

Data storage services at CC-IN2P3

Jean-Yves Nief

- Hardware:
 - Storage on disk.
 - Storage on tape.
- Software:
 - Storage services.
- Pitfalls and lessons learned.
- Storage needs in the near future.
- Prospects.

Storage at CC-IN2P3: disk

Hardware

Direct Attached Storage servers (DAS):

- Dell servers (R720xd + MD1200)
- ~ 240 servers
- Capacity: 15 PBs

Disk attached via SAS:

- Dell servers (R620 + MD3260)
- Capacity: **1.9 PBs**

Storage Area Network disk arrays (SAN):

- IBM V7000 and DCS3700, Hitachi HUS 130.
- Capacity: 240 TBs

Software

Parallel File System: GPFS (1.9 PBs)

File servers: xrootd, dCache (14 PBs)

• Used for High Energy Physics (LHC etc...)

Mass Storage System: HPSS (600 TBs)

• Used as a disk cache in front of the tapes.

Middlewares: SRM, iRODS (840 TBs)

Databases: mySQL, PostGres, Oracle (57 TBs)

Storage at CC-IN2P3: tapes

Hardware

4 Oracle/STK SL8500 librairies:

- **40,000** slots (T10K and LTO4)
- Max capacity: **320 PBs** (with T10KD tapes)
- **111** tape drives

1 IBM TS3500 library:

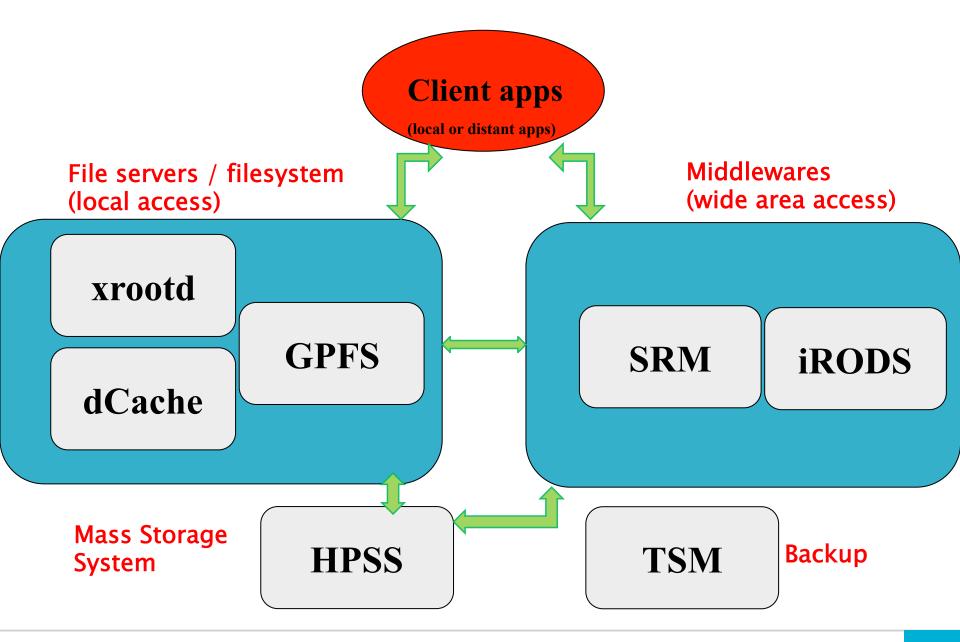
• 3500 slots (LTO6)

Software

Mass Storage System: HPSS

- 25 PBs
- Max traffic (from HPSS): 100 TBs / day
- Interfaced with our disk services

