
Docker - CI
Ecole IN2P3, 2015/10/01

Sebastien Binet
CNRS/IN2P3

Docker origins

The container revolution

Before 1960, cargo transport looked like:

MxN combinatorics: matrix from Hell

Solution: Intermodal shipping container

Containers - analysis

enables seamless shipping on roads, railways and sea (intermodal)

standardized dimensions

opaque box convenient for all types of goods (privacy)

What is Docker?

Application deployment

Note: a 3rd dimension (OS/platform) could be considered

Docker: an application container

Docker: no combinatorics no more

Docker

Docker is an open source project to pack ship and run any application as a
lightweight container: docker.io (http://www.docker.io)

Note: Although docker is primarily (ATM) Linux-oriented, it supports other
OSes (Windows+MacOSX) at the price of a thin Linux VM which is automatically
installed (and managed) on these systems.
See docker installation (https://docs.docker.com/installation/)

http://www.docker.io/
https://docs.docker.com/installation/

Docker

Docker is an open source project to pack ship and run any application as a
lightweight container: docker.io (http://www.docker.io)

High-level description:

kind of like a lightweight VM

runs in its own process space

has its own network interface

can run stuff as root

Low-level description:

chroot on steroids

container == isolated process(es)

share kernel with host

http://www.docker.io/

no device emulation

Docker: why?

same use cases than for VMs (for Linux centric workloads)

speed: boots in (milli)seconds

footprint: 100-1000 containers on a single machine/laptop, small disk
requirements

Docker: why?

Efficiency: almost no overhead

processes are isolated but run straight on the host

CPU performance = native performance

memory performance = a few % shaved off for (optional) accounting

network performance = small overhead

Docker: why?

Efficiency: storage friendly

unioning filesystems

snapshotting filesystems

copy-on-write

Docker: why?

provisionning takes a few milliseconds

... and a few kilobytes

creating a new container/base-image takes a few seconds

Why are Docker containers lightweight?

Separation of concerns

Tailored for the dev team:

my code

my framework

my libraries

my system dependencies

my packaging system

my distro

my data

Don't care where it's running or how.

Separation of concerns

Tailored for the ops team:

logs

backups

remote access

monitoring

uptime

Don't care what's running in it.

Docker: blueprint

Docker: blueprint

Build, ship and run any application, anywhere.

Docker uses a client/server architecture:

the docker client talks to

a docker daemon via sockets or a RESTful API.

Docker: basics of the system

Docker: the CLI

The docker client ships with many a subcommand:

$ docker help
Usage: docker [OPTIONS] COMMAND [arg...]
 docker daemon [--help | ...]
 docker [-h | --help | -v | --version]

A self-sufficient runtime for containers.

[...]

Commands:
 attach Attach to a running container
 build Build an image from a Dockerfile
 commit Create a new image from a container's changes
 cp Copy files/folders from a container to a HOSTDIR or to STDOUT
 images List images
 import Import the contents from a tarball to create a filesystem image
 info Display system-wide information
[...]

Docker: the CLI

$ docker version
Client:
 Version: 1.8.1
 API version: 1.20
 Go version: go1.4.2
 Git commit: d12ea79
 Built: Sat Aug 15 17:29:10 UTC 2015
 OS/Arch: linux/amd64

Server:
 Version: 1.8.1
 API version: 1.20
 Go version: go1.4.2
 Git commit: d12ea79
 Built: Sat Aug 15 17:29:10 UTC 2015
 OS/Arch: linux/amd64

Interlude: docker configuration @CC.in2p3

Linux

Just use the default config.

