Développements autour de l'imagerie proton à l'IPHC

R. Rescigno, C. Bopp, D. Brasse, C. Finck, Y. Karakaya, M. Rousseau et M. Vanstalle

Timeline

2011	2012	2013	2014	2015	2016	2017

Cécile Bopp (Ph.D)

Beyond the stopping power

Regina Rescigno (Post-Doc)
A new approach to pCT

Yusuf Karakaya (Ph.D)
Instrumental developments in the pCT framework

cécile Bopp Analytical TPS

x-ray CT scan

Cécile Bopp Analytical TPS

x-ray CT scan

Ongoing research

Analytical TPS

x-ray CT scan

Ongoing research

From residual energy measurements

Tracker planes

Analytical TPS

x-ray CT scan

Extrapolated

 information

Relative Stopping Power (RSP) i Nuclear Interaction Cross Section (NICS)
\approx Scattering Power

Clinical
Application

Ongoing research

From residual energy measurements

Is it possible to extract quantitative information about NICS using transmission rate measurments?

Transmission Rate Imaging

like in X-ray imaging
$\Phi=\Phi_{0} e^{-\int_{\ell}^{\kappa(x, y, z, E)} d \ell}$
Nuclear interactions macroscopic cross-section

Transverse slice of RSP head phantom

1: Right carcinoma RSP:1 (65% O)
2: Left carcinoma RSP: 1 (35% O)
3: Brain and withe matter RSP: 1.04
4: Bone RSP: 1.48

Cécile Bopp

Transmission Rate Imaging

like in X-ray imaging

$$
\Phi=\Phi_{0} e^{-\int_{\ell}^{\kappa(x, y, z, E)} d \ell}
$$

Nuclear interactions macroscopic cross-section

Data binned upstream tracker Analytical reconstruction (FBP) 1000 protons $/ \mathrm{mm}^{2}-256$ projections

* Can distinguish bone soft-tissues air
* Can not see the tumors

Transmission Rate Imaging

like in X-ray imaging

$$
-\int \kappa(x, y, z, E) d \ell
$$

$\Phi=\Phi_{0} e^{\ell}$
Nuclear interactions macroscopic cross-section

Data binned upstream tracker Analytical reconstruction (FBP) 1000 protons $/ \mathrm{mm}^{2}-256$ projections

* Can distinguish bone soft-tissues air
* Can not see the tumors

Analytical TPS

x-ray CT scan

From residual energy measurements
From transmission rate measurements

Ongoing research

Analytical TPS

x-ray CT scan

 information

Relative Stopping Power (RSP) i Nuclear Interaction Cross Section (NICS) ~Scattering Power

Clinical
Application

Ongoing research

From residual energy measurements From transmission rate measurements

Is it possible to extract quantitative information about Scattering Power using angular spread measurments?

Scattering Imaging

Transverse slice of $1 / X_{s}$ head phantom

From projections
ART algorithm
1000 protons $/ \mathrm{mm}^{2}$ - 256 projections

Scattering Imaging

* Reconstruction process still needs to be optimized
* Can distingush the tumor from the brain

Transverse slice of $1 / X_{s}$ head phantom

From projections
ART algorithm
1000 protons $/ \mathrm{mm}^{2}$ - 256 projections

Scattering Imaging

* Reconstruction process still needs to be optimized
* Can distingush the tumor from the brain

Transverse slice of $1 / X_{\text {s }}$ head phantom

From projections ART algorithm
1000 protons $/ \mathrm{mm}^{2}-256$ projections

Conclusions

There is information in scattering and transmission rate of protons.

