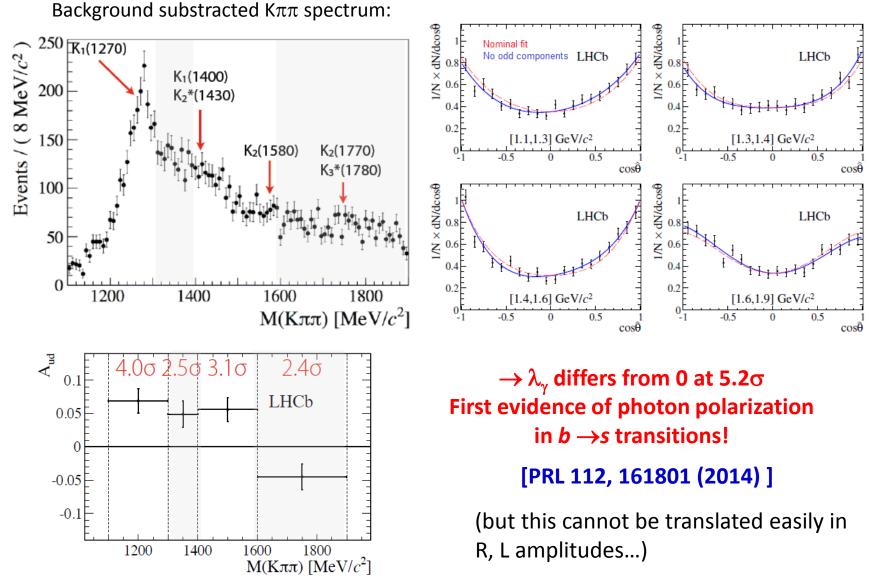

Allows to extract the photon polarization information

 \rightarrow Need to count the number of events with photon emitted above/below the $\vec{p}_1 \vec{p}_2$ -plane and subtract them.

$$\frac{up}{\theta}$$
slow π
fast π
K
down

 Reconstruct a kaon resonance from three charged tracks: two pions of opposite sign and a kaon, plus a high E_T photon.

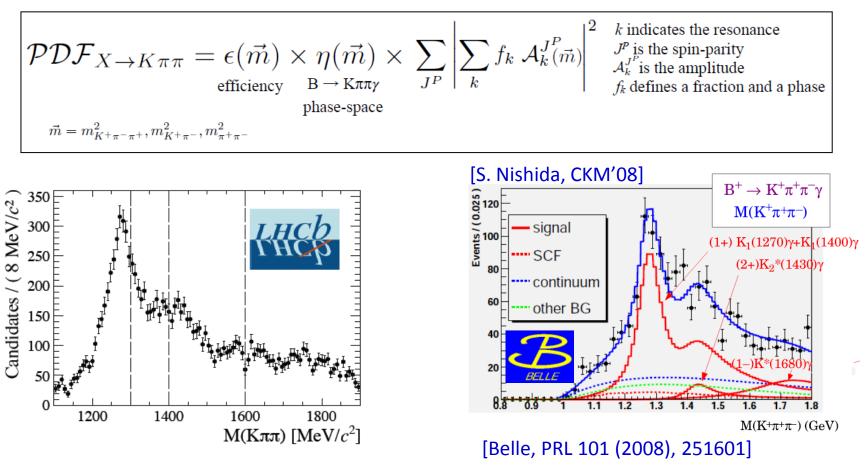
(Kππ from 1.1-1.9 GeV)


Up-down asymmetry: A_{UD}

$$\mathcal{A}_{\mathsf{UD}} = \frac{N(K\pi\pi\gamma)_{_{\mathsf{cos}\theta>0}} - N(K\pi\pi\gamma)_{_{\mathsf{cos}\theta<0}}}{N(K\pi\pi\gamma)_{_{\mathsf{cos}\theta>0}} + N(K\pi\pi\gamma)_{_{\mathsf{cos}\theta<0}}}$$

 \rightarrow Many kaon resonances with different properties are expected to contribute