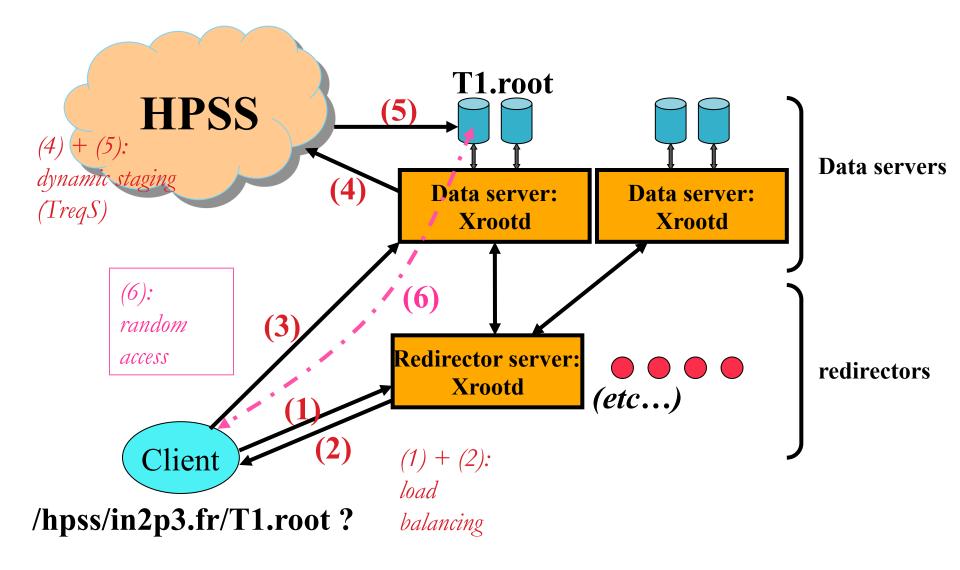
Backup service: TSM (**1 PB**)



- 4 Oracle/STK SL8500 libraries (4 x 10000 slots) for HPSS and TSM.
- ▶ 1 IBM TS3500 library (3500 slots) for TSM.
- Tape media:

Media	Capacity	Max Bandwidth	Number of drives	Service
T10K-B	1TB	120 MB/s	59	HPSS
T10K-C	5 TB	240 MB/s	21	HPSS
T10K-D	8.5 TB	252 MB/s	31	HPSS
LTO4	800 GB	120 MB/s	20	TSM
LTO6	2.4 TB	160 MB/s	6	TSM

How experiments are dealing with the storage ?


- Purpose:
 - For heavy I/O operations by many batch jobs in //.
 - Not a permanent repository.
- 60 servers, 1.9 PBs of disk space.
- 1000 GPFS clients installed on our
- Used by:
 - up to 25% of the batch farm.
 - 84 groups.
- Max activity observed: 500 TBs read in 5 days (Planck)
- To do:
 - Migration of metadata storage to flash technology (NetApp EF560).
 - Reduction of the number of space (35 right now) down to 4.

Local access: dCache-xrootd

- Purpose:
 - Data access by batch jobs (local + grid).
 - Pattern: remote access (random I/O, sequential).
 - Interface with HPSS:
 - Using Treqs (Tape request scheduler).
 - dCache service part of the Atlas and CMS federations:
 - xrootd proxy servers (gateway to our local dCache service).
 - dCache head nodes db: use of SSD.
- To do:
 - xrootd: lots of tape staging (eg: 20k requests per day) → « automatic » prestaging for some large « productions » needed.

service	# servers	capacity	experiments	# clients in //	access protocol
dCache	165	8.5 PiB	LCG + « EGEE » VOs (17)	15000	dcap, <mark>xrootd</mark> , WebDAV, gsiftp
xrootd	44	2.5 PiB	Alice + HEP + astroparticle (13)	8000	xrootd, http

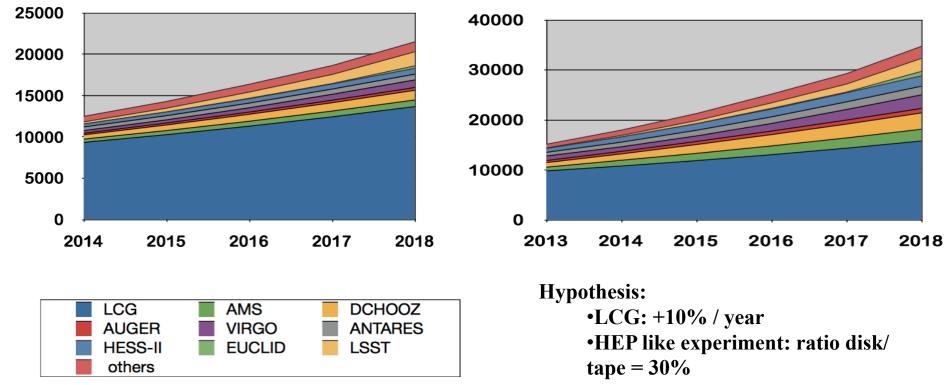
Local access (xrootd/dCache)