MacOSX/Windows

Same thing, but on MacOSX and Windows, let's create a new Linux VM and call
it vm-ecole:

$ docker-machine create -d virtualbox \
 vm-ecole

$ eval $(docker-machine env vm-ecole) ## MacOSX
$ eval $(./docker-machine.exe env --shell=bash vm-ecole) ## Win

Hello World

Fetch a docker image from the docker registry:

$ docker pull busybox
Using default tag: latest
latest: Pulling from library/busybox
cf2616975b4a: Pull complete
6ce2e90b0bc7: Pull complete
8c2e06607696: Already exists
library/busybox:latest: The image you are pulling has been verified. Important: image verification is a tech preview feature and should not be relied on to provide security.
Digest: sha256:38a203e1986cf79639cfb9b2e1d6e773de84002feea2d4eb006b52004ee8502d
Status: Downloaded newer image for busybox:latest

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
busybox latest 8c2e06607696 4 months ago 2.43 MB

Now, run a command inside the image:

$ docker run busybox echo "Hello World"
Hello World

Docker basics

Run a container in detached mode:

$ docker run -d busybox sh -c \
 'while true; do echo "hello"; sleep 1; done;'

Retrieve the container id:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
321c1aa5bcd4 busybox "sh -c 'while true; d" 3 seconds ago Up 2 seconds

Attach to the running container:

$ docker attach 321c1aa5bcd4
hello
hello
[...]

Start/stop/restart container

$ docker stop 321c1aa5bcd4
$ docker restart 321c1aa5bcd4

Docker: public index (aka registry, aka the Hub)

Docker containers may be published and shared on a public registry, the Hub.

It is searchable:

$ docker search apache2
NAME STARS OFFICIAL AUTOMATED
rootlogin/apache2-symfony2 7 [OK]
reinblau/php-apache2 6 [OK]
tianon/apache2 4 [OK]
[...]
$ docker pull tianon/apache2

Run the image and check the ports

$ docker run -d -p 8080:80 tianon/apache2
$ docker ps
CONTAINER ID IMAGE COMMAND PORTS
49614161f5b7 tianon/apache2 "apache2 -DFOREGROUND" 0.0.0.0:8080->80/tcp

The registry is also available from the browser:

hub.docker.com (https://hub.docker.com)

https://hub.docker.com/

Docker: creating a customized image

run docker interactively:

$ docker run -it ubuntu bash
root@524ef6c2e4ce:/# apt-get install -y memcached
[...]
root@524ef6c2e4ce:/# exit

$ docker commit ̀docker ps -q -l̀ binet/memcached
4242210aba21641013b22198c7bdc00435b00850aaf9ae9cedc53ba75794891d

$ docker run -d -p 11211 -u daemon binet/memcached memcached
a84e18168f1473a338f9ea3473dd981bf5e3dc7e41511a1252f7bb216d875860

$ docker ps
CONTAINER ID IMAGE COMMAND PORTS
a84e18168f14 binet/memcached "memcached" 0.0.0:32768->11211/tcp

Docker: creating a customized image

interactive way is fine but not scalable

enter Dockerfiles

recipes to build an image

start FROM a base image

RUN commands on top of it

easy to learn, easy to use

Docker: Dockerfile

FROM ubuntu:14.04

RUN apt-get update
RUN apt-get install -y nginx
ENV MSG="Hi, I am in your container!"
RUN echo "$MSG" > /usr/share/nginx/html/index.html

CMD nginx -g "daemon off;"

EXPOSE 80

Docker: Dockerfile-II

run in the directory holding that Dockerfile

$ docker build -t <myname>/server .
$ docker run -d -P <myname>/server

retrieve the port number:

$ docker ps
34dc03cdbae8 binet/server "/bin/sh -c 'nginx -g" 0.0.0.0:32770->80/tcp

or:

$ docker inspect -f '{{.NetworkSettings.Ports}}' 34dc03cdbae8

and then:

$ curl localhost:32770
Hi, I am in your container!

