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Heterochromatin and euchromatin"

Binary quantification of chromatin compaction
We first described chromatin organization in terms of its
two conformations: highly condensed heterochromatin
and relatively loose euchromatin. Heterochromatin is
largely considered to be transcriptionally silent and is
localized primarily to the nuclear periphery, while eu-
chromatin is the active form of chromatin and is extended
throughout the nucleus. In both models of early CRC we
observed a significantly increased characteristic size of
heterochromatin aggregates, quantified via run length
(Figure 5c,d), which is consistent with the karyometric
study from Ref. [15]. In patient samples from the field of
CRC the run length increased from 228 nm to 305 nm
(Figure 5c), and in rat samples of early CRC the run length
increased from 141 to 173 nm (Figure 5d). The average
sizes of nuclei of patient samples were 60% larger than
that of rat samples, which explains the difference in the
run length values between two models. At the same time,
there was no difference in nuclear area between controls
and cases within either model (p > 0.5 in both patient and

rat models). Additionally, we established that not only the
characteristic size, but the total percentage of heterochro-
matin is significantly increased in both models of early-
stage CRC (from 34.2% to 42.9% in humans and from
44.4% to 51.1% in rats, Figure 5a,b).
Next, we investigated the location of condensed chro-

matin areas in the nucleus. The 3D chromatin structure
of most normal cells is such that the chromatin fibers
positioned towards the nuclear interior are characterized
as: 1) gene-rich (from a 1D genome perspective), 2) ac-
tively transcribed (from a nuclear function perspective),
and 3) more open/decondensed (from a physics perspec-
tive) [34-39]. Accordingly, a distinct region of gene-poor,
transcriptionally inactive and highly condensed hetero-
chromatin tends to be located towards the nuclear periph-
ery [40,41]. Upon analysis of the TEM micrographs, we
determined that the heterochromatin distribution relative
to the nuclear periphery was substantially altered in both
studied models of early CRC. We observed a statistically
significant decrease in the amount of heterochromatin

Figure 3 Calculation of spatial correlation function. (a) Gray-scale TEM image of an example nucleus from a human sample, (b) color-coded
map of 2-D spatial correlation function obtained from it. Black dashed circle outlines data points corresponding to the same separation r, and (c)
1-D spatial correlation function calculated by averaging data for each separation r (red circles) and the analytical correlation function fitted to the
experimental (black solid line).

Figure 4 Example TEM micrographs. (a) Histologically normal rectal cell nuclei from control patients and those harboring a pre-cancerous
adenoma elsewhere in the colon, representing field CRC. Scale bars correspond to 500 nm. (b) Histologically normal colonic cell nuclei from control
rats and those treated with azoxymethane for 10 weeks (premalignant time point), representing early CRC. Scale bars correspond to 250 nm.
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in this way by using principal component analysis.
For all but two chromosomes, the first principal
component (PC) clearly corresponded to the plaid
pattern (positive values defining one set, negative
values the other) (fig. S1). For chromosomes 4 and
5, the first PC corresponded to the two chromo-
some arms, but the second PC corresponded to the
plaid pattern. The entries of the PC vector reflected
the sharp transitions from compartment to com-
partment observed within the plaid heatmaps.
Moreover, the plaid patterns within each chromo-
some were consistent across chromosomes: the

labels (A and B) could be assigned on each
chromosome so that sets on different chromo-
somes carrying the same label had correlated
contact profiles, and those carrying different labels
had anticorrelated contact profiles (Fig. 3D). These
results imply that the entire genome can be par-
titioned into two spatial compartments such that
greater interaction occurswithin each compartment
rather than across compartments.

TheHi-C data imply that regions tend be closer
in space if they belong to the same compartment
(Aversus B) than if they do not. We tested this by

using 3D-FISH to probe four loci (L1, L2, L3, and
L4) on chromosome 14 that alternate between the
two compartments (L1 and L3 in compartment A;
L2 and L4 in compartment B) (Fig. 3, E and F).
3D-FISH showed that L3 tends to be closer to
L1 than to L2, despite the fact that L2 lies be-
tween L1 and L3 in the linear genome sequence
(Fig. 3E). Similarly, we found that L2 is closer to
L4 than to L3 (Fig. 3F). Comparable results were
obtained for four consecutive loci on chromosome
22 (fig. S2, A and B). Taken together, these obser-
vations confirm the spatial compartmentalization

A B C D

E F G H

Fig. 3. The nucleus is segregated into two compartments corresponding
to open and closed chromatin. (A) Map of chromosome 14 at a resolution
of 1 Mb exhibits substructure in the form of an intense diagonal and a
constellation of large blocks (three experiments combined; range from 0
to 200 reads). Tick marks appear every 10 Mb. (B) The observed/expected
matrix shows loci with either more (red) or less (blue) interactions than
would be expected, given their genomic distance (range from 0.2 to 5).
(C) Correlation matrix illustrates the correlation [range from – (blue) to
+1 (red)] between the intrachromosomal interaction profiles of every pair
of 1-Mb loci along chromosome 14. The plaid pattern indicates the
presence of two compartments within the chromosome. (D) Interchromo-
somal correlation map for chromosome 14 and chromosome 20 [range
from –0.25 (blue) to 0.25 (red)]. The unalignable region around the cen-
tromere of chromosome 20 is indicated in gray. Each compartment on
chromosome 14 has a counterpart on chromosome 20 with a very similar

genome-wide interaction pattern. (E and F) We designed probes for four
loci (L1, L2, L3, and L4) that lie consecutively along chromosome 14 but
alternate between the two compartments [L1 and L3 in (compartment A);
L2 and L4 in (compartment B)]. (E) L3 (blue) was consistently closer to L1
(green) than to L2 (red), despite the fact that L2 lies between L1 and L3
in the primary sequence of the genome. This was confirmed visually and
by plotting the cumulative distribution. (F) L2 (green) was consistently
closer to L4 (red) than to L3 (blue). (G) Correlation map of chromosome
14 at a resolution of 100 kb. The PC (eigenvector) correlates with the
distribution of genes and with features of open chromatin. (H) A 31-Mb
window from chromosome 14 is shown; the indicated region (yellow
dashes) alternates between the open and the closed compartments in
GM06990 (top, eigenvector and heatmap) but is predominantly open in
K562 (bottom, eigenvector and heatmap). The change in compartmen-
talization corresponds to a shift in chromatin state (DNAseI).
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in this way by using principal component analysis.
For all but two chromosomes, the first principal
component (PC) clearly corresponded to the plaid
pattern (positive values defining one set, negative
values the other) (fig. S1). For chromosomes 4 and
5, the first PC corresponded to the two chromo-
some arms, but the second PC corresponded to the
plaid pattern. The entries of the PC vector reflected
the sharp transitions from compartment to com-
partment observed within the plaid heatmaps.
Moreover, the plaid patterns within each chromo-
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(Lieberman-Aiden et al. 2009), we immediately noticed a striking
correspondence between the Hi-C map and replication timing
(Fig. 5A). This correspondence was cell-type-specific, as we could
find many replication domain-sized discordances between the
lymphoblast Hi-C and hESC or hNPC replication timing profiles.
Remarkably, when comparing the lymphoblast Hi-C and replica-
tion timing profiles, even subtle variations in replication time
along the profile of each chromosome were matched by subtle
variations in chromatin interaction frequencies, a property quite
unlike any other chromatin structural or functional features we
have examined.

