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INTRODUCTION
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3D chromosome structure assessment
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Chromosomes are spatially structured in 3D domains
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Chromosomes are spatially structured in topologically associating domains
(TADs) (Sexton et al., Cell, 2012; Dixon et al., Nature, 2012).

TADs are stable across different cell types and highly conserved across
species.
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The biological role of these 3D domains

¢ 3D domalns play an Important rOIe In Structural variations affecting TAD boundaries
- gene expression regulation,
- DNA replication
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cause de novo enhancer-promoter
interactions and misexpression, and

can lead to genetic diseases. Lupianez et al., Cell, 2015.



Architectural proteins:
Key drivers of 3D structure?
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A. Model for CTCF + cohesin in demarcating TAD-borders in mammals.

B. Blurring of TAD boundaries after deletion of a border.
(Phillips-Cremins and Corces. Molecular Cell, 50(4):461-474, May 2013)




Architectural protein model iIn mammals
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- In mammals, CTCF is thought to be the key insulator
binding protein that works with cofactor cohesin to
maintain 3D domain borders (Rao et al., Cell, 2015;
Sanborn et al., PNAS, 2015).
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Architectural protein model in Drosophila

- In Drosophila, many insulator binding proteins (IBPS)
colocalize with TAD borders:
- dCTCF,
- BEAF-32,
- GAF,
- Su(Hw),
- dTFIIIC.
- And several cofactors are recruited by IBPs:
- CP190, cohesin, chromator, condensin I/l and Fs(1)h-L.

Van Bortle et al., Genome Biology, 2015.
Li et al., Mol Cel, 2014.



How to identify architectural proteins?
Univariate enrichment test

Protein ® chromosome

- Contingency table:

Presence of the Absence of the Odds
proteln proteln
Inside border 3/1=3
Outside border 2 2/24=0,08



How to identify architectural proteins?
Univariate enrichment test

- From the previous contingency table, on can estimate the
odds ratio (noted OR):

.m?=3/1_ 3

2/24 00833

- One can apply a Fisher’s exact test to assess enrichment.
There are two hypotheses about the odds ratio:
- Hy:OR =1
« H:OR ¥+ 1

- OR reflects either enrichment (OR > 1) or
iImpoverishment (OR < 1) of the architectural protein at
TAD borders.



Caveats of univariate enrichment test

- Univariate enrichment test does not account for :

- Potential correlations (i.e., colocalizations) among the architectural
proteins. LN

Both proteins A and
B colocalize to

[ ] borders, but only
L protein A truly

o influences borders.

Prot A PI
Prot B

Proteins A and B
need to be together
to influence borders.




PROPOSED APPROACH:
MULTIPLE LOGISTIC REGRESSION




Logistic regression formulation of
univariate enrichment test

- The previous univariate enrichment test can be

reformulated as a logistic regression model:

Prob(Y=1|X)
M Probr=11%) _ o+ BX

- Variable Y indicates if the genomic bin belongs to the

boundary (Y = 1) or if the genomic bin is outside of the
boundary (Y = 0).

- Variable X can:

- either denotes the presence (X = 1) or the absence (X =
0) of the protein within the genomic bin,

- or quantify ChlP-seq signal intensity within the genomic
bin (log(ChIP/Input))-



Logistic regression formulation of
univariate enrichment test

- In the logistic regression, the slope parameter S is the natural
logarithm of the abovementioned odds ratio OR.

- Parameter S of the logistic regression model reflects
enrichment (8 > 0) or depletion (5 < 0) of the architectural
protein at TAD borders.

- Parameter 8 can be tested by a Wald test:

—

wek

op
- 0z denotes the standard error of parameter B.

- Statistic W follows a normal distribution.

- In practice, we observed that Wald test yields p-values that are similar
to the ones obtained from the often preferred Likelihood Ratio Test.



Multiple logistic regression

- Logistic regression model provides a natural framework
for analysis over p genomic features:

Prob(Y=1|X)
1-Prob(Y=1|X) o + BX

- Where X = {Xy, ..., X,,} is the set of p proteins of interest and g =

{,81, ...,ﬁp} denotes the set pf corresponding slope parameters (one
parameter § for each protein).