Docker: Dockerfile-III

NOTE: for Windows(TM) and MacOSX(TM) users, a thin Linux VM is sitting
between your machine and the container.
The container is running inside that VM so you need to replace localhost with
the IP of that VM:

$ docker-machine ip vm-ecole
192.168.59.103

and then:

$ curl 192.168.59.103:32770
Hi, I am in your container!

docker build

takes a snapshot after each step

re-uses those snapshots in future builds

doesn't re-run slow steps when it isn't necessary (cache system)

Docker Hub

docker push an image to the Hub

docker pull an image from the Hub to any machine

This brings:

reliable deployment

consistency

images are self-contained, independent from host

if it works locally, it will work on the server

exact same behavior

regardless of versions, distros and dependencies

Docker for the developer

manage and control dependencies

if it works on my machine, it works on the cluster

reproducibility

small but durable recipes

Never again:

juggle with 3 different incompatible FORTRAN compilers

voodoo incantations to get that exotic library to link with IDL

figure out which version of LAPACK works with that code

... and what obscure flag coaxed it into compiling last time

Development workflow

Fetch code (git, mercurial, ...)

$ git clone git@gitlab.in2p3.fr:EcoleInfo2015/TP.git
$ cd TP

Edit code

Mount code inside a build container

Build+test inside that container

We'll test this workflow in the remainder of the hands-on session...

Create a base container

create a directory docker-web-base to hold the Dockerfile for the base
container

create the Dockerfile and choose your favorite Linux distro (say, centos) as a
base image,

install the needed dependencies for the web-app (maven on centos)

run:

$ docker build -t <myname>/web-base .

Create a base container - solution

(see next slide)

Create a base container - II

base environment w/ deps for the web-app
FROM centos:7
MAINTAINER binet@cern.ch

RUN yum update -y && \
 yum install -y maven

RUN mkdir -p /opt/in2p3/tp

change current directory
WORKDIR /opt/in2p3/tp

prepare for web server
EXPOSE 8080

Base container for development

One could create a new container with all the development tools (editor,
completion, ...)

But you'd need to carry over the configuration (ssh keys, editor, ...)

Probably easier to just mount the sources inside the base container:

$ docker run -it -v ̀pwd̀:/opt/in2p3/tp -p 8080:8080 <myname>/web-base bash
[root@48b2c74a5004 tp]# ./bin/compile.sh
[root@48b2c74a5004 tp]# java -jar /opt/in2p3/tp/target/webserver-1.0-SNAPSHOT-jar-with-dependencies.jar
2015-09-10 14:13:25.467:INFO::main: Logging initialized @623ms
2015-09-10 14:13:25.719:INFO:oejs.Server:main: jetty-9.3.z-SNAPSHOT
2015-09-10 14:13:25.918:INFO:oejsh.ContextHandler:main: Started o.e.j.s.ServletContextHandler@4645801a{/,null,AVAILABLE}
2015-09-10 14:13:25.933:INFO:oejs.ServerConnector:main: Started ServerConnector@62b60fbb{HTTP/1.1,[http/1.1]}{0.0.0.0:8080}
2015-09-10 14:13:25.934:INFO:oejs.Server:main: Started @1093ms

In another terminal:

$ curl localhost:8080
<h1>Bienvenue à l'école informatique IN2P3 2015</h1>
Analyse de données
session=1kdgwh0cue0efokpe5t1gcvtj

Base container for dev - II

On windows, the correct -v syntax is like:

$ docker run -it -v //c/Users/username/some/path:/opt/in2p3/tp ...

github.com/docker/docker/issues/12590#issuecomment-96767796
(https://github.com/docker/docker/issues/12590#issuecomment-96767796)

https://github.com/docker/docker/issues/12590#issuecomment-96767796

Create the final container

Now that we know the base image "works", we'll automatize the build part as yet
another Dockerfile:

create a new Dockerfile file (at the root of the git repository) based on the web-
base image, with the correct build+run instructions

make sure you can docker build it and tag it as web-app

make sure that you can still access the web server when you run:

$ docker run -d -p 8080:8080 <myname>/web-app

Hint: ADD

Hint: CMD

docs.docker.com/reference/builder/ (https://docs.docker.com/reference/builder/)

https://docs.docker.com/reference/builder/

Create the final container - solutions

(see next slide)

Create the final container - II

image for the web-app
FROM binet/web-base

MAINTAINER binet@cern.ch

add the whole git-repo
ADD . /opt/in2p3/tp

WORKDIR /opt/in2p3/tp
RUN ./bin/compile.sh

CMD java -jar /opt/in2p3/tp/target/webserver-1.0-SNAPSHOT-jar-with-dependencies.jar

Create the final container - III

CMD describes the command to be run by default when the container is started

ADD copies files, directories or URLs into the container's filesystem

VOLUME creates a volume mount point inside the container which can contain data
from the host or from other containers

USER defines the user (or UID) with whom to run the various commands inside the
container

Create multiple versions of an image

At times, it might be very useful to test 2 versions of an application and run
them concurrently (to debug discrepancies.)

