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INTRODUCTION
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3D chromosome structure assessment
High-throughput chromosome conformation capture (Hi-C)

(Lieberman-Aiden et al, Science, 2009).
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Chromosomes are spatially structured in 3D domains

Chromosomes are spatially structured in topologically associating domains

(TADs) (Sexton et al., Cell, 2012; Dixon et al., Nature, 2012). 

TADs are stable across different cell types and highly conserved across 

species.

Chromosome

Chromatin interaction 

(Hi-C data)

ChromosomeLocus 1 Locus 2 …

High

Interaction

Low

Interaction

Interaction count between

locus 1 and locus 3

Locus 3

TAD 2TAD 1 TAD 3

10



The biological role of these 3D domains

• 3D domains play an important role in:
• gene expression regulation,

• DNA replication

• …

• For instance, loops between
enhancers and promoters that
regulate gene expression are 
constrained by 3D domains.

• Removal of these contraints by 
deletions of domain boundaries can
cause de novo enhancer-promoter
interactions and misexpression, and 
can lead to genetic diseases. Lupianez et al., Cell, 2015.
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Architectural proteins: 

Key drivers of 3D structure?

A. Model for CTCF + cohesin in demarcating TAD-borders in mammals.

B. Blurring of TAD boundaries after deletion of a border.
(Phillips-Cremins and Corces. Molecular Cell, 50(4):461-474, May 2013)
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Architectural protein model in mammals

• In mammals, CTCF is thought to be the key insulator

binding protein that works with cofactor cohesin to 

maintain 3D domain borders (Rao et al., Cell, 2015; 

Sanborn et al., PNAS, 2015). 
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Architectural protein model in Drosophila

• In Drosophila, many insulator binding proteins (IBPs) 

colocalize with TAD borders:

• dCTCF,

• BEAF-32,

• GAF,

• Su(Hw),

• dTFIIIC.

• And several cofactors are recruited by IBPs:

• CP190, cohesin, chromator, condensin I/II and Fs(1)h-L.

Van Bortle et al., Genome Biology, 2015.

Li et al., Mol Cel, 2014.



How to identify architectural proteins?

Univariate enrichment test

• Contingency table:

Presence of the 

protein

Absence of the 

protein

Odds

Inside border 3 1 3/1=3

Outside border 2 24 2/24=0,08
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• From the previous contingency table, on can estimate the 
odds ratio (noted OR):

•  𝑂𝑅 =
3/1

2/24
=

3

0,0833
= 36

• One can apply a Fisher’s exact test to assess enrichment. 
There are two hypotheses about the odds ratio: 

• 𝐻0: 𝑂𝑅 = 1

• 𝐻1: 𝑂𝑅 ≠ 1

• OR reflects either enrichment (OR > 1) or 
impoverishment (OR < 1) of the architectural protein at 
TAD borders. 

How to identify architectural proteins?

Univariate enrichment test



Caveats of univariate enrichment test

• Univariate enrichment test does not account for :

• Potential correlations (i.e., colocalizations) among the architectural 

proteins. 
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• Potential statistical interactions among the architectural proteins. 

Proteins A and B 

need to be together

to influence borders.



PROPOSED APPROACH:
MULTIPLE LOGISTIC REGRESSION



Logistic regression formulation of 

univariate enrichment test

• The previous univariate enrichment test can be 

reformulated as a logistic regression model: 

• 𝑙𝑛
𝑃𝑟𝑜𝑏(𝑌=1|𝑋)

1−𝑃𝑟𝑜𝑏(𝑌=1|𝑋)
= 𝛽0 + 𝛽𝑋

• Variable Y indicates if the genomic bin belongs to the 

boundary (Y = 1) or if the genomic bin is outside of the 

boundary (Y = 0). 

• Variable X can :

• either denotes the presence (X = 1) or the absence (X = 

0) of the protein within the genomic bin,

• or quantify ChIP-seq signal intensity within the genomic 

bin (log  𝐶ℎ𝐼𝑃
𝐼𝑛𝑝𝑢𝑡 ).



Logistic regression formulation of 

univariate enrichment test

• In the logistic regression, the slope parameter 𝛽 is the natural 
logarithm of the abovementioned odds ratio OR.

• Parameter 𝛽 of the logistic regression model reflects
enrichment (𝛽 > 0) or depletion (𝛽 < 0) of the architectural 
protein at TAD borders. 

• Parameter 𝛽 can be tested by a Wald test:

• 𝑊 =
 𝛽

 𝜎𝛽

•  𝜎𝛽 denotes the standard error of parameter  𝛽. 

• Statistic 𝑊 follows a normal distribution.

• In practice, we observed that Wald test yields p-values that are similar
to the ones obtained from the often preferred Likelihood Ratio Test. 



Multiple logistic regression

• Logistic regression model provides a natural framework 
for analysis over 𝑝 genomic features:

• 𝑙𝑛
𝑃𝑟𝑜𝑏(𝑌=1|𝑋)

1−𝑃𝑟𝑜𝑏(𝑌=1|𝑋)
= 𝛽0 + 𝜷𝑿

• Where 𝑿 = 𝑋1, … , 𝑋𝑝 is the set of 𝑝 proteins of interest and 𝜷 =
𝛽1, … , 𝛽𝑝 denotes the set of corresponding slope parameters (one 

parameter 𝛽 for each protein). 