* Used to reconstruct images, qualitative and quantitative
* Could be of use in analytical treatment planning
* Not enough to fully characterize the composition of materials
* Can provide additional constraints for a conversion

Relative Stopping Power

Analytical TPS

x-ray CT scan

From residual energy measurements From transmission rate measurements
From angular spread measurements

Ongoing research

Calorimeter or
range-meter

Analytical TPS

x-ray CT scan

R Relative Stopping Power (RSP)
it Nuclear Interaction Cross Section (NICS)
is Scattering Power

From residual energy measurements
From transmission rate measurements
From angular spread measurements

Why is there no pCT scanner in clinical routine

Ongoing research

Calorimeter or
range-meter

Classical approach to pCT

Protons are sent one by one

For each proton, measurement of:
Initial and final positions and directions \approx Final energy

Requirements:
~ ~ 100 protons/voxels
~ ~ 5-10 min acquisition time

Mean data rate to sustain ~ 1-2 MHz

Protons are sent one by one

Classical approach to pCT

For each proton, measurement of:
Tinitial and final positions and directions ~Final energy

Requirements:
~ 100 protons/voxels
~ ~ 5-10 min acquisition time

Mean data rate to sustain $\sim 1-2 \mathrm{MHz}$

What about time structure of the beam?

Classical approach to pCT

For each proton, measurement of:
Initial and final positions and directions \approx Final energy

Requirements:
i ~ 100 protons/voxels
~ ~ 5-10 min acquisition time

Mean data rate to sustain ~ 1-2 MHz

Example: IBA S2C2

Classical approach to pCT

For each proton, measurement of:
Initial and final positions and directions
\sim Final energy
Requirements:
~ 100 protons/voxels
~ ~ 5-10 min acquisition time

Mean data rate to sustain $\sim 1-2 \mathrm{MHz}$

Example: IBA S2C2

What about time structure of the beam?

Calorimeter or range-meter

Data rate to sustain
~ 200 MHz
(during the bunch)

Classical vs. "new" approach

Protons are sent one by one
$\xrightarrow{\vec{\Longrightarrow}}$

Unknown RSP
$\hat{\rho(\vec{r})}$

Regina Rescigno
 Classical vs. "new" approach

Protons are sent one by one

WEPL

Bethe and Bloch

formula

Regina Rescigno

Classical vs. "new" approach

Protons are sent one by one

Reconstruction problem

Regina Rescigno

Classical vs. "new" approach

Protons are sent one by one
Calorimeter or range-meter

Reconstruction problem

Protons are sent bunch by bunch

Unknown RSP
$\rho(\vec{r})$

Bethe and Bloch

Classical vs. "new" approach

Protons are sent one by one
Calorimeter or range-meter

Protons are sent bunch by bunch
Range-meter

Classical vs. "new" approach

Protons are sent one by one
Calorimeter or range-meter

Protons are sent bunch by bunch
Range-meter

Tracker planes
Tracker planes
<WEPL>

Bethe and Bloch formula

Pencil Beam (PB) approach to pCT

*Analytical description of the beam

* Propagation of the beam in matter described by the Fermi-Eyges theory

Mean Beam Path
Probability map of the beam passage in a volume

Pencil Beam (PB) approach to pCT

*Analytical description of the beam

* Propagation of the beam in matter Mean Beam Path described by the Fermi-Eyges theory

Probability map of the beam passage in a volume

PB approach philosophy

*Each beam seen as a "super-proton"
*Probability map used to estimate the "beam position"

* Analytical or iterative algorithm can be used to reconstruct the image

Regina Rescigno

Classical vs. PB

Beam characteristics

* Rectangular beam of $1 \times 1 \mathrm{~mm}^{2}$
* Beam spacing: 1 mm
* N particles/beam: 500

Reconstruction parameters

- 500 protons $/ \mathrm{mm}^{2}$
* 256 projections over Pi

Arbitrarily chosen! Optimization ongoing

PB approach

Regina Rescigno

Classical vs. PB

Classical approach

Classical vs. PB

Classical approach

PB approach

Regina Rescigno

Classical vs. PB

Classical approach

PB approach

Regina Rescigno

Classical vs. PB

Conclusions

It is possible to use a "statistical" approach to pCT without neglecting MCS effects

* Mathematical formalism well defined
* Results very promising
* Optimization study is ongoing

Yusuf Karakaya

PB approach - what is needed?