To quantify this relationship genome-wide, we correlated
Hi-C model data for each chromosome with replication timing
as described in Figure 4B for other epigenetic marks. Despite the
derivation of lymphoblastoid replication timing and Hi-C data
from different lymphoblast cell lines (C0202 and GM06990, re-
spectively), the overall correlation (R = 0.80) was the strongest we
have identified to date between replication timing and any chro-
mosomal feature. This correlation was found on every autosomal
chromosome (Fig. 5B). The significantly lower correlation for the X
chromosome is accounted for by the fact that replication timing
was profiled in a male cell line while Hi-C was mapped in a female

cell line, consistent with changes in rep-
lication timing and compartmentaliza-
tion of replication domains after X chro-
mosome inactivation (Hiratani et al.
2010). This uncanny relationship be-
tween spatial proximity and replication
timing, measured using very different
methodologies, provides a novel link be-
tween chromosome structure and func-
tion in the nucleus and indicates that
sequences that are localized near each
other will replicate at similar times, sug-
gesting new models for the regulation of
replication timing (discussed below).

Discussion
Our results define an hESC-specific repli-
cation profile that is stable across poly-
morphic cell lines and reacquired in
reprogrammed hiPSCs, but significantly
altered after differentiation. Sizes of rep-
lication domains, the temporal transi-
tions between them, the units of replica-
tion timing change, and relationships to
transcription were well conserved with
mouse cells. Moreover, replication tim-
ing profiles themselves were conserved
across regions of conserved synteny when
similar mouse and human cell types were
compared. This conservation was not
accounted for simply by conservation of
GC content, as GC content was not
nearly as well aligned to replication tim-
ing in humans as was found in mouse.
These results support the existence of
positive selection mechanisms maintain-
ing replication timing during evolution.
Intriguingly, replication timing profiles
identified a significantly greater similarity
of hESC profiles to mouse EpiSCs than
to embryologically and transcriptionally
related mESCs. Hence, replication tim-
ing profiles provide a powerful means to
reveal important distinctions between
closely related cell types. Finally, we pre-
sent the remarkable discovery that co-
ordinately replicated domains represent
chromatin in close 3Dproximity, spatially
separated from domains replicating at
alternative times by origin-suppressed

Figure 5. Replication timing predicts long-range chromatin interactions. (A) Profiles of lympho-
blastoid replication timing and a model of self-interacting regions of open or closed chromatin (Hi-
C–positive values = open; Lieberman-Aiden et al. [2009]). hNPC and hESC replication profiles are shown
alongside to illustrate cell-type specificity of the alignment. (B) The correlation between replication
timing and the Hi-C chromatin interactionmodel for each chromosome is shown, calculated as for other
epigenetic marks in Figure 4B. (C ) Speculative model synthesizing the concepts revealed in Figures 4
and 5. Themicroscope image is a mouse fibroblast, pulse-labeled with iododeoxyuridine (IdU) early in S
phase (green), subsequently pulse-labeled with chlorodeoxyuridine (CldU) late in S phase (red), and
then immunofluorescently labeled with antibodies specific to each halogenated nucleotide, as in Wu
et al. (2005) and Yokochi et al. (2009). This reveals the spatial compartmentalization of early and late
replicating DNA, which is also supported by the reduced frequency of interaction between chromo-
somal sequences in Hi-C compartments A (green) and B (red). The cartoon is a schematic view of a pair
of adjacent early (green) and late replicating (red) domains that are bounded at the early domain side by
enrichment of active chromatin marks (yellow star). The replication domains resemble fractal globules
described by (Lieberman-Aiden et al. (2009), and late and early domains are spatially separated by
a large TTR. Late replicating Hi-C compartment B has a higher frequency of interactions, indicative of
more condensed chromatin, which here is proposed to be less accessible to initiation factors for repli-
cation than early replicating Hi-C compartment A. (Green and red circles) Different protein components
of early vs. late replicating chromatin.
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completed most EtoL changes, while
most LtoE were uninitiated, revealing
a clear epigenetic distinction between
these closely related pluripotent cell types.
Interestingly, EtoL domains were enriched
for genes that were difficult to reprogram
back to the ESC-like state (Hiratani et al.
2010). Together, these results suggested
that replication timing profiles identify
megabase-sized domains of stable repres-
sion during differentiation.

To identify evolutionarily conserved
aspects of this developmentally regulated
replication timing program and its re-
lationship to other epigenetic marks in
mouse and human cell types, we con-
structed genome-wide replication profiles
for human ESC (hESC) cell lines BG01,
BG02, H7, and H9, BG01-derived human
neural precursor cells (hNPCs), human
lymphoblastoid cells, and human induced
pluripotent stem cells (hiPSCs). We dem-
onstrate that, as with mESCs, replication
timing profiles are stable and conserved
between several hESC lines, but are dra-
matically reorganized upon differentia-
tion to hNPCs and in lymphoblastoid
cells. Human and mouse replication pro-
files are well conserved within regions of
conserved synteny, and significant dif-
ferences between hESC and mESC pro-
files provide clear genome-wide confir-
mation of the EpiSC nature of hESCs. We
also identify a novel signature of histone
marks flanking the boundaries of repli-
cation domains and a striking cell-type-
specific correlation of replication timing
profiles with genome-wide chromatin in-
teraction maps (Lieberman-Aiden et al.
2009), strongly supporting the hypothesis that replication do-
mains delineate spatially separated structural and functional units
of chromosomes.

Results

Structure of replication domains in human vs. mouse
pluripotent stem cells

Genome-wide replication timing profiles were generated using
a previously described method (Hiratani et al. 2008). Briefly, cells
were pulse-labeled with 59-bromo-29-deoxyuridine (BrdU) and
separated into early and late S-phase populations by flow cytom-
etry. BrdU-substituted nascent DNA from these populations was
immunoprecipitated, differentially labeled, and cohybridized
to a high-density whole-genome oligonucleotide microarray
(NimbleGen HD2; 2.1 million probes, one probe per 1.1 kb). This
produces a ‘‘replication timing ratio’’ [=Log2(Early/Late)] for each
probe (gray points in Fig. 1A).Microarray validationwas performed
by evaluating segments of known replication timing prior to la-
beling for microarray hybridization (Supplemental Fig. S1). Since
adjacent probes replicate almost simultaneously, the quality of
individual replicate hybridizations can be evaluated statistically by

the similarity of adjacent probes (autocorrelation function, ACF)
(Supplemental Fig. S2), and rare low-quality data sets can
be eliminated. Biological replicates routinely show high correla-
tion (Supplemental Fig. S3), and profiles are consistent with those
created at higher probe density (Hiratani et al. 2008) or by deep
sequencing of similarly prepared BrdU-labeled nascent strands
(Supplemental Fig. S4; Hansen et al. 2010), allowing comprehen-
sive genome-wide analyses to be rapidly and inexpensively per-
formed on a single oligonucleotide chip. All data sets generated
in this study are freely available to view or download at http://
www.replicationdomain.org (Weddington et al. 2008).