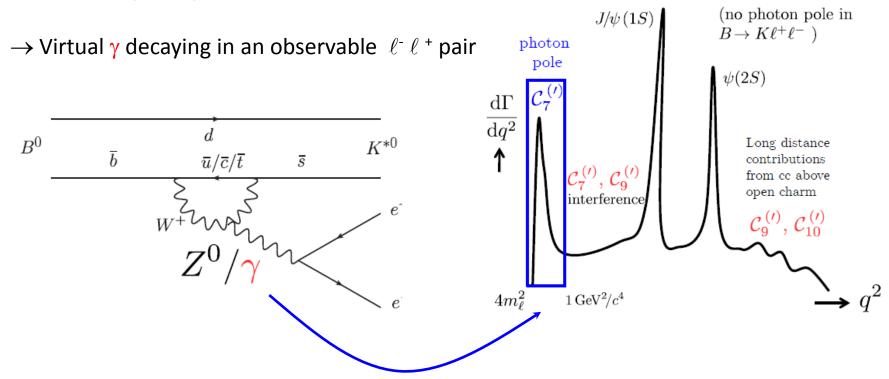
 $\rightarrow A_{UD}$ studied in several m(K $\pi\pi$) regions , fitting m_B and the cos θ distribution.


 $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$

A. Oyanguren

$\underline{\mathsf{B}^{+}} \longrightarrow \mathsf{K}^{+} \pi^{-} \pi^{+} \gamma$

• At present performing an amplitude analysis on the $K\pi\pi$ system to disentangle the different resonant contributions (3-dimensions: $m_{K\pi\pi}^2$, $m_{K\pi}^2$, and $m_{\pi\pi}^2$)

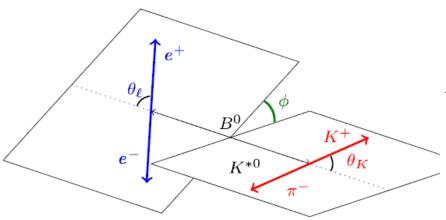


And extending the analysis to include the angular observables

Measuring the photon polarization with:

$B^0 \rightarrow K^{*0}e^-e^+$

Measurement of angular observables of the B⁰→K*e⁻e⁺ in the low q² < 1GeV²
 [JHEP04(2015)064] (3fb⁻¹)



- \rightarrow Sensitive to the photon polarization due to the photon pole (for B \rightarrow V e⁻e⁺)
- \rightarrow Requires to go very low in the q² region \rightarrow **electrons**

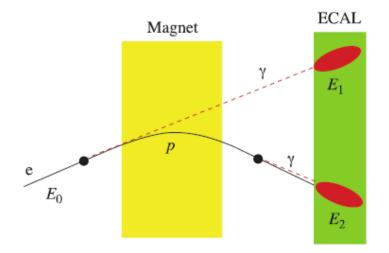
A. Oyanguren

 $B^0 \rightarrow K^{*0} e^- e^+$

•The differential decay rate depends on three angles: θ_{ℓ} , θ_{K} and ϕ

$$A_{\rm T}^{(2)}(q^2 \to 0) = \frac{2\mathcal{R}e(\mathcal{C}_7 \mathcal{C}_7^{\prime *})}{|\mathcal{C}_7|^2 + |\mathcal{C}_7^{\prime}|^2}$$

$$A_{\rm T}^{\rm Im}(q^2 \to 0) = \frac{2\mathcal{I}m(\mathcal{C}_7 \mathcal{C}_7^{'*})}{|\mathcal{C}_7|^2 + |\mathcal{C}_7^{'}|^2}$$

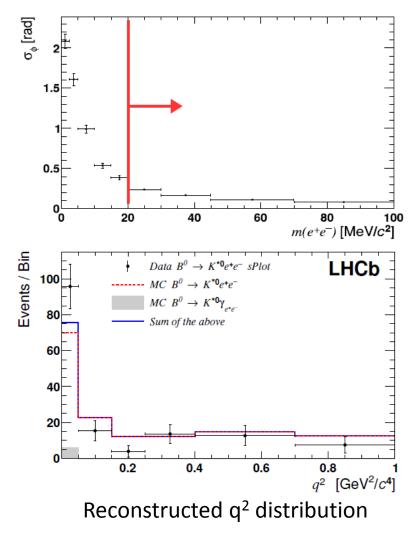

$$\overline{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \,\overline{\mathrm{d}q^2 \operatorname{dcos} \theta_\ell \operatorname{dcos} \theta_K \operatorname{d}\tilde{\phi}} = \frac{9}{16\pi} \left[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K + \left(\frac{1}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K - F_\mathrm{L} \cos^2 \theta_K \right) \cos 2\theta_\ell + \left(\frac{1}{2} (1 - F_\mathrm{L}) \mathcal{A}_\mathrm{T}^{(2)} \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\tilde{\phi} + (1 - F_\mathrm{L}) \mathcal{A}_\mathrm{T}^\mathrm{Re} \sin^2 \theta_K \cos \theta_\ell + \frac{1}{2} (1 - F_\mathrm{L}) \mathcal{A}_\mathrm{T}^\mathrm{Re} \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\tilde{\phi} \right]$$

