Radiothérapie par minifaisceaux

Yolanda Prezado Nouvelles approaches in Radiotherapy (NARA) Laboratoire Imagerie et Modélisation pour la Neurobiologie et la Cancérologie Campus d'Orsay, France

prezado@imnc.in2p3.fr

In the last decades

2D radiotherapy

3D conformal radiotherapy

Intensity modulated RT

Radiotherapy: modeling biological response

- LINACS → MV photons/e- (95%)protons-hadrons (5%)
- 2 Gy/session, 1 session per day, 5 days/week
- Dose rate~ 2 Gy/min
- Field sizes > cm²
- Homogeneous dose distributions

Radiotherapy: modeling biological response

Spatial fractionation of the dose

$$PVDR = \frac{D_{\text{peak}}}{D_{\text{valley}}}$$

RT techniques based on a spatial fractionation of the dose

GRID Therapy (few hospitals in the world)

1909 Alban Kohler used a "perforated screen" (grid) \rightarrow effect similar to treatment with small pencil beams.

Widely used in the 1950s as a way to reach tumors deep in the body with kilovoltage beams.

From the 70s GRID therapy with megavoltage radiation beams \rightarrow palliation of selected, massive and bulky tumors

Improved response to RT and may possibly have cell killing effects outside the directly irradiated area

Beam sizes > 1 cm^2

PVDR from 2 to 5

Radiotherapy: modeling biological response

Field size

Dose-volume effect: the smaller the field size is, the higher the tolerance

4000

3500

Zeman et al., Science (1959)

More recent examples with high energy photons

J.W. Hopewell, K.R. Trott / Radiotherapy and Oncology 56 (2000) 283-288

The stem-cell depletion hypothesis \rightarrow for each organ exits a limiting critical volume, which can be repopulated by a single surviving stem cell and for which damage can be repaired by repopulation (Yaes & Kalend, 1988; Yaes et al, 1988).

Novel RT techniques based on "different" delivery modes

Combination

+

very small field sizes (< 1mm²) Dose-volume effects

1 mm 25 μm 280 Gy 4000 Gy

Zeman et al., Science (1959)

Spatial fractionation of the dose

Novel RT techniques based on "different" dose delivery methods

+

Dose-volume effects \rightarrow exponential increase of healthy tissue tolerances

Spatial fractionation \rightarrow gain in healthy tissue recovery \rightarrow increase of healthy tissue tolerances

Novel RT techniques based on "different" dose delivery methods

Dose-volume effects \rightarrow exponential increase of healthy tissue tolerances

+

Spatial fractionation \rightarrow gain in healthy tissue recovery \rightarrow increase of healthy tissue tolerances

Synchrotron micro and minibeam radiation therapy

Submillimetric field sizes (25 to 700 μ m) Interbeam separation (400 to 3500 μ m)

Dose profiles consist of a pattern of peaks and valleys

Kilovoltage beams

Minibeam Radiation therapy

High resistance of normal tissues

Doses as high as 100 Gy/session are still well-tolerated by the rat brain in comparison to 22 Gy in RT conventional

Prezado et al, Rad. Reseach 2015

A factor 3 increase in lifespan of glioma bearing rats

Prezado et al., J. Synchr. Rad. 2012

Biological effects not well understood

- Cell migration seems to be the responsable for tissue reparaison
- Differential effect normal-tumoral tissues
 - Induction of denudation of tumor vessel endothelium, of a decrease in tumor blood volume as well as of tumor hypoxia.
 - *The bystander effect/cellular communication.*
 - A significant transcriptomic modulation for 30 genes in intracranial tumor tissue following spatial fractionation techniques, undetected in normal tissue → mainly related to the regulation of cell cycle and to immune/inflammatory response.

x-rays MBRT: possible transfer from synchrotrons to cost-effective equipment

IMNC+Campus d'Orsay+Radiobiology platform (Institut Curie)

Synchrotron \rightarrow low cost equipment

- Feasibility evaluation: modification of the irradiator (patent)
- Biological studies \rightarrow understand the involved mechanisms (starting Autumn)

INSERM U836

Radiotherapy: modeling biological response

Proton minibeam radiation therapy

In a recent work: Monte Carlo proof of concept suggested a possible way to generate minibeams of protons and highlithted advantages of this approach [Prezado 2013]:

- Spatial fractionation in healthy tissue
- Homogeneous distribution at the Bragg peak location

Implementation at the Proton Therapy Center Orsay

Spatial fractionation of the dose in the normal tissue beyond the Bragg peak

Quasi-homogeneous dose distribution at the Bragg peak location due to multiple Coulomb scattering in depth

Potential renewed use of very heavy ions for therapy

- Very heavy ions (Ne or heavier) used in the past, very effective for the treatment of hypoxic/resistant tumors (Castro 1994)
- However abandoned due to important side effects in normal tissues

C. Peucelle et al, submitted Med. Phys.

Very heavy electrons for therapy

E ~300 MeV At hospitals E ~ 2 – 25 MeV

Potential clinical advantages that can be investigated:

-Lateral electromagnetic scanning could have certain clinical advantages that are not possible by using photon beams. This can be advantageous for image-guided energy- and intensity modulated radiation therapy

- a possible gain in relative biological effectiveness (RBE) might be observed.

High energy electron grid therapy: colaboration with LAL

1.0

0.9

0.8

0.7

0.6

0,5

0.4

0,3

0.2

0.1

0.0

View of the grid

2D dose distributions

For a human head 250-300 MeV are required

Martinez & Prezado, Med. Phys. 2015

Technical implementation-colaboration with LAL

Conclusions

- We are still far away from having found the optimum way to use ionizing radiation for therapy
- Some relevant radiobiological effects/mechanisms only recently explored
- Physics paramaters of the irradiation can be used to model the biological response to improve treatment outcome
- Advancements in radiotherapy require a interdisciplinary approach

Thank you for your attention

prezado@imnc.in2p3.fr