Let's do just that.

tag the last web-app image as v1

$ docker tag \
 <myname>/web-app \
 <myname>/web-app:v1

modify
src/main/java/fr/in2p3/informatique/ecole2015/web/MyServlet.java to
print a different welcome message

containerize the new version as .../web-app:v2

Create multiple versions of an image - II

run the container v2 on port 8082

$ docker run -p 8082:8080 \
 --name=web-app-v2 \
 <myname>/web-app:v2

run the container v1 on port 8080

$ docker run -p 8080:8080 \
 --name=web-app-v1 \
 <myname>/web-app:v1

make sure the servers on ports 8080 and 8082 display the correct welcome
messages.

Continuous Integration

Modify the Jenkins build to:

build the final container

run the tests suite

push the result as a tagged image

Sharing images

Up to now, the images you've been creating have been put on your local registry.
But there is another registry instance available at:

cc-ecole2015-docker.in2p3.fr:5000

Let's try to package the previous web-app:v2 and web-app:v1 images and put
them on that new registry:

$ docker tag \
 <myname>/web-app \
 cc-ecole2015-docker.in2p3.fr:5000/<myname>/web-app

Now, try to pull the web-app image of your friend and run it.

Inspecting logs

docker is nice enough to let us inspect what (running) containers are generating as
logs.

For a single container, it is as simple as:

$ docker logs <some-container-id>
$ docker logs <some-container-name>

inspect the logs of your web-app-v2 container

insepct the logs of the container running your local registry

Inspecting logs - II

e.g.:

$ docker logs web-app-v2
{
 "timeMillis" : 1443615891663,
 "thread" : "main",
 "level" : "INFO",
 "loggerName" : "org.eclipse.jetty.server.Server",
 "message" : "Started @1343ms",
 "endOfBatch" : false,
 "loggerFqcn" : "org.eclipse.jetty.util.log.Slf4jLog",
 "contextMap" : []
}

$ docker logs ecole-registry
[...]
30/Sep/2015:12:20:13 +0000 DEBUG: args = {'tag': u'latest', 'namespace': u'binet', 'repository': u'web-app'}
30/Sep/2015:12:20:13 +0000 DEBUG: [get_tag] namespace=binet; repository=web-app; tag=latest
30/Sep/2015:12:20:13 +0000 DEBUG: api_error: Tag not found
172.17.42.1 - - [30/Sep/2015:12:20:13 +0000] "GET /v1/repositories/binet/web-app/tags/latest HTTP/1.1" 404 26 "-" "docker/1.8.2 go/go1.5.1 git-commit/0a8c2e3-dirty kernel/4.2.1-1-ARCH os/linux arch/amd64"

Inspecting logs - III

launch a container in interactive mode

start a bash shell

run inside that container:

docker> logger -i -s plop

in another terminal:

$ docker logs <container-id>

Creation of a build+target container pair

So far, we have been building containers where the intermediate results leading
to the final binary (or set of binaries) are left inside the image.

This might not be completely efficient if these intermediate steps are (disk)
resource heavy.

The usual solution is to have a 2-step process:

a container in which the binaries are built

a container in which the binaries are directly copied from the first

Let's do that.

Hint: docker export
Hint: docker import
Hint: docker cp

Creation of a build+target container pair

(solution on next slide)

Creation of a build+target container pair

Extract the root fs from the build image:

$ mkdir rootfs && cd rootfs
$ docker run -d -p 8080:8080 --name=web-app-v2 \
 localhost:5000/<myname>/web-app:v2
$ docker export web-app-v2 | tar xf -
$ ls opt/in2p3/tp
bin/ .git/ sonar-project.properties
doc/ .gitignore src/
Dockerfile pom.xml target/
docker-web-base/ README.md

Another way is to use docker cp:

$ docker cp web-app-v2:/opt/in2p3/tp tp

The binaries are under target.
If they were static libraries, you could just create a very slim container with
them, using docker import.