Figure 1A shows a typical replication timing profile for a seg-
ment of chromosome 2 in hESC line BG02. The average of two
replicate (dye-swap) data sets was resolved into a replication profile
using loess smoothing (blue line), and a segmentation algorithm
(Venkatraman and Olshen 2007) was applied to identify regions
of similar replication time, which we refer to as ‘‘replication do-
mains’’ (red lines in Fig. 1A). Overall, profiles resemble those in
mouse cells (Hiratani et al. 2008, 2010), with domain sizes ranging
from a few hundred kilobases to several megabases. However, un-
like mESCs, in which early and late domains are similar sizes
(Hiratani et al. 2008), hESC late domains were significantly larger
and less numerous than early domains (Fig. 1B). Interestingly, this

Figure 1. Structure and conservation of replication domains in hESCs. (A) Replication timing profile
across a 50-Mb segment of human chromosome 2. Data shown are the average of two replicate hy-
bridizations (dye-swap) for hESC line BG02. DNA synthesized early vs. late during S phase was hybridized
to an oligonucleotide microarray, and the log2 ratio of early/late signal for each probe (probe spacing 1.1
kb) across the genomewas plotted on the y-axis vs.mapposition on the x-axis. (Gray dots) Rawdata. (Blue
line) Loess-smoothed data. Replication domains (red lines) and boundaries (dotted lines) were identified
by circular binary segmentation (VenkatramanandOlshen2007). (B) Table (top) and box plots (bottom) of
the sizes of early (RT > 0) vs. late (RT < 0) replication domains in hESCs (BG02), mESCs (D3), andmEpiSCs,
with the ratio of late to early domain sizes. Horizontal bars for each box plot represent the 10th, 25th, 50th
(median), 75th, and 90th percentiles. (C ) Identification of timing transition regions (TTRs; blue and yellow
highlight alternating TTRs) from loess-smoothed RT profiles. (Green) BG02 hESC. (D) Analysis of repli-
cation timing differential vs. physical distance for TTRs >100 kb in BG02 hESCs and D3 mESCs.
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Human chromatin is characterised by 4 epigenetic states at scale 100 kbp "
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Characterisation of chromatin states in K562"
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4 chromatin states in all differentiated human cell types  "
Julienne, PLoS Computational Biology (2013, 2015) "

Hmec - Mammary Epithelial Cells K562 - myelogenous leukemia line 

Monocd14ro1746 - Monocyte CD14+ GM12878- lymphoblastoid cell line 



Chromatin states are replicated at different times "
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Embryonic stem cell specific chromatin organization"
Julienne, PLoS Computational Biology (2015)"
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Figure 1. MRT and GC distributions in the four prevalent chromatin states of pluripotent H1hesc cell line: EC1 (light pink), EC2 (light orange), EC3 (light green),
EC4 (light blue), and of three differentiated cell lines (K562, Gm12878, Nhdfad): C1 (pink), C2 (orange), C3 (green), C4 (blue). First row: Boxplots (between
min and max) of MRT computed in 100-kb non-overlapping windows per chromatin state. Replication data in BG02, Gm06990 and BJ were used as surrogates of
replication data in H1hesc, Gm12878 and Nhdfad respectively. Second row: Boxplots (between min and max) of GC content computed in 100-kb non-overlapping
windows per chromatin state. Adapted from Julienne et al. [91].

for a complementary study of the coherence between promoter
activity and large-scale chromatin enviroment.) This compar-
ison was very instructive since it revealed the existence of a
strong correlation between the four prevalent chromatin states
and the MRT, and this for both the pluripotent (H1hesc) and
the differentiated (K562, Gm12878, Nhdfad) cell lines (Fig. 1)
[89, 91]. The transcriptionally active euchromatin states EC1
and C1 replicate early in the S-phase in agreement with the pre-
vious studies of open chromatin marks in human and mouse
[30, 32, 34, 61, 62, 116]. The bivalent EC2 state and the dif-
ferentiated polycomb repressed C2 facultative heterochromatin
state both replicate slightly later in mid-S phase, as recently con-
firmed by the sequencing of nascent DNA strands synthetized at
replication origins in human [117]. Note that this result contrasts
with previous observation that at a few kb scale, the repressive
chromatin mark H3K27me3 highly correlates to late replication
[62, 118]. The silenced unmarked EC3 and C3 states as well as
the pluripotent chromatin states EC4 prepared to heterochromati-
zation and the HP1-associated heterochromatin state C4 all repli-
cate much later up to the end of S-phase. Interestingly, whereas
(EC1, C1) and (EC2, C2) have a clearly different MRT, they have
almost the same high mean GC content as expected for gene-
rich states in high GC isochores (Fig. 1) [19, 20, 119–121]. In
contrast, a definite correlation between MRT and mean GC con-
tent was observed for the late replicating chromatin states. When
C3 replicates before C4 (K562, Nhdfad), C3 has a higher GC
content and vice-versa when C3 (EC3) replicates after C4 (EC4)
(Gm12878, H1hesc) (Fig. 1). There is however a major differ-

ence between MRT of pluripotent and differentiated cell lines
[91]. EC4 exhibits a much wider MRT distribution than C4 with
a non-negligible proportion of early replicating (MRT<0.5) 100-
kb loci, namely 35.7% (H1hesc) as compared to 5.5% (K562),
19.2% (Gm12878) and 4.2% (Nhdfad). This is the confirmation
of the highly dynamic character of pluripotent chromatin states
that are sufficiently accessible and open to enable origin firing
and early replication. In that respect, the MaOris firing early in
EC4 chromatin state at U/N-domain borders specific to H1hesc,
were shown to play a fundamental role in the loss of pluripotency
and lineage commitment [91].

3 Constant Timing Regions: synchronous units of multiple

origin firing

3.1 Chromatin state organization inside early and late CTRs

Once mapped to the genome (Fig. 2), the four prevalent chro-
matin states EC1, EC2, EC3 and EC4 in the pluripotent H1hesc
cell line have similar genome coverages as also observed for the
chromatin states C1, C2, C3 and C4 in differentiated cell lines
(see Table 1 in Ref. [91]). However, when looking at the length
distribution of blocks of adjacent 100-kb loci in the same chro-
matin state, whereas EC1, EC2, EC3 and EC4 blocks have simi-
lar length distributions, the HP1-associated heterochromatin state
C4 has a block length distribution that displays a fat tail not ob-
served in the C1, C2 and C3 block length distributions which
explains that, for example, in K562, the mean C4 block length
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Figure 1. MRT and GC distributions in the four prevalent chromatin states of pluripotent H1hesc cell line: EC1 (light pink), EC2 (light orange), EC3 (light green),
EC4 (light blue), and of three differentiated cell lines (K562, Gm12878, Nhdfad): C1 (pink), C2 (orange), C3 (green), C4 (blue). First row: Boxplots (between
min and max) of MRT computed in 100-kb non-overlapping windows per chromatin state. Replication data in BG02, Gm06990 and BJ were used as surrogates of
replication data in H1hesc, Gm12878 and Nhdfad respectively. Second row: Boxplots (between min and max) of GC content computed in 100-kb non-overlapping
windows per chromatin state. Adapted from Julienne et al. [91].

