

B decays into lepton pairs (lepton = tau/muon)

Julien Cogan, Giampiero Mancinelli, Justine Serrano
Centre de Physique des Particules de Marseille
Aoife Bharucha, Jérôme Charles
Centre de Physique Théorique

The current status

τ leptons offer a unique window to new observables and phenomena:

The comparison of a transition with τ leptons with its counterpart with muons or electrons allows stringent tests of lepton flavour universality (LFU) of SM

Number of hints that LFU is broken:

 $R(K)=BR(B_d \rightarrow K\mu\mu)/BR(B_d \rightarrow Kee)=0.745+0.090-0.074+/-0.036$ by LHCb

Anomalies in angular distribution of $B \rightarrow K^*\mu\mu$ (P'₅) by LHCb

Ratio of experimental to theoretical $\text{B}_{\text{\tiny S}}\!\to\!\mu\mu$

If this indicates new physics in the lepton sector, effects might be largest for τ leptons

According to Glashow, Guadagnoli and Lane (1411.0565), non-LFU clear indicator of lepton flavour violation (LFV) \rightarrow necessary to measure B to K*II' and B_s to II'

[However, this is disputed by Grinstein et al (1505.05164)]

Therefore necessary to measure ALL relevant lepton final states in these channels

Doctoral position demand

Experimental side a continuation of Alessandro's work $(3\pi 3\pi)$:

Only measurement: BABAR hep-ex/0511015 - BR(B_d $\to \tau^+\tau^-$)<4.1x 10⁻³ @ 90% CL

LHCb reach with 3fb⁻¹ ~10⁻³ (maybe better)

- τ : extend it to 3π μ final state, topological vertexing
- $-\mu$ μ : time dependent analysis
- [depending on available manpower we could adjust the experimental goal, e.g. LFV]

Phenomenological side:

For LFV B decays few upper limits exist.

BR(B_d \rightarrow K e(μ) τ)<3.0(4.8) 10⁻⁵

BR(B_d $\rightarrow \pi e(\mu) \tau$)<2.0(7.2) 10⁻⁵

BR(B_d $\rightarrow \mu\tau$)<2.2 10⁻⁵

- B to τ μ : Study motivation for measurement.

Classification of models in terms of LFU breaking and LFV signatures.

Study interplay between LFV B decays and with other channels, e.g. Higgs decays

The collaboration

Collaborative aspects of the project are numerous and already proven.

Already collaborating with the co-direction of Alessandro Mordà's OCEVU PhD thesis - 3rd year - (Jérôme & Giampiero) and with Andrey Tayduganov.

Many of the best variables used in Alessandro's BDT come from interaction with CPT.

The **skills** of the two involved teams are **complementary**

CPPM:

expertise on the measurement of rare decays at CPPM (first evidence for $B_s \rightarrow \mu\mu$ branching ratio, observation just published in Nature, and angular analysis of the $B \rightarrow K^*\mu\mu$ decay) – unique skills, isolations algos, MVAs, zvtop...

CPT

expertise on phenomenological data interpretation at CPT (the first basis for the theoretical calculation of heavy-to-light decays + rebuilding of the CKMfitter software)

Recent manpower: Kristof de Bruyn (CPPM, ANR 2 ans), Aoife Bharucha (CPT)

Masse critique necessary – as in $B_s \to \mu\mu$ (5 out of 18 principal authors from CPPM) Other LHCb groups interested, Cagliari, LPHNE (+Imperial) \to **visibility CPPM/CPT**