

Développements autour de l'imagerie proton à l'IPHC

<u>R. Rescigno</u>, C. Bopp, D. Brasse, C. Finck, Y. Karakaya, M. Rousseau et M. Vanstalle

Assemblée Générale du GDR MI2B, Marseille, 09-04-2015

Timeline

1

Analytical TPS

x-ray CT scan

Extrapolated information

☆ Relative Stopping Power (RSP)
 ☆ Nuclear Interaction Cross Section (NICS)
 ☆ Scattering Power

Clinical Application

Analytical TPS

x-ray CT scan

Extrapolated information

☆ Relative Stopping Power (RSP)
 ☆ Nuclear Interaction Cross Section (NICS)
 ☆ Scattering Power

Clinical Application

Proton Computed Tomography (pCT)

Ongoing research

Analytical TPS

x-ray CT scan

☆ Relative Stopping Power (RSP)
 ☆ Nuclear Interaction Cross Section (NICS)
 ☆ Scattering Power

Clinical Application

Proton Computed Tomography (pCT)

Ongoing research

From residual energy measurements

Analytical TPS

x-ray CT scan

Extrapolated information → Relative Stopping Power (RSP) → Nuclear Interaction Cross Section (NICS) → Scattering Power

Clinical Application

Proton Computed Tomography (pCT)

Ongoing research

From residual energy measurements

Is it possible to extract quantitative information about NICS using transmission rate measurments?

Transmission Rate Imaging

Cécile Bopp

like in X-ray imaging

$$-\int \kappa(x,y,z,E) d\ell$$

$$\Phi = \Phi_0 e^{-\ell} \qquad \downarrow$$

Nuclear interactions macroscopic cross-section

Transverse slice of RSP head phantom

1: Right carcinoma RSP:1 (65% O)
 2: Left carcinoma RSP: 1 (35 % O)
 3: Brain and withe matter RSP: 1.04
 4: Bone RSP: 1.48

Transmission Rate Imaging

Cécile Bopp

like in X-ray imaging $-\int \kappa(x,y,z,E) d\ell$ $\Phi = \Phi_0 e^{-\ell} \qquad \downarrow$

Nuclear interactions macroscopic cross-section

Data binned upstream tracker Analytical reconstruction (FBP) 1000 protons/mm² - 256 projections

Can distinguish bone soft-tissues air
Can not see the tumors

Transmission Rate Imaging

like in X-ray imaging $\kappa(x,y,z,E)d\ell$ $\Phi = \Phi_0 e$ Nuclear interactions macroscopic cross-section 0.002 reconstructed value expected value macroscopic cross section (1/mm) 0.0015

Cécile Bopp

Data binned upstream tracker Analytical reconstruction (FBP) 1000 protons/mm² - 256 projections

 Can distinguish bone soft-tissues air Can not see the tumors

Quantitative imaging from transmission rate

Muscle

Brain

Right

carcinoma

C. Bopp et al., Quant

0.001

0.0005

0

Bone

Left

carcinoma

Analytical TPS

x-ray CT scan

Extrapolated information

☆ Relative Stopping Power (RSP)
 ☆ Nuclear Interaction Cross Section (NICS)
 ☆ Scattering Power

Proton Computed Tomography (pCT)

Ongoing research

From **residual energy** measurements From **transmission rate** measurements

Analytical TPS

x-ray CT scan

Extrapolated information

☆ Relative Stopping Power (RSP)
 ☆ Nuclear Interaction Cross Section (NICS)
 ☆ Scattering Power

Proton Computed Tomography (pCT)

Ongoing research

From **residual energy** measurements From **transmission rate** measurements

Is it possible to extract **quantitative** information about **Scattering Power** using **angular spread** measurments?

Transverse slice of 1/X_s head phantom

From projections ART algorithm 1000 protons/mm² - 256 projections

Scattering Imaging

Reconstruction process still needs to be optimized

Can distingush the tumor from the brain

Cécile Bopp

Transverse slice of 1/Xs head phantom

From projections ART algorithm 1000 protons/mm² - 256 projections

Scattering Imaging

Reconstruction process still needs to be optimized

Can distingush the tumor from the brain

Transverse slice of 1/X_s head phantom

From projections ART algorithm 1000 protons/mm² - 256 projections

Quantitative imaging from scattering

Cécile Bopp

Regina Rescigno

Analytical TPS

x-ray CT scan

Extrapolated information

☆ Relative Stopping Power (RSP)
 ☆ Nuclear Interaction Cross Section (NICS)
 ☆ Scattering Power

Proton Computed Tomography (pCT)

Ongoing research

From **residual energy** measurements From **transmission rate** measurements From **angular spread** measurements Regina Rescigno

Analytical TPS

x-ray CT scan

Extrapolated information

☆ Relative Stopping Power (RSP)
 ☆ Nuclear Interaction Cross Section (NICS)
 ☆ Scattering Power

Proton Computed Tomography (pCT)

Ongoing research

From residual energy measurements From transmission rate measurements From angular spread measurements

Why is there no pCT scanner in clinical routine

Regina Rescigno

For each proton, measurement of:

☆ Initial and final positions and directions☆ Final energy

Requirements:

 $\approx ~ 100 \text{ protons/voxels}$ $\approx ~ 5-10 \text{ min acquisition time}$

Mean data rate to sustain ~ 1-2 MHz

Regina Rescigno

For each proton, measurement of:

☆ Initial and final positions and directions☆ Final energy

Requirements:

☆ ~ 100 protons/voxels
 ☆ ~ 5-10 min acquisition time

Mean data rate to sustain ~ 1-2 MHz

What about time structure of the beam?