for a complementary study of the coherence between promoter
activity and large-scale chromatin enviroment.) This compar-
ison was very instructive since it revealed the existence of a
strong correlation between the four prevalent chromatin states
and the MRT, and this for both the pluripotent (H1hesc) and
the differentiated (K562, Gm12878, Nhdfad) cell lines (Fig. 1)
[89, 91]. The transcriptionally active euchromatin states EC1
and C1 replicate early in the S-phase in agreement with the pre-
vious studies of open chromatin marks in human and mouse
[30, 32, 34, 61, 62, 116]. The bivalent EC2 state and the dif-
ferentiated polycomb repressed C2 facultative heterochromatin
state both replicate slightly later in mid-S phase, as recently con-
firmed by the sequencing of nascent DNA strands synthetized at
replication origins in human [117]. Note that this result contrasts
with previous observation that at a few kb scale, the repressive
chromatin mark H3K27me3 highly correlates to late replication
[62, 118]. The silenced unmarked EC3 and C3 states as well as
the pluripotent chromatin states EC4 prepared to heterochromati-
zation and the HP1-associated heterochromatin state C4 all repli-
cate much later up to the end of S-phase. Interestingly, whereas
(EC1, C1) and (EC2, C2) have a clearly different MRT, they have
almost the same high mean GC content as expected for gene-
rich states in high GC isochores (Fig. 1) [19, 20, 119–121]. In
contrast, a definite correlation between MRT and mean GC con-
tent was observed for the late replicating chromatin states. When
C3 replicates before C4 (K562, Nhdfad), C3 has a higher GC
content and vice-versa when C3 (EC3) replicates after C4 (EC4)
(Gm12878, H1hesc) (Fig. 1). There is however a major differ-

ence between MRT of pluripotent and differentiated cell lines
[91]. EC4 exhibits a much wider MRT distribution than C4 with
a non-negligible proportion of early replicating (MRT<0.5) 100-
kb loci, namely 35.7% (H1hesc) as compared to 5.5% (K562),
19.2% (Gm12878) and 4.2% (Nhdfad). This is the confirmation
of the highly dynamic character of pluripotent chromatin states
that are sufficiently accessible and open to enable origin firing
and early replication. In that respect, the MaOris firing early in
EC4 chromatin state at U/N-domain borders specific to H1hesc,
were shown to play a fundamental role in the loss of pluripotency
and lineage commitment [91].

3 Constant Timing Regions: synchronous units of multiple

origin firing

3.1 Chromatin state organization inside early and late CTRs

Once mapped to the genome (Fig. 2), the four prevalent chro-
matin states EC1, EC2, EC3 and EC4 in the pluripotent H1hesc
cell line have similar genome coverages as also observed for the
chromatin states C1, C2, C3 and C4 in differentiated cell lines
(see Table 1 in Ref. [91]). However, when looking at the length
distribution of blocks of adjacent 100-kb loci in the same chro-
matin state, whereas EC1, EC2, EC3 and EC4 blocks have simi-
lar length distributions, the HP1-associated heterochromatin state
C4 has a block length distribution that displays a fat tail not ob-
served in the C1, C2 and C3 block length distributions which
explains that, for example, in K562, the mean C4 block length
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(12, 13). Interestingly, chromosome 18, which is
small but gene-poor, does not interact frequently
with the other small chromosomes; this agrees
with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).

We then zoomed in on individual chromo-
somes to explore whether there are chromosom-
al regions that preferentially associate with each
other. Because sequence proximity strongly in-
fluences contact probability, we defined a normal-

ized contact matrixM* by dividing each entry in
the contact matrix by the genome-wide average
contact probability for loci at that genomic dis-
tance (10). The normalized matrix shows many
large blocks of enriched and depleted interactions,
generating a plaid pattern (Fig. 3B). If two loci
(here 1-Mb regions) are nearby in space, we
reasoned that they will share neighbors and have
correlated interaction profiles. We therefore de-
fined a correlation matrix C in which cij is the

Pearson correlation between the ith row and jth
column of M*. This process dramatically sharp-
ened the plaid pattern (Fig. 3C); 71% of the result-
ing matrix entries represent statistically significant
correlations (P ≤ 0.05).

The plaid pattern suggests that each chromo-
some can be decomposed into two sets of loci
(arbitrarily labeled A and B) such that contacts
within each set are enriched and contacts between
sets are depleted.We partitioned each chromosome

Fig. 1. Overview of Hi-C. (A)
Cells are cross-linked with form-
aldehyde, resulting in covalent
links between spatially adjacent
chromatin segments (DNA frag-
ments shown in dark blue, red;
proteins, which canmediate such
interactions, are shown in light
blue and cyan). Chromatin is
digested with a restriction en-
zyme (here, HindIII; restriction
site marked by dashed line; see
inset), and the resulting sticky
ends are filled in with nucle-
otides, one of which is bio-
tinylated (purple dot). Ligation
is performed under extremely
dilute conditions to create chi-
meric molecules; the HindIII
site is lost and an NheI site is
created (inset). DNA is purified
and sheared. Biotinylated junc-
tions are isolated with strep-
tavidin beads and identified by
paired-end sequencing. (B) Hi-C
produces a genome-wide con-
tactmatrix. The submatrix shown
here corresponds to intrachro-
mosomal interactions on chromo-
some 14. (Chromosome 14 is
acrocentric; the short arm is
not shown.) Each pixel represents all interactions between a 1-Mb locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick
marks appear every 10 Mb. (C and D) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range
from 0 to 50 reads] and with results using a different restriction enzyme [(D), NcoI, range from 0 to 100 reads].

A

B C D

Fig. 2. The presence and orga-
nization of chromosome territo-
ries. (A) Probability of contact
decreases as a function of ge-
nomic distance on chromosome 1,
eventually reaching a plateau at
~90 Mb (blue). The level of in-
terchromosomal contact (black
dashes) differs for different pairs
of chromosomes; loci on chromo-
some 1 are most likely to inter-
act with loci on chromosome 10
(green dashes) and least likely
to interact with loci on chromo-
some 21 (red dashes). Interchro-
mosomal interactions are depleted
relative to intrachromosomal in-
teractions. (B) Observed/expected
number of interchromosomal con-
tacts between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes tend to interact
more with one another, suggesting that they cluster together in the nucleus.
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of the genome inferred from Hi-C. More gen-
erally, a strong correlation was observed between
the number of Hi-C readsmij and the 3D distance
between locus i and locus j as measured by FISH
[Spearman’s r = –0.916, P = 0.00003 (fig. S3)],
suggesting that Hi-C read count may serve as a
proxy for distance.

