/	
(
	DARK ENERGY SURVEY

Processing pipelines for LSST and its precursor at NCSA (DES)

Robert Gruendl (DESDM: Production Scientist) NCSA/University of Illinois

and the DES/DESDM Team.

- Evolution of DESDM Processing Model
- SingleEpoch \rightarrow Nightly Quality Assessment
- Coaddition
- LSST

DES Observing Strategy

- 10x90 sec exposures in griz, 10x45 sec in Y for wide-area survey, longer exposures in SN fields
- Bluer (redder) bands in bright (dark) time (the moon is blue)
- Multiple overlapping exposures for photometric calibration ("ubercal")
- Supernova fields when seeing is worse or when they haven't been recently observed
- Overlap with SPT, OzDES, VHS, SDSS, eBOSS, ACT,

DES Footprint

- Total area: 5000 sq. deg
- 10 Supernova fields (2 deep, 8 shallow), distributed within wide-area footprint
- Footprint is overhead at night from Aug.-Feb.

Operations: Pipelines Evolution

DARK ENERGY SURVEY

Data Challenge 6B:

- Reduced 10 simulated nights (somewhat idealized)
- Problem: Single epoch processing required ~36-48 hours to reduce 1 night
- Problem: Calibrations, while regimented, required an ideal not generally present in a single nights observing
- Problem: SN pipeline already appeared to require calibrations with ~10 times fidelity achievable for those planned (e.g. 10 flats/band/ night)

Pipeline Parallelism

Crosstalk Block: X pipeline jobs Modules in pipeline: Crosstalk

CreateCor Block: Y pipeline jobs Modules in pipeline: mkbiascor, mkflatcor Note: mkflatcor is repeated for each band

Detrend Block: Z pipeline jobs (Z >> Y) Modules in pipeline: imcorrect

Example for Execution Paths

DARK ENERGY

Operations: Response to DC6B

DARK ENERGY SURVEY

- Calibration requires a careful consideration.
- Pipelines were broken down to components and analyzed.
- Early plans sought to:
 - save intermediates products (analyze to obtain 2nd order calibrations (e.g., Illumination/fringe)
 - Reuse solutions (e.g. WCS) when possible

Astronomy Codes

Year 1 – Year 2 Time Line

- Y1N: nightly firstcut and SN processing
 - With early code changes from SVA1
- Y1P1: coadd of limited area using early Y1N data
- Y1A1: integrate changes from Science Working Groups and based on Y1P1 feedback from LINEA

Year 2/3/? (reality)

Current development is being made without significant feedback from the WGs or collaboration in general!

Again... I strongly propose Y3A1 code freeze at end of observing.

DECam (raw from the telescope)

DARK ENERGY SURVEY

CR and Streak Masking

DARK ENERGY

SURVEY

Current assessment script evaluates each exposure based on single-epoch products. The goal is to determine whether each observations meets basic survey requirements.

Assessment is rendered based on calculation of the effective exposure time:

 $T_{eff} = (0.9 \text{ k / FWHM})^2 (Bkgd_{dark} / Bkgd) (10^{-2 \text{ cloud / }2.5})$ $= F_{eff} B_{eff} C_{eff}$ Current cutoffs used are $T_{eff} > 0.2$ (gY-band) $T_{eff} > 0.3$ (riz-bands)

DARK ENERGY SURVEY

> Cloud/extinction measurement is made by comparison of Single Epoch Catalog with respect to APASS (gr-bands) and NOMAD (grizY-bands).

Current comparison with NOMAD is crude (but probably sufficient).

Year 1 (vs. SVA1): Breakdown T_{eff}

DARK ENERGY SURVEY

Year 1 (vs. SVA1): Breakdown

DARK ENERGY

	SVA1		YEAR1	
Time period	11/01/12 - 02/15/13		08/31/13 - 02/15/14	
	# exposures	% accepted	# exposures	% accepted
All bands	10929*	60%	17605*	82%
g	1998	58%	4203	73%
r	2086	53%	2782	90%
i	2281	57%	2916	93%
Z	2375	65%	2965	96%
Y	1608	88%	4738	70%

Toward Release(s)

