FCNC in $t\bar{t} \rightarrow bWcH(\gamma\gamma)$

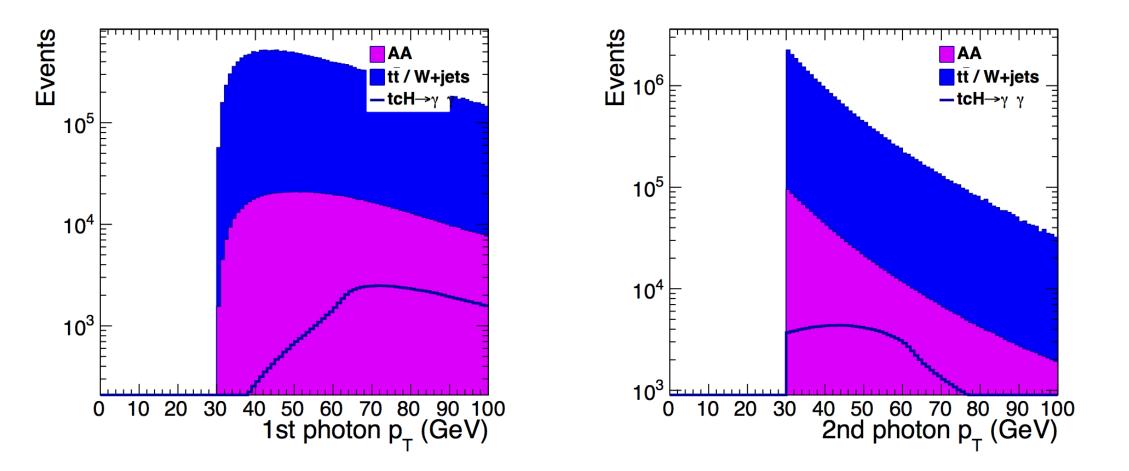
Tae Jeong Kim Chonbuk National University 13/05/2015

Motivation

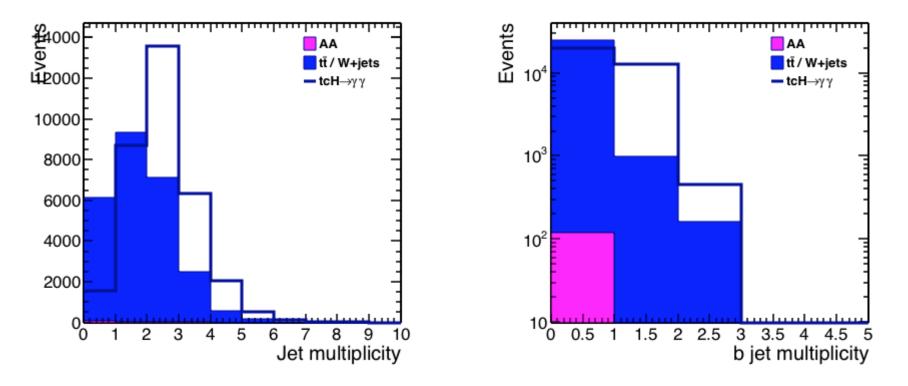
- Thanks to the Ecal resolution in CMS detector, having two photons can give us a very clean signature in the mass distribution.
- Can reduce the SM backgrounds with two high p_T photons.
- Requiring one lepton can also reduce the QCD $\gamma\gamma$ process significantly.
- As the signal signature can be distinguished from the background relatively easily, simple cut and count method was used.

Samples

Table 1: Cross sections at LO. The branching ratio of W boson decaying to a lepton $B(W \to l\nu)$ is 10.80%. The branching ratio of Higgs decaying to $\gamma\gamma B(H \to \gamma\gamma)$ is 0.228 %. The best limit of $t \to cH$ coupling is 0.56%.

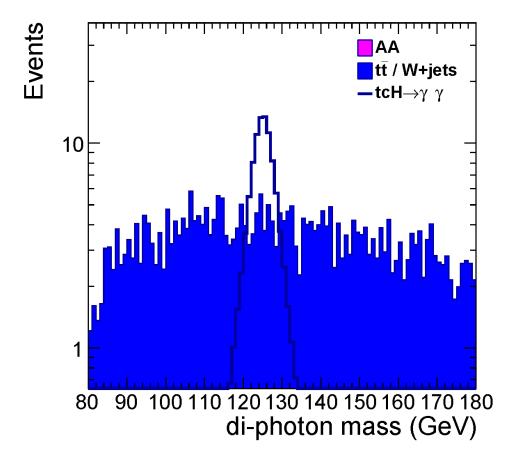

Selection	Cross sections at $13 \text{ TeV} \text{ (pb)}$	Number of events	Effective luminosity (fb^{-1})
$t \to cH(\gamma\gamma)$	$2*674*0.0056*B(H \rightarrow \gamma\gamma)$	9.078573e + 06	527478.574
$t\bar{t}$ dilepton	$674^*B(W \to l\nu)^*3^*B(W \to l\nu)^*3$	4.24e + 06	59.926
$t\bar{t}$ semilepton	$674^*B(W \to l\nu)^*3^*(1-B(W \to l\nu)^*3)^*2$	$1.5979886e{+}07$	54.124
$W(l\nu)+1$ jet	$177300^*B(W \to l\nu)^*3^*0.12155$	2.8231215e+07	4.043
$W(l\nu)$ +2 jets	$177300^*B(W \to l\nu)^*3^*0.03358$	1.7403439e + 07	9.021
$W(l\nu)$ +3 jets	$177300^*B(W \to l\nu)^*3^*0.0861$	1.4436939e + 07	2.918
$\gamma\gamma$ +1 jet	203*0.25410	1.384272e + 07	268.361
$\gamma\gamma$ +2 jets	203*0.12885	4.379504e + 06	167.434
$\gamma\gamma$ +3 jets	203*0.06170	6.33577e + 06	505.845