Upon close examination of the Hi-C data, we
noted that pairs of loci in compartment B showed
a consistently higher interaction frequency at a
given genomic distance than pairs of loci in com-
partment A (fig. S4). This suggests that compart-
ment B is more densely packed (15). The FISH
data are consistent with this observation; loci in
compartment B exhibited a stronger tendency for
close spatial localization.

To explore whether the two spatial compart-
ments correspond to known features of the ge-
nome, we compared the compartments identified
in our 1-Mb correlation maps with known genetic
and epigenetic features. Compartment A correlates
strongly with the presence of genes (Spearman’s
r = 0.431, P < 10–137), higher expression [via
genome-wide mRNA expression, Spearman’s
r = 0.476, P < 10–145 (fig. S5)], and accessible
chromatin [as measured by deoxyribonuclease I
(DNAseI) sensitivity, Spearman’s r = 0.651, P
negligible] (16, 17). Compartment A also shows
enrichment for both activating (H3K36 trimethyl-
ation, Spearman’s r = 0.601, P < 10–296) and
repressive (H3K27 trimethylation, Spearman’s
r = 0.282, P < 10–56) chromatin marks (18).

We repeated the above analysis at a resolution
of 100 kb (Fig. 3G) and saw that, although the
correlation of compartment A with all other ge-
nomic and epigenetic features remained strong
(Spearman’s r > 0.4, P negligible), the correla-
tion with the sole repressive mark, H3K27 trimeth-
ylation, was dramatically attenuated (Spearman’s
r = 0.046, P < 10–15). On the basis of these re-
sults we concluded that compartment A is more
closely associated with open, accessible, actively
transcribed chromatin.

We repeated our experiment with K562 cells,
an erythroleukemia cell line with an aberrant kar-
yotype (19). We again observed two compart-
ments; these were similar in composition to those
observed in GM06990 cells [Pearson’s r = 0.732,

Fig. 4. The local packing of
chromatin is consistent with the
behavior of a fractal globule. (A)
Contact probability as a function
of genomic distance averaged
across the genome (blue) shows
a power law scaling between
500 kb and 7 Mb (shaded re-
gion) with a slope of –1.08 (fit
shown in cyan). (B) Simulation
results for contact probability as
a function of distance (1 mono-
mer ~ 6 nucleosomes ~ 1200
base pairs) (10) for equilibrium
(red) and fractal (blue) globules.
The slope for a fractal globule is
very nearly –1 (cyan), confirm-
ing our prediction (10). The slope
for an equilibrium globule is –3/2,
matching prior theoretical expec-
tations. The slope for the fractal
globule closely resembles the slope
we observed in the genome. (C)
(Top) An unfolded polymer chain,
4000 monomers (4.8 Mb) long.
Coloration corresponds to distance
from one endpoint, ranging from
blue to cyan, green, yellow, or-
ange, and red. (Middle) An equi-
librium globule. The structure is
highly entangled; loci that are
nearby along the contour (sim-
ilar color) need not be nearby in
3D. (Bottom) A fractal globule.
Nearby loci along the contour
tend to be nearby in 3D, leading
to monochromatic blocks both
on the surface and in cross sec-
tion. The structure lacks knots.
(D) Genome architecture at three
scales. (Top) Two compartments,
corresponding to open and closed
chromatin, spatially partition the
genome. Chromosomes (blue, cyan,
green) occupy distinct territories.
(Middle) Individual chromosomes
weave back and forth between
the open and closed chromatin
compartments. (Bottom) At the
scale of single megabases, the chromosome consists of a series of fractal globules.
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F(s)= k.sα"
"

"
"

Non equilibrium fractal globule:"
α = -1"

"
"
Equilibrium globule:"

 α = -df/dw"
df: geometrical fractal dimension"

df=3: space-filling state"
dw: dynamical fractal dimension"

dw=2: normal diffusion"

α = -3/2"
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Structural organization of chromatin domains in K562"

ü  Exponent α = -1 is specific to 3+4 domains"

ü  1+2 domains compatible with α = -3/2"

ü  Segregation between 1+2 and 3+4 domains"



1+2 vs 1+2 interactions"
 
1+2 vs 3+4 interactions"
"
3+4 vs 3+4 interactions	
  

Boulos, FEBS Letters (2015)"

Structural organization of chromatin domains in IMR90"

ü  Exponent α = -1 is specific to 3+4 domains"
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ü  Segregation between 1+2 and 3+4 domains"
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Structural organization of chromatin domains in IMR90"

3+4 domains associated to lamina at nuclear envelop è  df=2: plane-filling state"
"
2D equilibrium globule: α = -df/dw"

geometrical fractal dimension: df=2 plane-filling state"
dynamical fractal dimension:    dw=2: normal diffusion"

è α = -1"
"
Measurement in mouse embryonic fibroblast: "

df = 2.2, dw = 2.6 (subdiffusion) è α = -0.85"
Bancaud, EMBO Journal (2009); Nucleic Acids Research (2012)"



Segmentation of the genome in replication 
timing deciles"
"
Early (D1) vs early (D1) interactions"
"
Mid-early (D4) vs mid-early (D4) interactions"
"
Mid-late (D7) vs mid-late (D7) interactions"
"
Late (D10) vs late (D10) interactions"

Boulos, FEBS Letters (2015)"

Timing as a measure of the radial 
positioning within the nucleus"
"
Consistently with the change of spatial 
distribution of replication foci during 
S-phase from central to peripheral 
positioning "

Structural organization and the DNA replication program in IMR90"
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3+4 vs 3+4 interactions	
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Structural organization of chromatin domains in ES cells"

ü  All domains compatible with α = -3/2"

ü  Weak segregation between 1+2 and 3+4 
domains"



Segmentation of the genome in replication 
timing deciles"
"
Early (D1) vs early (D1) interactions"
"
Mid-early (D4) vs mid-early (D4) interactions"
"
Mid-late (D7) vs mid-late (D7) interactions"
"
Late (D10) vs late (D10) interactions"

Boulos, FEBS Letters (2015)"
Structural organization and the DNA replication program in ES cells"
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All timing domains in 3D space"
"
Spatial organization of chromatin 
domains related to cell fate decision ?"



Quantitative Live Imaging of Endogenous DNA Replication in Mammalian Cells  
Burgess, PLoS One (2012)"

Dynamics of replication foci during S-phase in differentiated cells"



Quantitative Live Imaging of Endogenous DNA Replication in Mammalian Cells  
Burgess, PLoS One (2012)"

Dynamics of replication foci during S-phase in differentiated cells"



Epigenetically controlled functional and structural organization  
of the human genome"

A cascade model for replication origin activation through 4 chromatin 
states along U-domains"

Hyrien, Journal of Molecular Biology (2013) "
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Baker, PLoS Computational Biology (2012)"

Replication domains and chromatin conformation domains"

Replication timing U-domains appear as 
large scale structural units"
"

Replication domain boundaries share a 
near one-to-one correlation with 
topologically associating domains (TAD) 
boundaries" Dixon, Nature (2012)"

Pope, Nature (2014)"

We included replication-timing data generated by Repli-seq (see Methods
for details), and other human data sets for a total of 42 human data sets
(Extended Data Table 1). We compared calls from replicate data sets to
measure the technical variability with which replication domain bound-
aries were defined using our methods (Extended Data Fig. 3). Since both
Repli-chip (microarray analysis, see Methods for details) and Repli-seq
protocols analyse cell populations and use replicated fragments that are
several hundred kilobases (due to labelling time), differences in the breadth
and depth of sequencing or array data point spacing along the chromo-
some have little effect on resolution2,4. Accordingly, Repli-chip and Repli-
seq data from the same cell types demonstrated a high degree of overlap
between calls (Extended Data Fig. 3).

