OVERVIEW OF LEPTON FLAVOR VIOLATING DECAYS AT LHCb

Francesco Polci LPNHE Paris

Novel aspects of *b* to *s* transitions Marseille, 5-7 October 2015

OUTLINE

- The experimental challenges in the search for LFV decays in LHCb.
- LFV searches performed at LHCb (not strictly in the context of *b->sll* transitions)
- Tests of lepton flavor universality: R_K and R_{D^*}
- Plans for searches of *b->sll* LFV decays.

LFV DECAYS IN LHCb: THE CHALLENGES

Trigger: needs to be efficient for the decay under study (easy to trigger on muons, more difficult on electrons)

Reconstruction: e and τ reconstruction in a hadronic environment is complicated

"Stripping" : this preselection of the LHCb data is periodically run on data and needs to be well tuned to be efficient:

- some LFV channels are already feasible
- others needs a data re-stripping => time delay

Combinatorial backgrounds: reduced exploiting a large set of kinematic variables **Peaking and partially reconstructed backgrounds**:

- largest contribution if bad mass resolution
- sometimes complicated to identify, as simulations have a limited size and can not include all possible decays
- more complicated to reduce and to correctly model

At the moment we are elaborating the best strategies to face these issues in the context of LFV B decays

THE LHCb DETECTOR

MUONS RECONSTRUCTION

ELECTRON RECONSTRUCTION

• Identified through the electromagnetic calorimeter \rightarrow

$$ECAL: \frac{\sigma_E}{E} \sim 1\% \otimes \frac{10\%}{\sqrt{E(GeV)}}$$

- Resolution degraded by energy loss from Bremsstrahlung:
 - recovery of Bremsstrahlung photons can not be $\,100\%$ efficient
 - significant degradation of the $B\,{\rm mass}$ resolution with a tail on the left

TAU RECONSTRUCTION

- Taus reconstructed through their decays.
- Accompanied by neutrinos: missing energy and degradation of the B mass resolution
- Tau decay vertex not always identified
- Traditional and new reconstruction techniques based on the kinematics are explored (see also talk from Alessandro Morda)

CONTROL CHANNELS

- Control channels are decays with a final state as much similar as possible to the one under study.
- They are crucial in LHCb analysis:
 - to provide validation/correction for the shapes of the discriminating variables obtained from the simulations
 - to be used as normalization channels to cancel lots of systematic uncertainties

$\tau \rightarrow \mu^- \mu^+ \mu^-$

- First measurement of such decay at hadron collider
- Based on 3 fb⁻¹
- Exploiting excellent muon resolution
- Control and normalization channel: $D_s \rightarrow \phi(\mu\mu)\pi$
- Belle: $B(\tau^- \rightarrow \mu^- \mu^+ \mu^-) < 2.1 \times 10^{-8} @ 90\%$ CL BaBar: $B(\tau^- \rightarrow \mu^- \mu^+ \mu^-) < 3.3 \times 10^{-8} @ 90\%$ CL LHCb: $B(\tau^- \rightarrow \mu^- \mu^+ \mu^-) < 4.6 \times 10^{-8} @ 90\%$ CL

$B \rightarrow e \mu$						PRL 111 (2013) 141801		
BDT bin	0.0 - 0.25	0.25 - 0.4	0.4 - 0.5	0.5 - 0.6	0.6 - 0.7	0.7 - 0.8	0.8 - 0.9	0.9 - 1.0
Expected bkg (from fit)	2222 ± 51	$80.9\substack{+10.1 \\ -9.4}$	$20.4\substack{+5.0 \\ -4.5}$	$13.2\substack{+3.9 \\ -3.6}$	$2.1^{+2.9}_{-1.4}$	$3.1^{+1.9}_{-1.4}$	$3.1^{+1.9}_{-1.4}$	$1.7^{+1.4}_{-1.0}$
Expected $B^0_{(s)} \to h^+ h'^-$ by	kg 0.67 ± 0.12	$0.47{\pm}0.09$	$0.40{\pm}0.08$	$0.37{\pm}0.06$	$0.45{\pm}0.08$	$0.49{\pm}0.08$	$0.57{\pm}0.09$	$0.54{\pm}0.12$
Observed	2332	90	19	4	3	3	3	1
	LHC 1 fb 20 B(B ⁰ _s	$b^{-1} \rightarrow e^{\pm} \mu^{\mp}$	0-9	$rac{1}{2}$ $rac{$		4	LHCb 1 fb ⁻¹ B(B ⁰ –	×10 ⁻⁹
Mode Limit	$90\%~\mathrm{C.L}$. 95 % C	Li	imits on	Pati-Sa	lam lept	oquark:	model:
$B_s^0 \to e^{\pm} \mu^{\mp}$ Expect Observe	ed 1.5×10^{-3} ed 1.1×10^{-3}		0^{-8} • 0^{-8} •	 M_{LQ}(B_s->eµ)>101 TeV/c²@95%CL M_{LQ}(B_d->eµ)>126 TeV/c²@95%CL 				
$B^0 \to e^{\pm} \mu^{\mp}$ Expect Observe	ed 3.8×10^{-9} ed 2.8×10^{-9}	$\begin{array}{ccc} {}^{9} & 4.8 imes 1 \\ {}^{9} & 3.7 imes 1 \end{array}$	0^{-9} 0 ⁻⁹	_y · 0		,		