Running GUIs

The application we have been currently "dockerizing" doesn't need any graphics
per se.
Many do, though.

Let's try to run a simple graphics-enabled application from within a docker
container:

$ docker run -it --rm centos bash
docker> yum install -y xclock
docker> xclock

If the network is too slow, you can try to pull:

$ docker pull \
 cc-ecole2015-docker.in2p3.fr:5000/centos-xclock

where xclock and its dependencies have been already installed.

Running GUIs - II

Running GUIs is a bit more involved than just running your simple "from the
mill" CLI application.

There are many options to enable graphics:

ssh into a container with X11 forwarding

VNC

sharing the X11 socket

fabiorehm.com/blog/2014/09/11/running-gui-apps-with-docker/
(http://fabiorehm.com/blog/2014/09/11/running-gui-apps-with-docker/)

blog.docker.com/2013/07/docker-desktop-your-desktop-over-ssh-running-inside-of-
a-docker-container/ (https://blog.docker.com/2013/07/docker-desktop-your-desktop-over-ssh-running-inside-of-a-docker-container/)

wiki.ros.org/docker/Tutorials/GUI (http://wiki.ros.org/docker/Tutorials/GUI)

http://fabiorehm.com/blog/2014/09/11/running-gui-apps-with-docker/
https://blog.docker.com/2013/07/docker-desktop-your-desktop-over-ssh-running-inside-of-a-docker-container/
http://wiki.ros.org/docker/Tutorials/GUI

Running GUIs - III

Let's try the most direct (albeit a bit insecure) one: sharing the X11 socket.

First, allow all X11 connections (that's the insecure part):

$ xhost +

Then:

$ docker run -ti --rm \
 -e DISPLAY=$DISPLAY \
 -v /tmp/.X11-unix:/tmp/.X11-unix \
 centos bash
docker> yum install -y xclock && xclock

Don't forget to re-enable X11 access control afterwards:

$ xhost -

Conclusions

docker is a rather good tool to deploy applications in containers

eases the life of developers and sysadmins (devops)

docker isn't the only game in town

rkt (https://coreos.com/rkt/docs) (rocket) from CoreOS

systemd-nspawn (http://0pointer.de/public/systemd-man/systemd-nspawn.html) , now part of systemd

https://coreos.com/rkt/docs
http://0pointer.de/public/systemd-man/systemd-nspawn.html

References

www.slideshare.net/jpetazzo/introduction-to-docker-december-2014-tour-de-
france-bordeaux-special-edition (http://www.slideshare.net/jpetazzo/introduction-to-docker-december-2014-tour-de-france-bordeaux-special-edition)

www.slideshare.net/dotCloud/docker-intro-november (http://www.slideshare.net/dotCloud/docker-intro-november)

sif.info-ufr.univ-montp2.fr/docker-talk (https://sif.info-ufr.univ-montp2.fr/docker-talk)

docs.docker.com/introduction/understanding-docker/ (https://docs.docker.com/introduction/understanding-docker/)

wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin (https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin)

kubernetes.io/ (http://kubernetes.io/)

mesos.apache.org/ (http://mesos.apache.org/)

coreos.com/rkt/docs (https://coreos.com/rkt/docs)

http://www.slideshare.net/jpetazzo/introduction-to-docker-december-2014-tour-de-france-bordeaux-special-edition
http://www.slideshare.net/dotCloud/docker-intro-november
https://sif.info-ufr.univ-montp2.fr/docker-talk
https://docs.docker.com/introduction/understanding-docker/
https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin
http://kubernetes.io/
http://mesos.apache.org/
https://coreos.com/rkt/docs

Thank you

Sebastien Binet
CNRS/IN2P3