To determine the stability of replication domains during development,
we generated a list of unique replication domain boundaries and classi-
fied each boundary as either ‘TTR-present’ or ‘TTR-absent’ in each avail-
able cell type (Fig. 2a). By examining the overlap of TAD boundaries
with the compiled list of replication domain boundaries, we found that
nearly all TAD boundaries corresponded to a replication domain bound-
ary (Fig. 2b). Importantly, a majority corresponded to replication domain
boundaries that were TTR-absent in cells where the TADs were mapped
(IMR90 cells), supporting the conclusion that TADs are stable during

development and function as replication domains. The fraction of TAD
boundaries that did not align with any replication domain boundary is
expected due to the portion of the genome with constitutive replication
timing in the cell types for which data were available. Although nearly
all TAD boundaries corresponded to replication domain boundaries, the
reciprocal comparison indicated that many replication domain bound-
aries did not coincide with a corresponding TAD boundary (Extended
Data Fig. 4). Although alignments of either TTR-present or TTR-absent
replication domain boundaries to TAD boundaries were statistically sig-
nificant (Fig. 2c), alignment to TTR-absent replication domain bound-
aries was not as strong (Fig. 2c), explained by incomplete TAD annotation
and the observation that small TTRs lack a detectable relationship with
TADs (Extended Data Fig. 5 and Supplementary Discussion).

To corroborate TAD stability across cell types, we also compared TAD
calls to high-resolution chromosome conformation capture-on-chip (4C)
interaction frequency data across a replication domain that switches rep-
lication timing during mouse ESC differentiation to neural precursors22.
In ESCs, where TTRs flank this domain, TAD boundaries and marked
decreases in 4C interaction frequency are apparent near both replica-
tion domain boundaries (ESC panels in Fig. 2d). However, in differen-
tiated cells, where the replication domain is replicated at the same time
as its neighbours, a TAD boundary is no longer called at the leftmost
replication domain boundary, even though a sharp decrease in interac-
tion frequency is detected by the higher-resolution 4C (NPC and cortex
panels in Fig. 2d). Thus, the TAD boundary at this cell-type-specific TTR
is stable during differentiation even though it is not identified as such
by this Hi-C data set, providing additional evidence that TAD annota-
tion is incomplete. To demonstrate the functional relationship between
TADs and replication domains, we also compared the positions of TADs
to replication-timing shifts observed previously at points of chromo-
some rearrangement7. Figure 2e shows a rearrangement that joined
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Figure 1 | Early timing transition region borders align with topologically
associating domains and lamina associated domains. a, Constant replication
timing segments (CTRs) flanking a timing transition region (TTR) are
illustrated. b, The average and range of 8,433 aligned TTRs from 5 mESC data
sets (top). Vertical axis values are log2 ratios of early over late signal intensities,
with more positive values indicating earlier replication timing (and more
negative values indicating later timing). Average directionality index values
across the same TTRs (bottom). Transition from upstream to downstream bias
indicates a topologically associating domain (TAD) boundary near the early
border. c, Individual aligned TTRs arranged by distance between early or late
borders and upstream to downstream bias transitions. d, Replication timing
across individual mESC TADs or lamina associated domains (LADs). UD,
U-shaped replication-timing domains.
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Replication domain borders are giant hubs in the chromatin conformation 
graph in K562"

Co-localisation matrix as the adjacency matrix of 
the chromatin interaction graph"

Figure 4.1 – A partir de la matrice Hi-C expérimentale du chromosome 11
de l’homme, illustration des étapes successives de l’algorithme Force Atlas 2
(présenté dans le chapitre 2) pour aboutir à l’état déquilibre. Initialement les
sommets sont placés aléatoirement dans un carré. Nous simulons l’évolution d’un système
physique en présence de forces d’attraction et de répulsion entre les noeuds. La dynamique
de ce système converge vers une structure en forme de ”ver” representative de l’importance
des fréquences d’interactions à courtes distances génomiques.

Figure 4.2 – L’état d’équilibre : une structure en forme de ver. Les points sont
coloriés en fonction de leurs positions le long du chromosome 11 de l’homme : plus la
couleur est foncée plus nous avançons le long du chromosome dans la direction 50 ! 30.

4.2 Structure du graphe à l’équilibre

Comme cela est illustré sur la figure 4.2 pour le chromosome 11 de l’homme, nous obtenons
comme état d’équilibre une structure en forme de ver. Les points ne sont plus placés
de façon aléatoire dans le plan de représentation comme dans l’état initial, mais selon

36

Replication domain"
borders  and centers"

Intra-chromosomal betweenness 
centrality along replication 
domains"

Long- (>4Mb) and short- 
(<4Mb) distance interactions"

Boulos, Physical Review Letters (2013)"



share this feature of classical insulators. A classical boundary element
is also known to stop the spread of heterochromatin. Therefore, we
examined the distribution of the heterochromatin mark H3K9me3 in
humans and mice in relation to the topological domains12,13. Indeed,
we observe a clear segregation of H3K9me3 at the boundary regions
that occurs predominately in differentiated cells (Fig. 2d, e and
Supplementary Fig. 11). As the boundaries that we analysed in

Fig. 2d are present in both pluripotent cells and their differentiated
progeny, the topological domains and boundaries appear to pre-mark
the end points of heterochromatic spreading. Therefore, the domains
do not seem to be a consequence of the formation of heterochromatin.
Taken together, the above observations strongly suggest that the topo-
logical domain boundaries correlate with regions of the genome dis-
playing classical insulator and barrier element activity, thus revealing a
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Figure 1 | Topological domains in themouse ES cell genome. a, Normalized
Hi-C interaction frequencies displayed as a two-dimensional heat map
overlayed on ChIP-seq data (from Y. Shen et al., manuscript in preparation),
directionality index (DI), HMM bias state calls, and domains. For both
directionality index andHMM state calls, downstream bias (red) and upstream
bias (green) are indicated. b, Schematic illustrating topological domains and
resulting directional bias. c, Distribution of the directionality index (absolute
value, in blue) compared to random (red).d, Mean interaction frequencies at all
genomic distances between 40 kb to 2Mb. Above 40 kb, the intra- versus inter-
domain interaction frequencies are significantly different (P, 0.005,Wilcoxon
test). e, Box plot of all interaction frequencies at 80-kb distance. Intra-domain
interactions are enriched for high-frequency interactions. f–i, Diagramof intra-
domain (f) and inter-domain FISH probes (g) and the genomic distance
between pairs (h). i, Bar chart of the squared inter-probe distance (from ref. 6)
FISH probe pairs. mESC, mouse ES cell. Error bars indicate standard error
(n5 100 for each probe pair).
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Figure 2 | Topological boundaries demonstrate classical insulator or
barrier element features. a, Two-dimensional heatmap surrounding theHoxa
locus and CS5 insulator in IMR90 cells. b, Enrichment of CTCF at boundary
regions. c, The portion of CTCF binding sites that are considered ‘associated’
with a boundary (within 620-kb window is used as the expected uncertainty
due to 40-kb binning). d, Heat maps of H3K9me3 at boundary sites in human
and mouse. e, UCSC Genome Browser shot showing heterochromatin
spreading in the human ES cells (hESC) and IMR90 cells. The two-dimensional
heat map shows the interaction frequency in human ES cells. f, Heat map of
LADs (from ref. 14) surrounding the boundary regions. Scale is the log2 ratio of
DNA adenosine methylation (Dam)–lamin B1 fusion over Dam alone (Dam–
laminB1/Dam).
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2 STATISTICAL FRAMEWORK