• Here we assess in the same model all the architectural 
proteins of interest!

• We thus account for potential colocalizations among the 
proteins (i.e. conditional independence). 



Multiple logistic regression data

Y

1

0

0

0

1

0

0

0

0

1

0

0

1

X1 X2 … Xp

1 1 … 1

0 0 … 0

0 1 … 0

0 0 … 0

1 0 … 0

0 0 … 0

0 0 … 1

0 0 … 0

0 1 … 1

1 0 … 0

0 0 … 0

0 0 … 0

1 1 … 1

3D domains Prot A Prot B Prot X

Model variablesChIP-seq dataHi-C data



Statistical interaction

• Interaction terms can be included in the logistic regression 

model to account for potential interactions between 

genomic features. 

• For instance, one can include in the model an interaction 

term between two proteins 𝑋1 and 𝑋2:

• 𝑙𝑛
𝑃𝑟𝑜𝑏(𝑌=1|𝑋)

1−𝑃𝑟𝑜𝑏(𝑌=1|𝑋)
= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽12𝑋1𝑋2

• The product 𝑋1𝑋2 is the statistical interaction term between the two 

proteins 𝑋1 and 𝑋2. 

• Parameter 𝛽12 measures the enrichment of interaction 𝑋1𝑋2.



Illustration of the model



RESULTS



Analysis of architectural proteins in 

Drosophila

• We illustrate the multiple logistic regression with

Drosophila melanogaster. 

• Fly represents an interesting model to study architectural 

proteins because there are many insulator binding 

proteins. 

• The data:

• ChIP-seq data from Kc167 cells (Corces et al.),

• Hi-C data from Kc167 cells (Corces et al.).



Parameter estimation accuracy

Very good parameter estimation accuracies are achieved for both

marginal variables with 𝑅2 = 99,6% (no interactions) and two-way

interaction variables with 𝑅2 = 94,6%.
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Analysis of insulator binding proteins

Although all these insulator binding proteins (IBPs) are enriched at 

TAD borders, only BEAF-32 highly impacts TAD demarcation

establishment or maintenance.



Analysis of statistical interactions

• Significant positive interactions reflected synergistic effects of IBPs with cofactors, 

especially for dCTCF with condensin I. 

• Significant negative interactions revealed antagonistic effects at domain borders, in 

particular for BEAF-32 with cofactors Chromator and with Fs(1)h-L. 



Analysis of functional elements

• Insulators were by far the most influential functional elements with respect to 

domain borders, as established in human (Rao et al., Cell 2014). 

• We found positive effects for repeat regions and for snoRNA genes. 

• A negative impact on TAD border was detected for regulatory sequences.



Analysis of DNA binding proteins in human

• We illustrate the multiple logistic regression with

GM12878 cells. 

• For GM12878 cells, there are very high resolution Hi-C

data at 1kb that allowed to accurately identify 3D 

domains. 

• The data:

• ChIP-seq data from GM12878 cells (ENCODE project),

• Hi-C data from GM12878 cells (Rao et al., Cell, 2014).



Results

• CTCF and cohesin (subunit Rad21) presented the highest effects 

among all factors (CTCF:  𝛽 = 1,90; cohesin:  𝛽 = 1,91), in complete 

agreement with numerous studies (Rao et al., Cell 2014).

• Our model also detected large positive effects for ZNF143 (  𝛽 = 1,85) 

and for EZH2, the catalytic subunit of the Polycomb repressive 

complex 2, (  𝛽 = 1,32) in total agreement with a very recent studies

(Bailey et al., Nat. Comm. 2015; Schoenfelder et al., Nat. Genet. 

2015).

• In addition, our model revealed several factors associated with 

transcriptional activation that had significant negative influences on 

TAD borders. These proteins included RXRA (  𝛽 = −1,37), P300 (  𝛽 =

− 1,22), BCL11A (  𝛽 = −0,82) and ELK1 (  𝛽 = −0,74).



CONCLUSION AND 

PERSPECTIVES



Conclusion

• Here, we describe a multiple logistic regression (MLR) to 
assess the roles of genomic features such as DNA 
binding proteins and functional elements on TAD border 
establishment or maintenance. 

• Using simulations, we show that model parameters can 
be accurately estimated for both marginal genomic 
features (no interaction) and two-way interactions.

• Using experimental Drosophila Hi-C and ChIP-seq data, 
we show that the proposed model can identify genomic 
features that are most influential with respect to TAD 
borders. 



A new model for 3D domain border 

establishment or maintenance



Future directions

• In this article, we have focused on the influences of 

proteins on 3D domain border establishment or 

maintenance. 

• Another important question is to understand the role of 

DNA-binding proteins in chromatin interactions within 

domains. 

• For instance, it is essential to identify proteins that 

influence interactions between enhancers and promoters 

that regulate gene expression. 
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