 $d^4(\Gamma + \bar{\Gamma})$

access to the photon polarization information

- [D. Becirevic and E. Schneider Nucl. Phys. B 854 (2012) 321]
- $A_{
 m T}^{
 m Re}=rac{4}{3}A_{
 m FB}/(1-F_{
 m L})$ $F_{
 m L}$: longitudinal polarization of the K* (expected small at low q², γ_{\perp} polarized)

• Electrons are difficult to reconstruct since they loose energy by radiation: need **bremsstrahlung recovery**



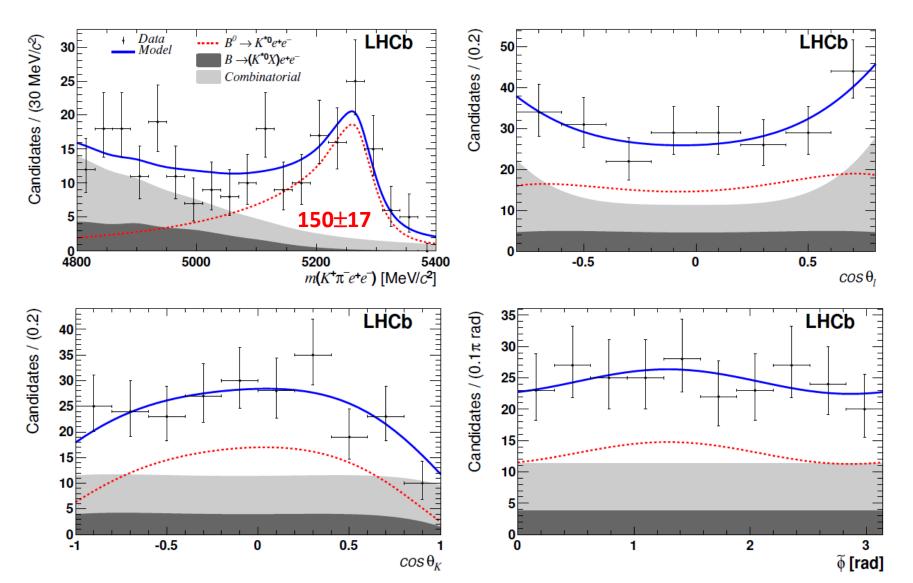
 \rightarrow adding neutral clusters from the ECAL , with $E_T > 75 MeV$

Candidates / (40 MeV/c²) 200 LHCb 180 160 Data Model 120 $B^0 \rightarrow K^{*0}\gamma$ 100 $\rightarrow (K^{*0}X)e^+e^+$ 80 Combinatorial 20 5000 6000 5500 4500 $m(K^{+}\pi^{-}e^{+}e^{-})$ [MeV/c²]

> Long radiative tail in the B mass distribution: controlled from $B \rightarrow K^*\gamma$ events ($\gamma \rightarrow e^-e^+$, with bremsstrahlung emission)

• q² range driven by the experimental resolution in $\phi \rightarrow \text{ cut at } m(e^-e^+) > 20 \text{ MeV}$

→ $q_{min}^2 = 0.0004 \text{ GeV}^2$ good also to suppress the B→K* γ (→e⁻e⁺) background and


$$\rightarrow$$
 q²_{max} = 1 GeV²

allowing to isolate $C_7^{(')}$ contributions

Unfolding reconstruction effects, the effective q² range is:

 $q^2 \in (0.0020(8), 1.12(6)) \text{ GeV}^2$

• 4-dimensional fit to m(K⁺ π ⁻e⁻e⁺) and the three angles θ_{ℓ} , θ_{K} and ϕ :

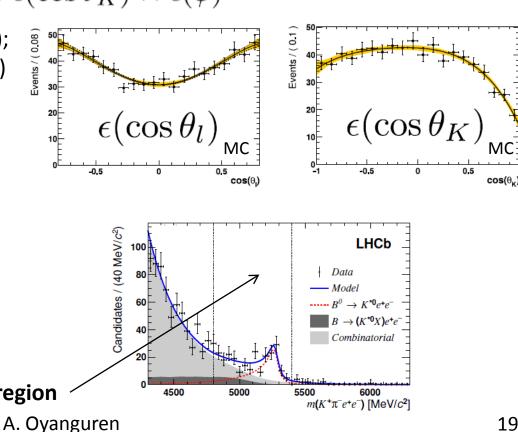
$B^0 \rightarrow K^{*0}e^-e^+$

- Measurement at present limited by the statistic uncertainty
- Systematic uncertainties coming from the acceptance modelling and the background