- Here we assess in the same model all the architectural
proteins of interest!

- We thus account for potential colocalizations among the
proteins (i.e. conditional independence).



Multiple logistic regression data
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Statistical interaction

- Interaction terms can be included in the logistic regression
model to account for potential interactions between

genomic features.

- For instance, one can include in the model an interaction
term between two proteins X; and X,:

Prob(Y=1|X)
n 1-Prob(Y=1|X) = Po + p1X1 + f2Xz + f12X1X7

- The product X, X, is the statistical interaction term between the two
proteins X; and X,.
- Parameter 5;, measures the enrichment of interaction X, X,.




lllustration of the model

Scenario 1 (no interaction):
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- Protein B colocalizes to protein A
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RESULTS




Analysis of architectural proteins In
Drosophila

- We illustrate the multiple logistic regression with
Drosophila melanogaster.

- Fly represents an interesting model to study architectural
proteins because there are many insulator binding
proteins.

- The data;

- ChlP-seq data from Kc167 cells (Corces et al.),
- Hi-C data from Kc167 cells (Corces et al.).



Parameter estimation accuracy
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Very good parameter estimation accuracies are achieved for both
marginal variables with R? = 99,6% (no interactions) and two-way
interaction variables with R? = 94,6%.



Analysis of insulator binding proteins
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Analysis of statistical interactions
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- Significant positive interactions reflected synergistic effects of IBPs with cofactors,

especially for dCTCF with condensin I.

- Significant negative interactions revealed antagonistic effects at domain borders, in
particular for BEAF-32 with cofactors Chromator and with Fs(1)h-L.



Analysis of functional elements
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- Insulators were by far the most influential functional elements with respect to
domain borders, as established in human (Rao et al., Cell 2014).

- We found positive effects for repeat regions and for snoRNA genes.
- A negative impact on TAD border was detected for regulatory sequences.



Analysis of DNA binding proteins in human

- We illustrate the multiple logistic regression with
GM12878 cells.

- For GM12878 cells, there are very high resolution Hi-C
data at 1kb that allowed to accurately identify 3D
domains.

- The data:
- ChlP-seq data from GM12878 cells (ENCODE project),
- Hi-C data from GM12878 cells (Rao et al., Cell, 2014).



Results

- CTCF and cohesin (subunit Rad21) presented the highest effects
among all factors (CTCF: £ = 1,90; cohesin: § = 1,91), in complete
agreement with numerous studies (Rao et al., Cell 2014).

- Our model also detected large positive effects for ZNF143 (8 = 1,85)
and for EZHZ2, the catalytic subunit of the Polycomb repressive
complex 2, (8 = 1,32) in total agreement with a very recent studies
(Bailey et al., Nat. Comm. 2015; Schoenfelder et al., Nat. Genet.
2015).

- In addition, our model revealed several factors associated with
transcriptional activation that had significant negative influences on
TAD borders. These proteins included RXRA (8 = —1,37), P300 (8 =
—1,22), BCL11A (8 = —0,82) and ELK1 (8 = —0,74).



CONCLUSION AND
PERSPECTIVES




Conclusion

- Here, we describe a multiple logistic regression (MLR) to
assess the roles of genomic features such as DNA
binding proteins and functional elements on TAD border
establishment or maintenance.

- Using simulations, we show that model parameters can
be accurately estimated for both marginal genomic
features (no interaction) and two-way interactions.

- Using experimental Drosophila Hi-C and ChlP-seq data,
we show that the proposed model can identify genomic
features that are most influential with respect to TAD
borders.



A new model for 3D domain border
establishment or maintenance
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Future directions

- In this article, we have focused on the influences of
proteins on 3D domain border establishment or
maintenance.

- Another important question is to understand the role of
DNA-binding proteins in chromatin interactions within
domains.

- For instance, it is essential to identify proteins that
Influence interactions between enhancers and promoters
that regulate gene expression.
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