2.1 Statistical modeling

We first define our statistical model. Because the Hi-C data
matrix is symmetric, we only consider its upper triangular part
denoted by Y, in which Yi;j ð1 " i " j " nÞ stands for the inten-
sity of the interaction between positions i and j. We suppose
that all intensities are independent random variables with
distribution

Yi;j $ pð%;!i;jÞ; !i;j=EðYi;jÞ ð1Þ

where the matrix of means ð!i;jÞ1"i"j"n is an upper triangular
block diagonal matrix. An example of such a matrix is displayed
in Figure 1 (left). Namely, we define the (half) diagonal blocks
D*

k ðk=1; . . .K*Þ as

D*
k=fði; jÞ : t*k&1 " i " j " t*k & 1g ð2Þ

where 1=t*05t*15 % % %5t*K*=n+1 stand for the true
block boundaries and K* for the true number of blocks. We
further define E*

0 as the set of positions lying outside these
blocks:

E*
0=fði; jÞ : 1 " i " j " ng \ [D*

k

! "
; ð3Þ

where A denotes the complement of the set A. The parameters
ð!i;jÞ are then supposed to be block-wise constant:

!i;j=!*
k if ði; jÞ 2 D*

k; k=1; . . . ;K*;

=!*
0 if ði; jÞ 2 E*

0:
ð4Þ

As for the distribution pð%;!i;jÞ defined in (1), we will consider
Gaussian, Poisson or negative binomial distributions:

ðGÞ : Yi;j $N ð!i;j; "
2Þ;

ðPÞ : Yi;j $Pð!i;jÞ;

ðBÞ : Yi;j $NBð!i;j;#Þ:

ð5Þ

The Gaussian modeling (G) will be typically used for
dealing with normalized Hi-C data and the others [(P)
and (B)] to deal with raw Hi-C data, which are count
data. In Models (G) and (B), note that the parameters
" and # are assumed to be constant and depend neither on
i nor on j.

2.2 Inference

We now consider the estimation of the block boundaries
ðt*kÞ0"k"K* in the case where the number of blocks K* is known.
Model selection issues will be discussed in Section 2.3. We con-
sider a maximum likelihood approach. For an arbitrary set of
blocks Dk, with boundaries ðtkÞ0"k"K and parameters ð!kÞ0"k"K,
the log-likelihood of the data satisfying (1) and (4) writes

‘ðYÞ=
X

1"i"j"n
log pðYi;j;!ijÞ

=
XK

k=1

X

ði;jÞ2Dk

log pðYi;j;!kÞ+
X

ði;jÞ2E0

log pðYi;j;!0Þ;

whereDk and E0 are defined as in (2) and (3), respectively, except
that the t*ks are replaced by the tks.

Parameter estimation For given boundaries t0; . . . ; tK, the esti-
mation of the block parameters !k is straightforward for each of
the distribution considered in (5). Denoting ‘kðYi;jÞ and ‘0ðYi;jÞ
the contribution of each data point to the log-likelihood (up to
some constants), in Dk and E0, respectively, we get, for known
parameters # and !0,

‘Gk ðYi;jÞ=&ðYi;j & YkÞ2; ‘G0 ðYi;jÞ=&ðYi;j & !0Þ2;

‘Pk ðYi;jÞ=Yi;j log ðYkÞ & Yk; ‘
P
0 ðYi;jÞ=Yi;j log ð!0Þ & !0;

‘Bk ðYi;jÞ=&# log ð#+YkÞ+Yi;j log ðYk=ð#+YkÞÞ;

‘B0 ðYi;jÞ=&# log ð#+!0Þ+Yi;j log ð!0=ð#+!0ÞÞ;

where Yk=
X
ði;jÞ 2 Dk

Yi;j=jDkj, for k in f1; . . . ;Kg; jAj denoting
the cardinality of the set A.

Dynamic programming algorithm Let us now consider the esti-
mation of the boundaries t0; . . . tK. The objective function can be
rewritten as follows:

‘ðYÞ=
XK

k=1

X

ði;jÞ 2 Dk

‘kðYi;jÞ+
X

ði;jÞ 2 E0

‘0ðYi;jÞ

=
XK

k=1

X

ði;jÞ 2 Dk

‘kðYi;jÞ+
X

ði;jÞ 2 Rk

‘0ðYi;jÞ
 !

where Rk corresponds to the rectangle above Dk (see Fig. 1),
namely, Rk=fði; jÞ : tk&1 " j " tk & 1; 1 " i " tk&1 & 1g. (Note
that R1 is empty.) Note that the rectangles Rk do not overlap
and that E0=[

k
Rk, so the last equality holds. The important

point here is that the objective function is now additive with
respect to the successive intervals ftk&1; . . . tk & 1g; 1 " k " K.
Defining the gain function

Cðtk&1; tk & 1Þ=
X

ði;jÞ 2 Dk

‘kðYi;jÞ+
X

ði;jÞ 2 Rk

‘0ðYi;jÞ; ð6Þ

we have to maximize w.r.t. 1=t05t15 . . .5tK=n+1

XK

k=1

Cðtk&1; tk & 1Þ;Fig. 1. Examples of block diagonal and extended block diagonal matrices
ð!i;jÞ1"i"j"n. Left: Model (4), right: Model (9)
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pinpoint genomic loci and changes in the interaction that are
important for function.

To the best of our knowledge, there is currently no available
methodology for performing change point analysis and com-
parison, as presented here, or for following the entire pipeline
of correction, segmentation and comparison of Hi-C data. Here,
we address this need and provide the methods and software
(chromoR, see Software implementation section) required for
analysing chromosomal interaction data (Fig. 1):

(1) We explain how wavelet variance stabilization can
address the multi-scaled variance in Hi-C coverage and apply
this method to correct Hi-C contact maps (Fig. 1c, Methods:
Section 1).

(2) We show that wavelet change point analysis is a useful
tool for segmentation of Hi-C 1D contact profiles and present
its application for detecting chromosomal aberrations (Fig. 1f,
Methods: Section 2).

