

Dynamique des chromosomes dans la levure vivante

Vers une mesure des propriétés des chromosomes in vivo

Aurélien Bancaud

Marius Socol, Victor Conde, Renjie Wang, Olivier Gadal

Laboratoire conventionné avec l'Université de Toulouse

Wroclaw, 14-16 May 2015

- Eléments sur l'organisation et la dynamique des chromosomes de levures
- Etude du modèle de Rouse in vitro sur l'ADN et la chromatine

• Dissection du rôle de la transcription sur les mouvement de chromosomes

• Bilan et discussion

Eucaryote unicellulaire Le génome est séquencé en 1996 Taille du génome = 12 10⁶ bp dans 16 chromosomes 0.3% du génome humain 6000 gènes pas de lamine nucléaire Ingénierie génétique -> imagerie de fluorescence

LAAS-CNRS **Organisation du noyau de la levure**

AAS-CNRS Architecture du chromosome étudiée en imagerie

Chromosome XII (~2 Mb) contient les principales structures nucléaires, avec 1 centromère, 2 telomères, and le nucléole

Albert/Mathon, JCB, 2013

Chromosomes sont des brosses à l'équilibre

LAAS-CNRS

Du macroscopique au microscopique...

Notre hypothèse: les fluctuations permettent de sonder les propriétés structurales de la chromatine

Loci présentent un comportement sous diffusif

Un comportement homogène sur le Chr XII

Que dire des autres chromosomes ?

Déplacement quadratique moyen de loci sur les Chr III, IV, XII, XIV

Quelques éléments sur le modèle de Rouse

$\xi \frac{dr_n}{dt} = k$	$\vec{k}_{sp}(r_{n-1} - r_n) + k$	$\vec{r}_{sp}(r_{n+1} - r_n) + f_n(t)$	$k_{sp} = \frac{k_B T}{b^2}$
	$t << \tau_0 / N^2$	$MSD(t) = 6\frac{k_B T}{\varepsilon}t$	
	$t << \tau_0$	$MSD(t) = 6D_G t + \begin{bmatrix} \frac{12b}{2} \end{bmatrix}$	$\frac{e^2 k_B T}{\pi \xi} \bigg ^{0.5} \times t^{0.5}$
$R_G \sim b N^{0.5}$	$t >> \tau_0$	$MSD(t) = 6D_G t + \frac{1}{3}Nb$	2 ²
	$D_G = \frac{k_B T}{N\xi}$	$\frac{\Gamma}{2} \qquad \tau_0 = \frac{\xi N^2 b^2}{3\pi^2 k_B T}$	
		, D	Teraoka, 2002

Solution analytique pour la MSD and le propagateur (Guérin, Nat Chem, 2012)

Peut-on mesurer des paramètres physiques

AAS-CNRS

-> Comment y croire ????

- Eléments sur l'organisation et la dynamique des chromosomes de levures
- Etude du modèle de Rouse in vitro sur l'ADN et la chromatine

• Dissection du rôle de la transcription sur les mouvement de chromosomes

• Bilan et discussion

Peut-on extraire des données du modèle de Rouse

AAS-CNRS

LAAS CNRS

Notre stratégie: étudier les fluctuations de l'ADN en volume

Méthode de marquage: incorporation de dUTP-Cy3 en réplication

-> Ecranter les interactions hydrodynamiques

----> Faire de l'encombrement moléculaire

Chebotareva, Biochem, 2004

Crowding agent : poly-vinylpyrrolidone (PVP) purely visco-elastic, no shear thinning behavior

Rouse regime: 2% (M:Vol) PVP (360 kDa) : c=3xc*

Zimm regime (dominated by hydrodynamic interactions) 2% (M:Vol) PVP (40 kDa) : c=0.3xc*

Addition de nanoparticules de 200 nm pour visosité

 $C < C^*$ Zimm regime $MSD(t) \sim 2\Gamma_{1/3} \left[\frac{1}{\pi^5} \right] \frac{k_B T}{\eta} \left[\frac{1}{\eta} \right]^2 \left[\frac{1}{\eta} \right]^{1/3} \times t^{0.67}$

η=2.3 mPa.s

_AAS-CNRS **Propagateur (Guerin, Nat Chem, 2012)**

LAAS CNRS

Le modèle de Rouse permet de mesurer des grandeurs microscopiques

LAAS CNRS

Passons à la chromatine!