Regina Rescigno

For each proton, measurement of:

☆ Initial and final positions and directions☆ Final energy

Requirements:

 $\approx ~ 100 \text{ protons/voxels}$ $\approx ~ 5-10 \text{ min acquisition time}$

Mean data rate to sustain ~ 1-2 MHz

Regina Rescigno

For each proton, measurement of:

 \propto Initial and final positions and directions \cong Final energy

Requirements:

 \approx ~ 100 protons/voxels $\Rightarrow \sim 5-10$ min acquisition time

Mean data rate to sustain ~ 1-2 MHz

Protons are sent **one** by **one**

Regina Rescigno

¢

Unknown RSP

Protons are sent **one** by **one**

Regina Rescigno

Calorimeter or range-meter

Bethe and Bloch formula

Regina Rescigno

Reconst	ruction problem
WEPL	Unknown RSP
$\int^{E_{out}} dE$	$=\int \overline{\rho(\vec{r})} dl$
$\int_{E_{in}} S_{water}(I_w, E)$	
Bethe and Bloch formula	Proton path

Regina Rescigno

Protons are sent **bunch** by **bunch**

Unknown RSP

Unknown RSP

Proton path

WEPL

Bethe and Bloch

formula

dE

 $S_{water}(I_w, \overline{E})$

 E_{out}

 E_{in}

Regina Rescigno

Protons are sent **bunch** by **bunch**

Range-meter

Bethe and Bloch formula

Regina Rescigno

Pencil Beam (PB) approach to pCT

* Propagation of the beam in matter described by the Fermi-Eyges theory Probability map of the beam passage in a volume

Mean Beam Path

Pencil Beam (PB) approach to pCT

- * Analytical description of the beam
- Propagation of the beam in matter described by the Fermi-Eyges theory

PB approach philosophy

- * Each beam seen as a "super-proton"
- * Probability map used to estimate the "beam position"
- * Analytical or iterative algorithm can be used to reconstruct the image

Mean Beam Path

Probability map of the beam

passage in a volume

Regina Rescigno

Classical vs. PB

Classical approach

Beam characteristics

- Rectangular beam of 1 x 1 mm²
- Beam spacing: 1 mm
- N particles/beam: 500

Reconstruction parameters

- 500 protons/mm²
- * 256 projections over Pi

Arbitrarily chosen! Optimization ongoing

PB approach

R.Rescigno et al, Pencil Beam approach to proton computed tomography, accepted Medical Physics 2015

Classical vs. PB

Regina Rescigno

R.Rescigno et al, IEEE NSS/MIC 2015

PB approach - what is needed?

PB approach - what is needed?

Protons are sent **bunch** by **bunch**

Range-meter

Which detector for tracker planes?

Which detector for residual range measurement?

PB approach - what is needed?

Protons are sent **bunch** by **bunch**

Yusuf Karakaya

Which detector for tracker planes?

Which detector for residual range measurement?

To a **pCT tracker** used in integration mode

Mirror

PB approach - what is needed?

Protons are sent **bunch** by **bunch**

Yusuf Karakaya

Which detector for tracker planes?

Which detector for residual range measurement?

To a **pCT tracker** used in integration mode

Mirror

Fiber

Scintillator plate

Monte Carlo simulations

GEANT4 simulation platform

Yusuf Karakaya

Monte Carlo simulations

GEANT4 simulation platform

Optimization criteria

Minimization of:

Yusuf Karakaya

- Resolution on mean beam position
- Resolution on beam spread

Investigated parameters

- Scintillator material and dimension
- Different fibers (types, shapes and dimensions)
- Inter-fiber spacing
- Transversal fiber position in bulk
- Mirror/no mirror impact
- Cover scintillator material

Optical distribution

Photons number

Optimization example

- Yusuf Karakaya
 - Bulk material: Plastic
 - Thickness: 3 mm
 - Fiber type and dimension: Circular WLS 1 mm
- Gaussian beam
- Spread: 3 mm
- # of particles: 500
- Energy: 200 MeV

Observable: Inter-fiber spacing

Optimization example

- Bulk material: Plastic
- Thickness: 3 mm
- Fiber type and dimension: Circular WLS 1 mm
- Gaussian beam
- Spread: 3 mm
- # of particles: 500
- Energy: 200 MeV

Observable: Inter-fiber spacing

Retained parameters

- Bulk material: Plastic
- Dimension: 200 x 200 x 3 mm
- Fiber type and dimension: Circular WLS 1mm
- Inter-fiber spacing: 5 mm
- With mirror
- Absorbing cover material

Detector performances

Linear correlation between beam and optical spread

Field of view reduced (20 %) because of edge effect

Detector performances

Linear correlation between beam and optical spread

Field of view reduced (20 %) because of edge effect

Resolution on beam position ~ 0.2 mm Resolution on beam spread ~ 0.4 mm

Resolution on beam position ~ 0.2 mm Resolution on beam spread ~ 0.4 mm

Perspectives

Publications, communications and funding

- * C. Bopp, Proton Computed tomography for multiple physics processes, PMB 2013
- C.Bopp, <u>The impact of tracking system properties on the most likely path estimation in proton CT</u>, PMB 2014
- * C. Bopp, <u>Quantitative proton imaging from multiple physics processes</u>, PMB 2015
- * R.Rescigno, Pencil Beam approach to proton computed tomography, accepted Medical Physics 2015

- * IEEE NSS/MIC, Workshop on new technologies in hadron therapy, Anaheim, 2012
- IEEE NSS/MIC, Proton computed tomography: beyond the stopping power, 2014
- * SFP, Développement d'un scanner pour l'imagerie proton, 2015
- * IEEE NSS/MIC, Pencil Beam approach to proton computed tomography: a performance study, 2015

- Physique cancer INCa (ProTom 2012/2013)
- IdEx Stasbourg (2013-2015)