Acceptance:

$$\epsilon(\theta_{\ell}, \theta_K, \phi) = \epsilon(\cos \theta_l) \times \epsilon(\cos \theta_K) \times \epsilon(\phi)$$

Flat in ϕ ; symmetric in $\cos\theta_{\ell}$ (e[±]); non symmetric in θ_{κ} (π vs K mass)


Background:

(mainly at low mass)

Combinatorial,

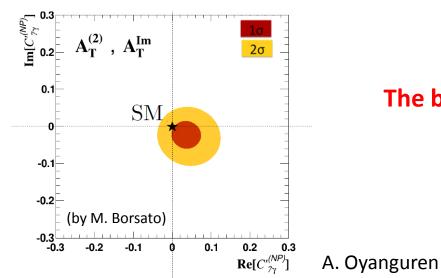
$$\begin{array}{c} B^{0} \rightarrow D^{-}e^{+}\nu \\ \rightarrow K^{*0}e^{-}\overline{\nu} \\ B \rightarrow (K^{*0}X)e^{+}e^{-} \\ B^{0} \rightarrow K^{*0}\gamma \end{array}$$

Angular fit in reduced mass region

• The results of the fitted parameters (A_T^{im} and $A_T^{(2)}$ being sensible to the γ polarization):

Results:

1

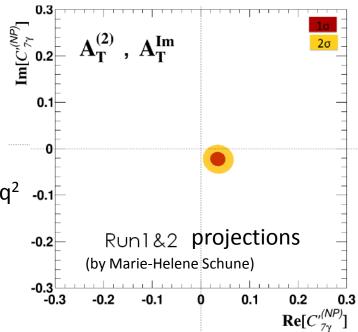

$$F_{\rm L} = 0.16 \pm 0.06 \pm 0.03$$

$$A_{\rm T}^{\rm Re} = +0.10 \pm 0.18 \pm 0.05$$

$$A_{\rm T}^{(2)} = -0.23 \pm 0.23 \pm 0.05$$

$$A_{\rm T}^{\rm Im} = +0.14 \pm 0.22 \pm 0.05$$

\rightarrow Compatible with the SM predictions:

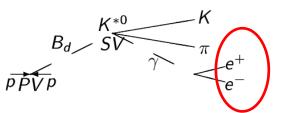

SM predictions:		
F_{L}	=	$0.10\substack{+0.11 \\ -0.05}$
${\rm A_{T}^{Re}}$	=	$-0.15\substack{+0.04\\-0.03}$
$A_{\rm T}^{(2)}$	=	$+0.03\substack{+0.05\\-0.04}$
${ m A}_{ m T}^{ m Im}$	=	$(-0.2^{+1.2}_{-1.2}) \times 10^{-4}$

[Adapted from Jäger and Camalich arXiv:1412.3183]

The best sensitivity to C⁷⁽⁴⁾ up to date! [JHEP04(2015)064]

K*0e⁻e⁺

- Run1 + Run2 projections:
- → Statistics of Run1 x (1 + ~ 4) (with same performance): Run1 + Run2 ~ 750 B→ K*e⁻e⁺ events
- \rightarrow Try to improve the rejection of combinatorial and partially reconstructed backgrounds at low q²
- \rightarrow Add other observables: P'₄ P'₅ P'₆ and P'₈
 - → The photon polarization could be measured to about 5 to 7 % !

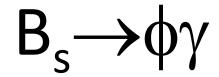


$\underline{B}_{(s)} \rightarrow V\gamma (\rightarrow e^{-}e^{+})$

• Photon polarization from converted photons (Bethe-Heitler lepton pairs):

[Y. Grossman and D. Pirjol JHEP06(2000)029]

- \rightarrow Small fraction of converted photons ~ 20%
- \rightarrow But better resolution:
 - For calorimeter γ 's: σ ~92 MeV/c²
 - For converted photons: σ^{30} MeV/c², (depends a bit on where the photon materializes)



 \rightarrow The angular distribution of the positron is sensitive to the photon polarization:

$$\frac{d\sigma}{d\phi} \propto 1 + \xi R \cos(2\phi + \delta) \quad R \equiv \frac{|A_R(0)| \, |A_L(0)|}{|A_R(0)|^2 + |A_L(0)|^2} < 5\% \text{ in the SM}$$

But the photon polarization information seems to be lost at LHCb...