Protons are sent bunch by bunch

Physical observables

* Mean beam position in x and y
* Angular and spatial spread of the beam
* Intensity of the beam
* Mean energy
* Residual range Final

Yusuf Karakaya

PB approach - what is needed?

Protons are sent bunch by bunch

Which detector for tracker planes?

Which detector for residual range measurement?

Yusuf Karakaya

PB approach - what is needed?

Protons are sent bunch by bunch

From OPERA

Which detector for tracker planes?

Which detector for residual range measurement?

To a pCT tracker used in integration mode

Yusuf Karakaya

PB approach - what is needed?

Protons are sent bunch by bunch

Range-meter

Which detector for tracker planes?

Which detector for residual range measurement?

To a pCT tracker used in integration mode

Monte Carlo simulations

GEANT4 simulation platform

Phantom

Range-meter

Optimization criteria
Minimization of:

* Resolution on mean beam position
* Resolution on beam spread

Investigated parameters

* Scintillator material and dimension
* Different fibers (types, shapes and dimensions)
* Inter-fiber spacing
* Transversal fiber position in bulk
* Mirror/no mirror impact
* Cover scintillator material

Optical distribution

Yusuf Karakaya Optimization example

* Bulk material: Plastic
* Thickness: 3 mm
* Fiber type and dimension: Circular WLS - 1 mm
* Gaussian beam
* Spread: 3 mm
* \# of particles: 500
* Energy: 200 MeV

Observable: Inter-fiber spacing

Yusuf Karakaya
 Optimization example

* Bulk material: Plastic
* Thickness: 3 mm
* Fiber type and dimension: Circular WLS - 1 mm
* Gaussian beam
* Spread: 3 mm
* \# of particles: 500
* Energy: 200 MeV

Observable: Inter-fiber spacing

Yusuf Karakaya
 Retained parameters

* Bulk material: Plastic
* Dimension: $\mathbf{2 0 0 \times 2 0 0 \times 3} \mathbf{~ m m}$
* Fiber type and dimension: Circular WLS - 1mm
* Inter-fiber spacing: 5 mm
* With mirror
* Absorbing cover material

Observable: Inter-fiber spacing

Resolution on mean position

Yusuf Karakaya
 Detector performances

Linear correlation between
beam and optical spread

Field of view reduced (20 \%) because of edge effect

Yusuf Karakaya

Detector performances

Linear correlation between beam and optical spread

Field of view reduced (20 \%) because of edge effect

Resolution on beam position $\sim 0.2 \mathrm{~mm}$ Resolution on beam spread $\sim 0.4 \mathrm{~mm}$

Yusuf Karakaya
 Detector performances

Conclusions

Tracker detector for PCT scanner using PB approach defined

* Detector parameters optimized by MC
* Good resolution on physical observables (beam position and spread)
* Range-meter study is ongoing

Perspectives

MC validation of the whole setup
Building and test of a detector module

Building a prototype
Test on beamline (IPHC, Nantes, Nice, Orsay)
Participation @ Proton Beam Line project

Publications, communications and funding

* C. Bopp, Proton Computed tomography for multiple physics processes, PMB 2013
* C.Bopp, The impact of tracking system properties on the most likely path estimation in proton CT, PMB 2014
* C. Bopp, Quantitative proton imaging from multiple physics processes, PMB 2015
* R.Rescigno, Pencil Beam approach to proton computed tomography, accepted Medical Physics 2015
* IEEE NSS/MIC, Workshop on new technologies in hadron therapy, Anaheim, 2012
* IEEE NSS/MIC, Proton computed tomography: beyond the stopping power, 2014
* SFP, Développement d'un scanner pour l'imagerie proton, 2015
* IEEE NSS/MIC, Pencil Beam approach to proton computed tomography: a performance study, 2015
* Physique cancer INCa (ProTom - 2012/2013)
* IdEx Stasbourg (2013-2015)

