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Ongoing 
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Proton Computed Tomography (pCT)

Calorimeter or 
range-meter

Tracker planes

From residual energy measurements

Analytical TPS

Is it possible to extract quantitative 
information about NICS using 

transmission rate measurments?
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Transmission Rate Imaging
Transverse slice of RSP head phantom

1: Right carcinoma RSP:1 (65% O)
2: Left carcinoma RSP: 1 (35 % O)
3: Brain and withe matter RSP: 1.04
4: Bone RSP: 1.48

 Φ = Φ0e
− κ (x,y,z,E )d 

∫

like in X-ray imaging

Nuclear interactions macroscopic 
cross-section
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C. Bopp et al., Quantitative proton imaging from multiple physics processes, PMB 2015



Transmission Rate Imaging

Data binned upstream tracker
Analytical reconstruction (FBP)
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Transmission Rate Imaging
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Nuclear interactions macroscopic 
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Data binned upstream tracker
Analytical reconstruction (FBP)

Quantitative imaging from transmission rate

✤ Can distinguish bone soft-tissues air
✤ Can not see the tumors

1000 protons/mm2 - 256 projections
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Analytical TPS

From residual energy measurements

Is it possible to extract quantitative 
information about Scattering Power 
using angular spread measurments?
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Scattering Imaging

Transverse slice of 1/Xs head phantom

From projections
ART algorithm

Reconstructed 
quantity
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Measured 
angular spread

Energy dependent term

Reconstruction is in two steps

✤ RSP image reconstruction
✤ Scattering Length reconstruction
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C. Bopp et al., Quantitative proton imaging from multiple physics processes, PMB 2015

1000 protons/mm2 - 256 projections



Scattering Imaging

Transverse slice of 1/Xs head phantom

From projections
ART algorithm

✤ Reconstruction process still needs to be optimized
✤ Can distingush the tumor from the brain 
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Scattering Imaging

Transverse slice of 1/Xs head phantom

From projections
ART algorithm

✤ Reconstruction process still needs to be optimized
✤ Can distingush the tumor from the brain 
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Quantitative imaging from scattering

1000 protons/mm2 - 256 projections
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Analytical TPS

There is information in scattering and transmission rate of 
protons. 

✤ Used to reconstruct images, qualitative and quantitative
✤ Could be of use in analytical treatment planning
✤ Not enough to fully characterize the composition of materials
✤ Can provide additional constraints for a conversion

Conclusions

Analytical TPS
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Ongoing 
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From transmission rate measurements
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Why is there no pCT scanner in 
clinical routine

Proton Computed Tomography (pCT)
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Tracker planes
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Regina Rescigno Classical approach to pCT

For each proton, measurement of:

Initial and final positions and directions
Final energy

Requirements:

~ 100 protons/voxels
~ 5-10 min acquisition time

Mean data rate to sustain ~  1-2 MHz 

Tracker planes

Calorimeter or 
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Protons are sent one by one
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Regina Rescigno Classical approach to pCT

For each proton, measurement of:

Initial and final positions and directions
Final energy

Requirements:

~ 100 protons/voxels
~ 5-10 min acquisition time

Mean data rate to sustain ~  1-2 MHz 

What about time 
structure of the beam?

Data rate to sustain 
~  200 MHz 

(during the bunch)

Tracker planes

Calorimeter or 
range-meter

Protons are sent one by one

1 ms

7 µs
Example: IBA S2C2
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Classical vs. “new” approach
Protons are sent one by one

dE
Swater (Iw ,E)Ein

Eout

∫ = ρ(r

)dl

l∫
Unknown RSP
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Regina Rescigno

✤ Analytical description of the beam 

✤ Propagation of the beam in matter 
described by the Fermi-Eyges theory

Probability map of the beam 
passage in a volume

Mean Beam Path
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Pencil Beam (PB) approach to pCTRegina Rescigno

Mean Beam Path

PB approach philosophy

✤ Each beam seen as a “super-proton”

✤ Probability map used to estimate the “beam position”

✤ Analytical or iterative algorithm can be used to reconstruct the image

Probability map of the beam 
passage in a volume

R.Rescigno et al, Pencil Beam approach to proton computed tomography, accepted Medical Physics 2015

✤ Analytical description of the beam 

✤ Propagation of the beam in matter 
described by the Fermi-Eyges theory
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Classical vs. PBRegina Rescigno
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✤ Rectangular beam of 1 x 1 mm2