THE R_K MEASUREMENT PRL 113, 151601 (2014)

$$R_{K} = \frac{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{\mathrm{d}\Gamma[B^{+} \to K^{+}\mu^{+}\mu^{-}]}{\mathrm{d}q^{2}} \mathrm{d}q^{2}}{\int_{q_{\min}^{2}}^{q_{\max}^{2}} \frac{\mathrm{d}\Gamma[B^{+} \to K^{+}e^{+}e^{-}]}{\mathrm{d}q^{2}} \mathrm{d}q^{2}}$$

- Expected to be 1 in the Standard Model (lepton flavor universality)
- Theoretical uncertanty $\sim 10^{-3}$
- Analysis on the whole run1 dataset: 3 fb⁻¹, in the q^2 range [1, 6] GeV^{2/c⁴}
- Use the double ratio of the rare to the J/ψ channel to reduce systematics:

$$R_{K} = \left(\frac{\mathcal{N}_{K^{+}\mu^{+}\mu^{-}}}{\mathcal{N}_{K^{+}e^{+}e^{-}}}\right) \left(\frac{\mathcal{N}_{J/\psi(e^{+}e^{-})K^{+}}}{\mathcal{N}_{J/\psi(\mu^{+}\mu^{-})K^{+}}}\right) \left(\frac{\epsilon_{K^{+}e^{+}e^{-}}}{\epsilon_{K^{+}\mu^{+}\mu^{-}}}\right) \left(\frac{\epsilon_{J/\psi(\mu^{+}\mu^{-})K^{+}}}{\epsilon_{J/\psi(e^{+}e^{-})K^{+}}}\right)$$

R_{K} : THE DATASET

PRL 113, 151601 (2014)

R_K : MUON CHANNELS

PRL 113, 151601 (2014)

- Excellent resolution
- Extremely clean

R_K: ELECTRON CHANNELS PRL 113, 151601 (2014)

• Important Bremsstrahlung contribution (0-Brem: 37%, 1-Brem: 48%, 2-Brem: 15%)

• Larger backgrounds

R_K: **RESULTS**

- Compatible with Standard Model at 2.6 σ
- Measurements in the other bins were challenging (not enough events available)
- More data coming with run2 (and maybe some improvements in the analysis)
- Theoretical uncertainty $\sim 10^{-3}$

THE R_D* **MEASUREMENT** PRL 115, 111803 (2015)

$$R_{D^*} = \frac{\Gamma(\overline{B}^0 \to D^{*+} \tau^- \overline{\nu_{\tau}})}{\Gamma(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu_{\mu}})}$$

- In the Standard Model (lepton flavor universality), the mass of the lepton is the only difference between the two decays
- Theoretical uncertainty ~2% for D^* mode
- Sensitive to charged Higgs or non minimal flavor violating couplings favoring the tau

*R*_{*D*}*: **ANALYSIS STRATEGY** PRL 115, 111803 (2015)

- Analysis performed on the whole run1 dataset: 3 fb⁻¹
- Neutrinos imply no narrow peak to fit in any distribution
- Use discriminating variables calculated in the B rest frame the missing mass squared: $m^2 = -(n^\mu - n^\mu - n^\mu)^2$
 - the missing mass squared: $m_{\rm miss}^2 = (p_B^\mu p_D^\mu p_\mu^\mu)^2$ - the muon energy: E_μ
 - the squared four momentum transfer to the di-lepton system: q^2

R_{D^*} : HIGH q^2 REGION

R_{D*} : **RESULTS**

- R(D*) = 0.336 ± 0.027 (stat) ± 0.030 (syst)
- First measurement at an hadron collider
- 2.10 larger than Standard Model expectation
- Reduction of systematic error expected with more data coming

LFV IN B DECAYS: EXISTING LIMITS

$$\begin{split} \mathcal{B}(B^+ \to K^+ e^{\pm} \mu^{\mp}) &< 9, 1 \times 10^{-8} \\ \mathcal{B}(B^+ \to K^+ e^{\pm} \tau^{\mp}) &< 3, 0 \times 10^{-5} \\ \mathcal{B}(B^+ \to K^+ \tau^{\pm} \mu^{\mp}) &< 4, 8 \times 10^{-5} \\ \mathcal{B}(B^+ \to K^* (892)^+ e^{\pm} \mu^{\mp}) &< 1, 4 \times 10^{-6} \\ \mathcal{B}(B \to K^* (892)^0 e^{\pm} \mu^{\mp}) &< 5, 8 \times 10^{-7} \\ \mathcal{B}(B \to K e^{\pm} \mu^{\mp}) &< 2, 7 \times 10^{-7} \end{split}$$

LFV IN B DECAYS AT LHCb: PLANS

- * New lepton universality tests are being performed: $R_{K^*},\,R_{\varphi},\,R_{\Lambda}\,,\,R_{D}\,...$
- * $\mathbf{R}_{\mathbf{K}}$ measurement could improve: with run2 data, and maybe with a new strategy
- * Direct searches for charged lepton flavor violating decays under investigation:
 - $B_{(s)} \rightarrow \tau \mu$, $B_{(s)} \rightarrow e \mu$
 - $\ B^+ -> K^+ \ \tau \ \mu, \ B^0 -> K^{*0} \ \tau \ \mu, \ B^+ -> K^+ \ e \ \mu, \ B^0 -> K^{*0} \ e \ \mu, \ B_s -> \phi \ \tau \ \mu, \ B_s -> \phi \ e \ \mu, \ \ldots$
 - each one might need a dedicated strategy
 - some of these analysis can already be performed on run1 data
 - an improvement of one order of magnitude on the existing limits could be possible
 - (but since the analysis strategies are not yet finalized, it is hard to provide an estimate)