La longueur de persistance chute de 55 nm à 8 nm pour la chromatine -> Flexibilité accrue pour la chromatine... Cohérent in vivo?

- Eléments sur l'organisation et la dynamique des chromosomes de levures
- Etude du modèle de Rouse in vitro sur l'ADN et la chromatine

- Dissection du rôle de la transcription sur les mouvement de chromosomes
 - Dynamique et métabolisme: rôle de la source de carbone
 - Dynamique et transcription
- Bilan et discussion

 -> Chromosome II contient les gènes activés en présence de galactose source de carbone change activité transcriptionnelle

-> Génération de 2 mutants thermosensibles, Polymérase II inactivée à 37°C 25°C vs. 37°C permet de sonder l'effet de l'arrêt de PolII

Au total, 4 souches (ChrXII WT et TS) & (ChrII WT et TS)

Effet de la source de carbone sur la dynamique

Aucune modification de l'organisation nucléaire sur le chromosome XII Résultat attendu

AAS-CNRS Le régime de Rouse est vraiment robuste!

LAAS CNRS

La MSD et le propagateur sont cohérents avec le modèle de Rouse **Résultat attendu**

L'activation des gènes GAL entraine une relocalisation partielle au bord **Résultat connu**

Dynamique accrue des gènes GAL après activation

Dynamique en Glucose = Raffinose < Dynamique en Galactose

L'effet est indépendant de la position du locus (non montré)

L'activation des gènes induit une augmentation locale de dynamique... Plutôt intuitif

Quid de l'arrêt de la transcription -> Chr XII

Arrêt global de la transcription -> augmentation de dynamique... peu intuitif

Quid de l'arrêt de la transcription -> Chr II

Arrêt global de la transcription -> augmentation de dynamique... peu intuitif

Est-ce un effet de viscosité?

Arrêt de la Polymérase II -> Plus d'ARN -> viscosité plus faible

Sonde interaction non spécifique résiduelle, relaxation déterminée par $D_{eff} = D \times Fraction (TET libre)$

Dans la gamme temporelle visée, 10-15 min pas de variation de viscosité

Comment expliquer l'effet de Pol II ?

La position des nucléosomes varie faiblement en 15 minutes Effets significatifs détectés à 120 minutes

Weiner, Gen Res, 2010

-> Peu plausible que ce soit un effet de fibre

Un effet de friction accru!

LAAS-CNRS Etude de l'ensemble des solutions du modèle

« Vraie » dynamique de Rouse sans transcription!

Negative Open Positive 0.65 0.60 Fiber length (µm) 0.55 0.50 0.45 -0.40 0.35

Flexibilité -> Liée au niveau du nucléosome

Torsional flexibility (Bancaud, NSMB, 2006)

La friction est modulée par la transcription

- Eléments sur l'organisation et la dynamique des chromosomes de levures
- Etude du modèle de Rouse in vitro sur l'ADN et la chromatine

- Dissection du rôle de la transcription sur les mouvement de chromosomes
- Bilan et discussion

- La dynamique des chromosomes me semble être un outil essentiel pour sonder les propriétés des chromosomes
- Le modèle de Rouse semble donner des réponses in vitro et in vivo
- Les chromosomes ont une friction importante du fait de la transcription et ils sont flexibles -> la friction est un paramètre de contrôle des chromosomes

Dynamique des chromosomes et cassure

Dion, Nat Cell Biol, 2012

Cassure -> augmentation de la dynamique

Pas vraiment cohérent avec le modèle de Rouse

Manfrini, eLife, 2015

Cassure -> arrêt de transcription -> augmentation de la dynamique

Un mécanisme de régulation pour accélérer la recherche de cible ??

Hydrodynamic radius, a (nm)

Decoupling friction and flexibility

Comment on Blacklund, MBoC, 2014

Chr II_glu, visc=15

a (nm)

39

Chr II_gal, visc=15

a (nm)

Chr II_gal_thermo, visc=15

Chr II_glu, visc=7

B=5

A=12

Chr II_gal, visc=7

Chr II_TS_gal, visc=7

Chr XII_glu, visc=7

Chr II_TS_gal, visc=7

Chr XII_TS_glu, visc=7

LAAS / ALIVE / NEI

46