Measuring the photon polarization with:

$$\underline{B}_{\underline{s}} \rightarrow \underline{\varphi} \underline{\gamma}$$

$$\rightarrow \text{ The time-dependent decay rate for}_{B_{\underline{s}} \rightarrow \underline{\varphi} \gamma} \text{ and } \overline{B}_{\underline{s}} \rightarrow \underline{\varphi} \gamma \text{ decays is described by:}$$

$$\Gamma_{B_{\underline{s}}^{-0}} \phi_{\gamma}(t) =$$

$$= |A|^{2} e^{-\Gamma_{\underline{s}} t} (\cosh \frac{\Delta \Gamma_{\underline{s}} t}{2} - \underline{A}) \sinh \frac{\Delta \Gamma_{\underline{s}} t}{2} \pm \mathcal{C} \cos \Delta m_{\underline{s}} t \mp \mathcal{S} \sin \Delta m_{\underline{s}} t)$$

$$\sim 0 \text{ in the SM}$$

$$\mathcal{A}^{\underline{\Delta}} \approx \sin 2\psi \cos \varphi_{\underline{s}}$$

$$\mathcal{S} \approx \sin 2\psi \sin \varphi_{\underline{s}} \sim 0 \text{ in the SM}$$

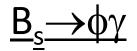
$$\mathbf{Fraction of anomalous polarized photons:} \quad \tan \psi \equiv \left| \frac{\mathcal{A} (B_{\underline{s}} \rightarrow \varphi \gamma_{\underline{k}})}{\mathcal{A} (B_{\underline{s}} \rightarrow \varphi \gamma_{\overline{R}})} \right|$$

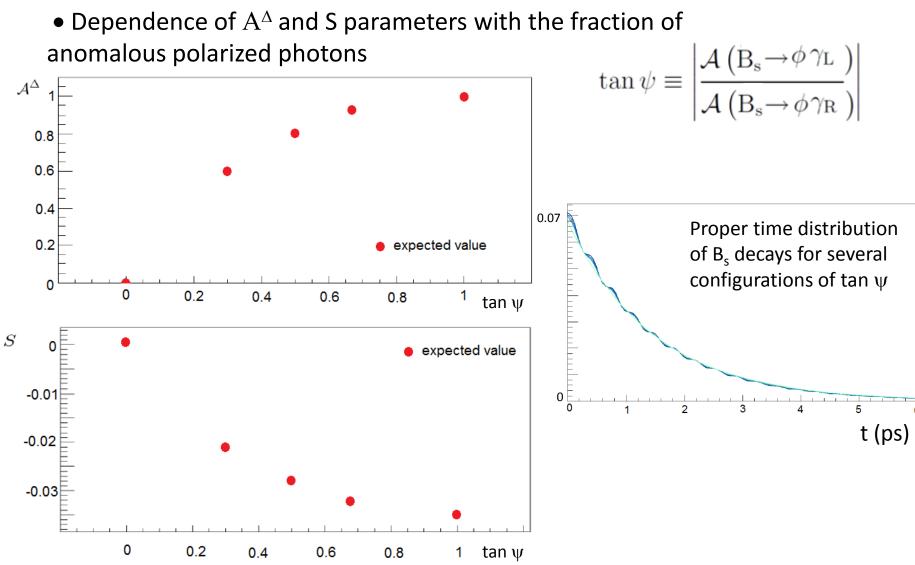
$$\Delta \Gamma_{\underline{s}} = \Gamma_{\underline{t}} - \Gamma_{\underline{H}} = (0.081 \pm 0.011) \text{ ps}^{-1}$$

$$\Gamma_{\underline{s}} = 1/\tau_{B\underline{s}} = (0.6596 \pm 0.0046) \text{ ps}^{-1}$$

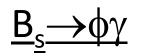
 $\underline{\mathsf{B}}_{\underline{\mathsf{s}}} \rightarrow \overline{\mathsf{o}} \gamma$

 \rightarrow Untagged measurement of the time dependent B_s $\rightarrow \phi \gamma$ width:

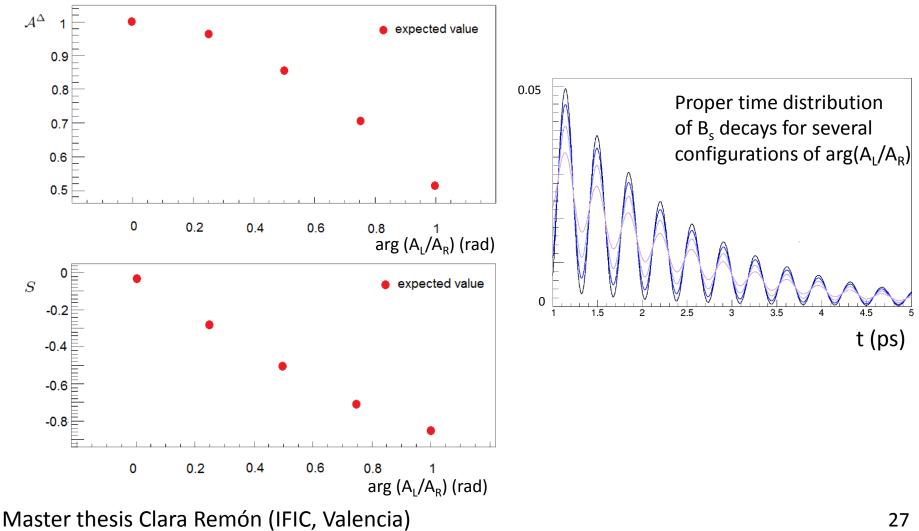

$$\begin{split} \Gamma_{\rm B^0_s}({\rm t}) &= |{\rm A}|^2 \, {\rm e}^{-\Gamma_{\rm s} {\rm t}} \left(\cosh \frac{\Delta \Gamma_{\rm s} {\rm t}}{2} - \mathcal{A}^{\Delta} {\rm sinh} \frac{\Delta \Gamma_{\rm s} {\rm t}}{2}\right) \\ &\approx |A|^2 e^{-\Gamma_{B_s \to \phi \gamma} t} \quad \text{with} \end{split}$$


It can be seen as an "Effective lifetime" depending on the A^{Δ}

$$\Gamma_{B_s \to \phi\gamma} = \Gamma_s + \frac{\mathcal{A}^\Delta \Delta \Gamma}{2}$$

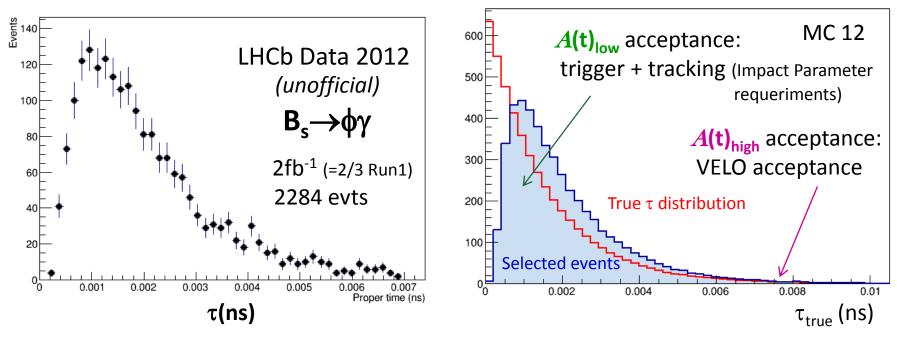

SM value: $A^{\Delta} = 0.047 \pm 0.025 + 0.015_{(\alpha_s)}$ [Muheim, Xie, Zwicky, PLB664(08)174] Left-Right Symmetric models: A^{Δ} up to ~ 0.7 [Atwood, Gronau and Soni, PRL79(97)185]

 \rightarrow Fraction of anomalous polarized photons ~ 40%

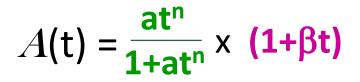


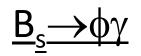
Master thesis Clara Remón (IFIC, Valencia)

• Dependence of A^{Δ} and S parameters with the relative phase of anomalous polarized photons (assuming 50% of A_1)

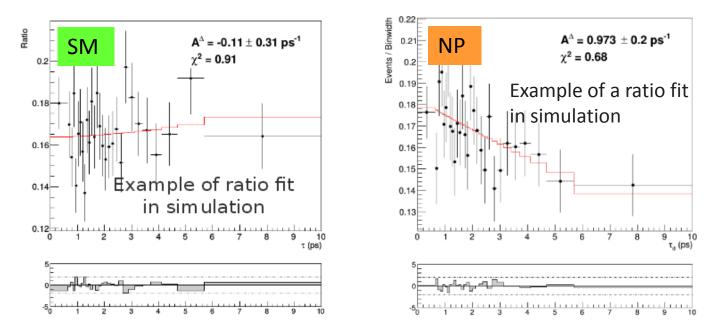


27


 \rightarrow Untagged measurement of the time dependent decay rate:


 $\Gamma_{Bs}(t_r)$ measured = $A(t) \cdot \Gamma_{Bs}(t; A^{\Delta}) \otimes R(t, t_r)$

Untagged proper time distribution:


One of the main issues in this analysis concerns the determination of the acceptance:

- \rightarrow One can use the B \rightarrow K* γ data to constrain the acceptance
- \rightarrow One can extract A^{Δ} from a fit to the ratio of B_s/B_d decay widths (or from a direct fit):

The ratio gives the (cosh($\Delta\Gamma_s t/2$) + A^{Δ} sinh($\Delta\Gamma_s t/2$) piece \rightarrow

 \rightarrow One needs to include uncertainties coming from the background subtraction, the statistics of the control sample, fitting procedure and acceptance assumptions

$\underline{\mathsf{B}}_{\underline{\mathsf{s}}} \rightarrow \underline{\phi} \gamma$

 \rightarrow Flavour tagging for B_s drastically reduces our data:

 $\sigma(pp \rightarrow B_s + X) = 10.5 \pm 1.3 \ \mu b \ [JHEP08(2013)11]$

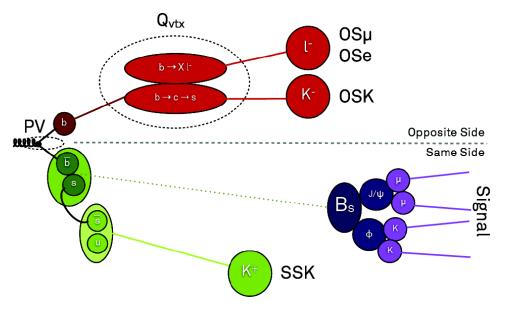
 $\mathcal{B}(B_s \rightarrow \phi \gamma) = (3.5 \pm 0.4) \times 10^{-5}$

 $\epsilon_{reconstruccion} (B_s \rightarrow \phi \gamma) \sim 1\%$

Tagging algorithms:

Same side (SS):

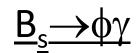
From fragmentation of the signal *b* (π for B, K for B_s)


Opposite side (OS):

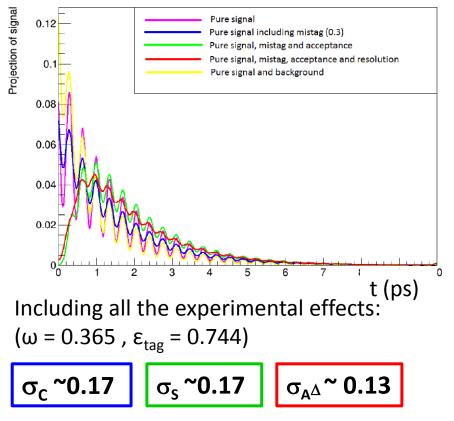
From the opposite B:

- e, μ from semileptonic B decays,
- kaons from b \rightarrow c \rightarrow s,
- inclusive reconstruction of the opposite B vertex

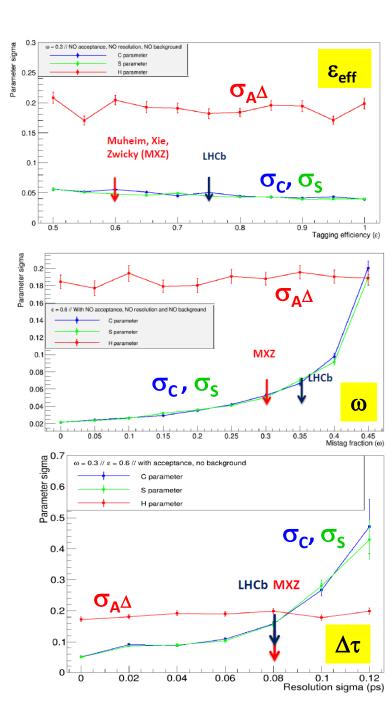
 N_{evts} x ε_{tag}(1-2ω)² We found for B_s→φγ:


Tagging efficiency, $\epsilon_{tag} \approx 75\%$ Mistag probability, $\omega \approx 36\%$

[Eur. Phys. J. C 72(2012) 2022 LHCb-CONF-2012-026 LHCb-CONF-2012-033J HEP11 (2014) 060]


+ ongoing improvements for Run2

```
Effective efficiency: \epsilon_{eff}~5.44%
```



→Tagged measurement of the time dependent decay rate: **expected** ~ **1000** events for Run1+Run2