Y1 Observations Footprint

Y1(Y2?) COADD

DARK ENERGY SURVEY

Typical survey Field

SN Deep Field

Y1(Y2?) COADD

DARK ENERGY SURVEY

Typical survey Field

SN Deep Field

Y1(Y2?) COADD

DARK ENERGY SURVEY

Typical survey Field

SN Deep Field

$\mathsf{DES} \rightarrow \mathsf{LSST}$

DARK ENERGY SURVEY

> Telescope Field-of-View Survey Area

Camera Cadence

Raw Data Reduced

Catalog

DES	LSST
4 meters	8 met
π sq-deg	9.6 sc
5,000 sq-deg	18,00

500 megapixels 2 / yr / band

1 TB / night 2.5 PB

6 x 10⁸ objects

8 meters 9.6 sq-deg 18,000 sq-deg

3,200 megapixels ~100 / yr / band

30 Tb/ night Few 100 PB

2 x 10¹⁰ objects

Unspoken Thoughts

DARK ENERGY

DARK ENERGY

Year 1: Single-Epoch Pipeline Overview

- <u>FINALCUT (Y1A1):</u>
- DECam_crosstalk: overscan, crosstalk, header-update
- Imcorrect: bias, linearity, flat, BPM, pupil, illumination, fringe
- Astrorefine: SExtractor + SCAMP
- Mkbleedmask: mask/interpolate bleed trails, bright stars, supersaturated crosstalk, edge-bleed)
- Maskcosmics:
- Streak-finder: Hough transform search for satellite trails
- create_catalog_modelfit: Sextractor w/ PSF model fitting
- Compress_files
- Photometric Standards Module
- QA assessment

DECam (raw from the telescope)

DARK ENERGY SURVEY

Overscan and Cross-talk correction

DARK ENERGY SURVEY

DARK ENERGY

Astrometric Solution (Sextractor + SCAMP + UCAC4)

Typically σ=200-250 mas (external)

Bleed & Edge-Bleed Saturated Stars (Y1 included interpolation)

DARK ENERGY SURVEY

DARK ENERGY SURVEY

Bleed & Edge-Bleed Saturated Stars (Y1 included detailed mask)

DARK ENERGY SURVEY

CR and Streak Masking

DARK ENERGY

Detection and Masking of Streaks

Performance:

¢

~7/15 sec on 2.4 Ghz Core i7 MacBook Pro (includes I/O time)

- Iterate through each pixel of the thresholded image and count how many pixels lie at each possible angle
- Create a 2D histogram in "Houghspace" where lines accumulate as localized over-densities

Single Epoch Cataloging

- PSF modeling through AstrOmatic PSFex (has small issues with brighter-fatter effect in fully depleted CCDs
- Single Epoch model fitting using SExtractor provides single-epoch catalogs
- Currently, detailed analysis/monitoring of PSF (e.g. shape/whisker analysis) is not included
- After Global Calibration Module ~25 mmag rms

COADD

DARK ENERGY SURVEY

- COADDITION of single-epoch images requires a global calibration based on single epoch photometry (~25 mmag).
- In Y1A1 an astrometric refinement step was added. Reduces the relative (i.e. internal) astrometric residuals:
- (internal) < 50 mas rms (all bands),</p>
- (external) ~150-200 mas rms (2MASS)

Cataloging is based on a detection image (currently a linear combination of *r*, *i*, and *z*-bands).

COADD

SURVEY

Y1 (and Y2) depth is nominally 4 exposures per survey pointing.

Due to variations in PSF there are known systematic problems with PSF magnitudes. MAG_AUTO and MAG_APER are likely better choices for science in the near-term.

Detailed QA of COADDs has been implement within the Brazil Portal (see talk by Luiz de Costa).

Current Y2 pipeline upgrades

DARK ENERGY SURVEY

- 1. Add Brighter/Fatter
- 2. Reorganize detrending to accommodate PCA template sky fitting.
 - Likely change from ADUs to electrons
- 3. Revamped handling of weights
 - carry ALL weights forward and adjust based on mask prior to steps that make measurements
- 4. More detailed masks that reflect artifacts that may be tolerated for some measurements...
- Framework/orchestration enhancement to improve throughput on OSG type compute resources
- Detailed provenance tracking
- Direct incorporation of afterburner production (extinction, Mangle, etc...) into COADD pipelines.

Unspoken Thoughts

DARK ENERGY

Detail level #2: The mask (right) does not capture the diffraction/edge-bleed spikes in the actual image (left):

Figure 1: Example of coadd image features in the i band DES2327-5248 image with companion mask.

Todo for Y1A1: Make the masks reflect this edge bleed effect. 5/27/15

Issue (Galaxy Clusters Group): Odd appearance of non-stars in grid like pattern (image boundaries).

Suggests poor modeling of PSF across coadd tile...possible astrometry problem.