- Signal signature : $t\bar{t} \rightarrow bWcH(\gamma\gamma)$ in the leptonic decay mode.
 - Two photons from the Higgs
 - One lepton from W boson and one b-jet in top decay.
- Main backgrounds
 - $t\overline{t}$ and W + jets

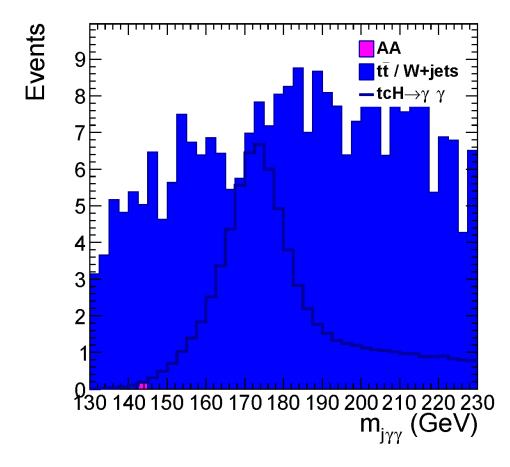

Event selections

- Two photons (S1)
 - p_T > 60 GeV, $|\eta|$ < 2.5
 - p_T > 30 GeV, $|\eta|$ < 2.5
 - Having asymmetry thresholds are motivated by the boosted Higgs.
 - Must be isolated with relative isolation < 0.01 which is around 90% efficiency.
- Exclusive one lepton (S2)
 - p_T > 20 GeV, $|\eta|$ < 2.5 and relative isolation < 0.1
- At least two jets (S3)
 - $p_T > 30 \text{ GeV}$, $|\eta| < 2.5$, EEoverHE > 0.3
- Exactly one b-jets with the tight working point, CSVT (S4)
- 163 GeV < $m_{j\gamma\gamma}$ < 173 GeV (S5)

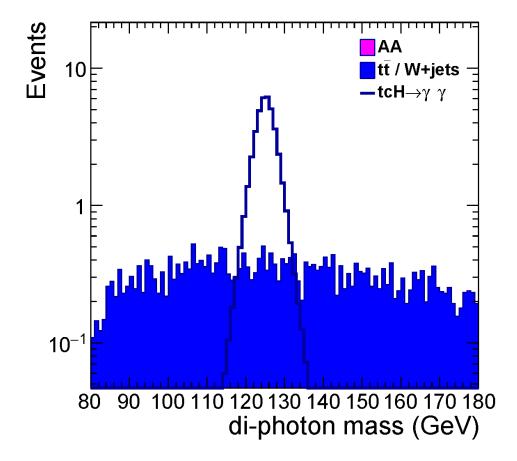
Plots (preselection)



Plots (S2 : two photons and one lepton)


- Required at least two jets.
- Further required only one b-jet to remove $t\bar{t}$ background.
 - Planning to revisit by requiring at least one b-jet.

Plots (S4 after b-jet requirement)


• The background shape is taken from the *tt* sample at the selection step 2 after two photon requirement.

Plots (S4 after b-jet requirement)

- Top mass is reconstructed with two photons and one jet taking into account all combinations of jets.
- Take the jet with the closest mass $m_{i\nu\nu}$ to the top quark mass.
- 163 < $m_{j\gamma\gamma}$ < 173 GeV

Plots (Final selection : $m_{j\gamma\gamma}$ requirement)

• The background shape is taken from the *tt* sample at the selection step 2 after two photon requirement.

Cut flow table

Selection	S1 $(\gamma\gamma)$	S2 (N _l \geq 1)	S3 (N _j \geq 2)	S4 (N _b = 1)	S5 $(m_{j\gamma\gamma})$
$t \to cH(\gamma\gamma)$	1124 (44%)	329~(13%)	226~(8.9~%)	99~(3.9%)	41.2~(1.6%)
$\gamma\gamma$ +jets	654068	123.9	21.4	1	0
$t\bar{t}$ dilepton	3701	1098	714	342	33.4
$t\bar{t}$ semilepton	5565	885	728	302	25.7
W+jets	193351	23771	8941	124	0
$S/\sqrt{S+B}$	1.2	2.0	2.2	3.4	4.1

- Main backgrounds are $t\bar{t}$ and W+jets.
- Diboson, $t\bar{t}H$, $t\bar{t} + H$, $t\bar{t} + \gamma\gamma$, $H \rightarrow \gamma\gamma$ are negligible so these backgrounds are not included.

Result

• The significance taking into account only statistical uncertainty after the final selection with data corresponding to an integrated luminosity of 100 fb^{-1}

$$\frac{S}{\sqrt{S+B}} = 4.1$$

• Since the remaining background is mostly $t\bar{t}$ process, conservatively if we take the systematic uncertainty of 10% for $t\bar{t}$ process based on the Run I measurement.

$$\frac{S}{\sqrt{S+B+(B\times0.1)^2}} = 3.5$$