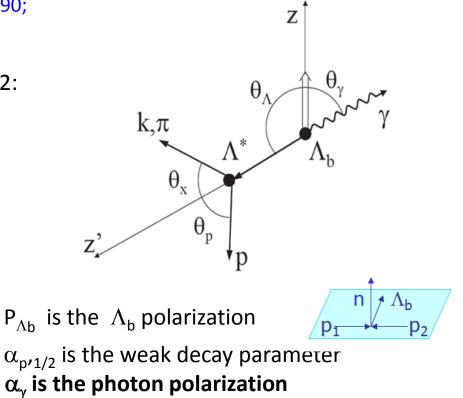
Simulation studies similar to [Muheim, Xie, Zwicky PL B664(2008)174], including LHCb detector effects.

Master thesis Mikel Larrañaga (U. Barcelona)

Measuring the photon polarization with:

 $\Lambda_{\rm b} \rightarrow \Lambda \gamma$

$$\underline{\Lambda}_{\mathsf{b}} \underline{\to} \underline{\Lambda} \underline{\gamma}$$


 Exploiting the angular correlations between the polarized initial state and the final state: [Mannel, Recksiegel, J.Phys. G24 (1998) 979-990; Hiller, Kagan, PRD 65, 074038 (2002)]

For $\Lambda_{\rm b}$ decaying into $\Lambda^{0}(1115)$ with J=1/2:

 $\frac{d\Gamma}{d\cos\theta_{\gamma}} \propto 1 - \alpha_{\gamma} P_{\Lambda_b} \cos\theta_{\gamma}$

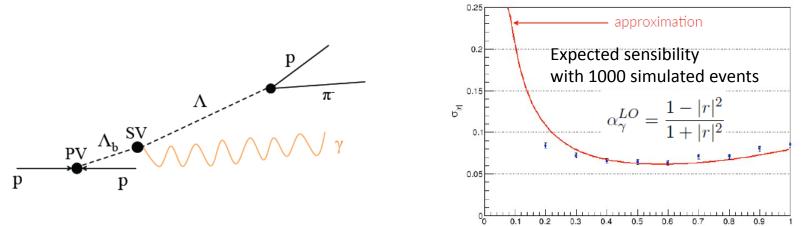
$$\frac{d\Gamma}{d\cos\theta_p} \propto 1 - \alpha_\gamma \alpha_{p,1/2} \cos\theta_p$$

$$\alpha_{\gamma} = \frac{P(\gamma_L) - P(\gamma_R)}{P(\gamma_L) + P(\gamma_R)}$$

→ The $\Lambda_{\rm b}$ transverse production polarization has been found to be small: $P_{\Lambda \rm b} = 0.06 \pm 0.07 \pm 0.02$ [PLB724 (2013)27] → No sensitivity in $\cos\theta_{\gamma}$

 $\rightarrow \alpha_{\text{p1/2}}$ = 0.642 \pm 0.013 [PDG2014] \rightarrow access to $\alpha_{\!\gamma}$ via the angular distribution of the proton

$\underline{\Lambda}_{\mathsf{b}} \underline{\to} \underline{\Lambda} \underline{\gamma}$


 \rightarrow Branching fractions for $\Lambda_{\rm b} \rightarrow \Lambda^0$ (1115) γ expected to be ~ 10⁻⁵

```
\rightarrow \sigma(pp \rightarrow b\overline{b}X) = 310.5 \pm 57.9 \ \mu b^{-1}
```

and the production fraction: $f_{\Lambda b}$ = 17.1 ± 4.0%

 $\sigma(\Lambda^{0}\rightarrow p\pi) = 63.9 \pm 5\%$

 \rightarrow Experimental challenge: the Λ_b decay vertex cannot be reconstructed due to the long lifetime of the Λ^0 baryon (c τ = 7.89 cm)

At present defining the selection and reconstruction procedures \rightarrow An improved HLT for Run2 has been prepared

Master thesis Aurélie Flandi (EPFL)

Conclusion

- The **photon polarization** is being measured **at LHCb** using several channels and different observables
- Important to constrain $C_7^{(')}$ in NP scenarios, it is usually set to zero in global fits
- Difficult analyses due to the γ /e reconstruction in pp collisions, but we did it \rightarrow NP constraints more precise than the ones from B-factories!
- Working hard in **new and improved measurements**
- Run 2 data still to come...
- New ideas and methods, profitable at LHCb, are quite welcome

Stay tuned, the best is yet to come... !

Thank you!