- Purpose:
 - Interface to our back end storage: tapes (main storage).
- 29 servers (disk + tape movers).
- Massive activity:
 - 27 PiB on tapes (rank #12 in HPSS world), 597 TiB of disk space (Dell R510, R720 servers).
 - Up to 100 TiB in 22h between HPSS and other storage services.
- New drive technology every **30 months**.
- Life cycle of a tape generation 8 years:
 - Ramping up in 4 years.
 - 4 more years in production.
- T10KB decommissionning:
 - 20000 tapes to be repacked until end 2017 ⇔ 5 PiB / year.
 - Represents:
 - 1000 T10K-T2 → T10K-C
 - Or **750** T10K-T2 → T10K-D
- Tape lifetime: avg 7 years (max 10 years).
- Redefine the class of services.
- Refactoring of Treqs (Tape request scheduler) by our dev team.

- Dynamic staging may result in:
 - Massive staging requests.
 - Long delays to access the files.
 - Tapes capacity is getting bigger!
 - \rightarrow Increased job inefficiency.
- To leverage these drawbacks:
 - Big files on tapes (several GBs).
 - Reordering of file requests per tape id (reduce # of mounts/ dismounts): up to 10000 per day.
 - Prestaging.
 - Avoid file scattering on a large amount of tapes (tape families ?).
- Refactoring of Treqs (Tape request scheduler) by our dev team.

- Purpose:
 - Data management (storage virtualization, policies).
 - Data sharing, access, archival etc... in a distributed and heterogeneous environment.
- SRM:
 - Used by Atlas, CMS, LHCb + EGEE/EGI virtual organizations.

- iRODS:
 - Managing > 9 PBs of data (HEP, astro, biology, Arts & Humanities): includes data stored on tapes.
- Web interfaces, HTTP/REST, webdav.


• GPFS:

- 130 TB (50% being used at the moment)
- HPSS:
 78 TB

iRODS: 90 TB

Cumulated Disk (TB)

Cumulated Tape (TB)

CTA not included

Credit: Rachid Lemrani

14

Qserv

- Used to debug Qserv.
- 1 interactive node:
 - 1 virtual machine *ccqservbuild.in2p3.fr*.
 - Mainly used for:
 - the compilation of the Qserv software.
 - the deployement of Qserv on the cluster.
 - Accessible from SLAC.
- 50 Qserv nodes:
 - Dell / CC-IN2P3 partnership.
 - ccqserv{100..149}.in2p3.fr.
 - Dell servers R620 and R630
 - Intel Xeon, 16GB RAM
 - 7 TB of usable storage
 - run the Qserv software (1 master, 49 slaves).
 - private subnetwork (nodes accessible from *ccqservbuild* only).

(Credit: Yvan Calas)

- Tape will still have a major role:
 - Balance between nearline and pure archive storage ?
- Hard drives still preferred to SSD:
 - prices will converge in the next couple of years.
 - SSD usage limited at the moment for key apps (GPFS metadata, HPSS and dCache databases etc...).
- Heavy I/O still and even heavier:
 - Lots of « random » I/O: still strong needs for seek, read, write.
 - Simple put/get interaction not sufficient.
- Big metadata challenge (storage system metadata).
- Data life cycle improvements:
 - > 100 groups, 5000 users (~ 2000 active users).
 - Data Management Plan.
 - archival service beyond simple bit preservation ?
 - OAIS, dublin core metadata.
- Provide interfaces for Open data ?

- Assessment of object storage:
 - Swift: testing it at the moment.
 - Swift extra value wrt what we already have: to be proven.
 - Ceph (but it can be more than an object storage): evaluation starting in the next couple of months.
- Hadoop, MapReduce type of systems: no plans yet as not much needs expressed by our user community.
- Metadata: will increase massively with increased storage.
 - Limit the amount of files => increased file size.