✤ Beam spacing: 1 mm
✤ N particles/beam: 500

Beam characteristics

Arbitrarily chosen!
Optimization ongoing

R.Rescigno et al, Pencil Beam approach to proton computed tomography, accepted Medical Physics 2015

Classical approach

PB approach
✤ 500 protons/mm2

✤ 256 projections over Pi

Reconstruction parameters
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Classical
PB approach

Classical vs. PBRegina Rescigno

Classical approach

PB approach

R.Rescigno et al, IEEE NSS/MIC 2015

Classical
PB approach
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Classical vs. PB 

Classical

PB approach
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✤ Used to reconstruct images, qualitative and quantitative
✤ Could be of use in analytical treatment planning
✤ Not enough to fully characterize the composition of materials
✤ Can provide additional constraints for a conversion

Regina Rescigno

Conclusions

It is possible to use a “statistical” approach to pCT without 
neglecting MCS effects

✤ Mathematical formalism well defined
✤ Results very promising
✤ Optimization study is ongoing

R.Rescigno et al, IEEE NSS/MIC 2015



Protons are sent bunch by bunch

Tracker planes

Physical observables

Initial

Final

✤ Mean beam position in x and y
✤ Angular and spatial spread of the beam 
✤ Intensity of the beam 
✤ Mean energy

PB approach - what is needed?Yusuf Karakaya

13

Range-meter

✤ Residual range
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Protons are sent bunch by bunch

Tracker planes

PB approach - what is needed?Yusuf Karakaya

From OPERA

To a pCT tracker used in integration mode

Photo-detector Mirror

Fiber

Scintillator plate

Which detector for tracker 
planes?

Which characteristics?

Range-meter

Which detector for residual 
range measurement?
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GEANT4 simulation platform
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Range-meter

Phantom

Trackers

Photons number

Monte Carlo simulationsYusuf Karakaya

GEANT4 simulation platform
✤ Scintillator material and dimension
✤ Different fibers (types, shapes and dimensions) 
✤ Inter-fiber spacing
✤ Transversal fiber position in bulk
✤ Mirror/no mirror impact
✤ Cover scintillator material

Investigated parameters

Optimization criteria

✤ Resolution on mean beam position
✤ Resolution on beam spread

Minimization of:
Po

si
tio

n 
(m

m
)

Photons number

Optical distribution
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Optimization exampleYusuf Karakaya

Observable: Inter-fiber spacing 

✤ Bulk material: Plastic
✤ Thickness: 3 mm
✤ Fiber type and dimension: Circular WLS - 1 mm 

✤ Gaussian beam
✤ Spread: 3 mm
✤ # of particles: 500
✤ Energy: 200 MeV
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Observable: Inter-fiber spacing 
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Observable: Inter-fiber spacing 

Resolution on mean position

Inter-fiber spacing (mm) Inter-fiber spacing (mm)5 mm 5 mm

0.
15

 m
m

✤ Bulk material: Plastic
✤ Dimension: 200 x 200 x 3 mm
✤ Fiber type and dimension: Circular WLS - 1mm 

✤ Inter-fiber spacing: 5 mm
✤ With mirror
✤ Absorbing cover material

Retained parameters
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Detector performances Yusuf Karakaya

R
ec

on
st

ru
ct

ed
 o

pt
ic

al
 sp

re
ad

 (m
m

)

Simulated beam spread (mm)

Linear correlation between 
beam and optical spread

Simulated beam position (mm)

R
ec

on
st

ru
ct

ed
 o

pt
ic

al
 sp

re
ad

 (m
m

)

Simulated beam spread = 3 mm
Reconstructed optical spread  = 4.6 mm

Field of view reduced (20 %) 
because of edge effect
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Resolution on beam position ~ 0.2 mm
Resolution on beam spread ~ 0.4 mm
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[ ... ]

Clinical beam 

Resolution on beam position ~ 0.2 mm
Resolution on beam spread ~ 0.4 mm

Conclusions

✤ Detector parameters optimized by MC
✤ Good resolution on physical observables (beam position and spread)
✤ Range-meter study is ongoing

Yusuf Karakaya

Tracker detector for pCT scanner using PB approach defined



Perspectives

2015 2016 2017 2018

Reconstruction study finalization

Range-meter parameters 
optimization

MC validation of the whole setup
Building and test of a detector module

Building a prototype
Test on beamline (IPHC, Nantes, Nice, Orsay)

Participation @ Proton Beam Line project
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