(3) We describe how the Bayes factor can be adapted for
comparison of Hi-C contact maps and provide a comparison
methodology for detecting significant changes (Fig. 1h, Methods:
Section 3).

These methods provide together a comprehensive solution
while independently addressing one problem at a time. In
addition, their output can be further coupled with existing
tools that address related tasks, such as visual comparison11

and integration12 of Hi-C data (Fig. 1j).
In the next sections we provide the technical details of our

methods followed by key examples and tests used to verify their
performance. For the sake of space we provide additional
information in the ESI† (referred in the text).

Methods
In this section we formalize the problems of correcting bias in
Hi-C contact maps, comparing them and segmenting 1D contact
profiles. We first provide a brief description of variance stabilization
and change point analysis and explain how they can be applied to
solve bias correction and segmentation, respectively. Specifically, we
propose here wavelet statistics to address these tasks, as they (and in
particular, wavelet-based change point detection and variance
stabilization) were previously successfully applied to various
real-life and biological problems such as genome sequence
analysis, protein structure and microarray data analysis13 (some
notable examples are given in ref. 14–17). We next describe how the
Bayes factor18 can be used for comparing Hi-C contact maps, so
that regions that interact significantly differently can be detected.
Finally, we provide details about the software implementation of
our methods, made available as an R package (chromoR).

Variance stabilization of Hi-C coverage using the
Haar–Fisz Transform

Hi-C coverage varies depending on different factors2 that may
act at different scales. As a result, the interaction frequency
between 2 regions may be an over- or under-representation of the
true interaction frequency. We would like to remove noise that is
a result of variance in coverage while taking into consideration
the multiple scales at which variance may appear.

The Haar–Fisz Transform (HFT)19,20 decomposes Poisson
distributed observations into coefficients in multiple scales.
These coefficients are Gaussian distributed variables,19,20 so
that the variance no longer depends on l, the parameter
of distribution.20 Moreover, wavelet shrinkage methods for
Gaussian noise can now be applied for de-noising,21 by filtering
coefficients (at different scales) that are most likely to consist

Fig. 1 Main steps of the analysis of chromosomal interaction data. We
offer methods and software for analysing chromosomal interaction data.
First, contact maps are generated from Hi-C data (a and b). Correction for
noise and bias is then carried out with variance stabilization (c). Next, 1D
contact profiles are generated from corrected contact maps (d and e) and
segmented with change point analysis (f). The resulting segmentation
could be used for detecting chromosomal aberrations (g, cytogenetic
detection) as shown in this paper. Corrected contact maps are further
compared, using Bayes factor analysis, in order to detect regions that are
differentially interacting (h and i). The output of this comparison could
provide insights into functional spatial markers and further visualized and
integrated with tools developed for this purpose11,12 (j).
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Fig. 3. (A) Hi-C contact map corresponding to intra-chromosome interactions in a 16 Mb long fragment of human chromosome 11 (70.1–86.1 Mb). Top panel: MRT profiles in
H1hesc (BG02, see Fig. 1) (blue) [34] and IMR90 (red) [123]. Bottom panel: Hi-C interaction frequency in H1hesc (under the diagonal) [70] and in IMR90 (above the diagonal)
[70]; on the left of (resp. above) the interaction frequency map are represented 100 kb windows belonging to 500 kb EC1 + EC2 (resp. C1 + C2) blocks (pink) and to 1 Mb
block(s) with a coverage in EC1 + EC2 (resp. C1 + C2) higher than 60% (light pink); similarly are also represented 100 kb windows belonging to 500 kb EC3 + EC4 (resp.
C3 + C4) blocks (green) and to 1 Mb block(s) with a coverage in EC3 + EC4 (resp. C3 + C4) higher than 60% (light green). (B) Same as in (A) but for a longer 40 Mb fragment of
human chromosome 2 (0.1–40.1 Mb). The green rectangles illustrate long-range interactions between late replicating C3 + C4 blocks in IMR90. The pink rectangle illustrates
the weakest interactions between early replicating C1 + C2 blocks. (C) Mean intra-chromosome Hi-C contacts vs genomic distance (logarithmic representation) between pairs
of loci located in the same (dashed curve) or in different (solid curve) early active (pink) or late inactive (green) CTRs of length L P 1 Mb in H1hesc, IMR90, K562 and
Gm06990 from left to right. The black straight lines correspond to the power-law behavior Pc ! s"a (Eq. (2)) predicted by the ‘‘equilibrium’’ globule model (a = 3/2) [124–127]
and the fractal globule model (a = 1) [39,124,128]. (D) Mean intra-chromosome Hi-C contacts vs genomic distance (logarithmic representation) between pairs of loci
belonging to the earliest replicating first decile (red), and between loci in the latest (10th) decile and loci in the 10th (dark green), 7th (green), 4th (light green) and 1st (blue)
timing deciles. (E) Box plots of CTCF and Lamina B1 distributions computed in 100 kb windows in early replicating active EC1 + EC2 (resp. C1 + C2) CTRs (pink) and in late
replicating EC3 + EC4 (resp. C3 + C4) CTRs (green) in the human cell line H1hesc (resp. IMR90); Box plots are displayed between the first and the last decile of the
distributions. CTCF chromatin immunoprecipitation data for H1hesc and IMR90 (Nhdfad) were downloaded from the ENCODE project [123]. Lamina B1 chromatin
immunoprecipitation data for H1hesc (SHEF-2) and IMR90 (TIG3) were retrieved from Refs. [129] and [130], respectively. The Hi-C data in (C) for the cell lines K562 and
Gm06990 were retrieved from Ref. [39] and were normalized to 10 million reads.

6 R.E. Boulos et al. / FEBS Letters xxx (2015) xxx–xxx
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Figure 5.3. Multi-scale intervals-communities. Multi-scale community structure along
20 Mb of human chromosome 12 in H1 ES (B) and IMR90 (A) cell lines. At each scale
the intervals-communities are represented by a colored segment (colors were limited to 10
for lisibility) bordered by grey +. When a community is found at 2 consecutive scales the
same color is used.
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FIGURE 1 – Matrice des interactions le long d’un fragment
de 15 Mnuc du chromosome 10 humain pour les lignées cel-
lulaires H1 ES (resp. IMR90) au dessous (resp. au dessus)
de la diagonale (données Hi-C de [12]). Les matrices ont
été obtenues en comptant le nombre d’interactions observées
entre fenêtres non-chevauchantes de 100 knuc. Les lignes bleus
marquent les domaines topologiques identifiés dans [12]. Les
pointillés jaunes (resp. rouge) marquent la partition en com-
munautés obtenues à une petite (resp. grande) échelle. Les co-
lonnes et lignes noires correspondent aux régions masquées.

(Fig. 1). Ces blocs sont la signature d’une compartimentation
structurelles des chromosomes dont les liens avec l’organisa-
tion et la dynamique fonctionnelle du génome sont au coeur
d’une intense activité de recherche [8, 12, 13, 15, 16, 19–21].
Afin de mener à bien ces recherches, diverses approches ont été
développées permettant d’extraire objectivement cette compar-
timentation structurelle des données Hi-C [8, 12, 20–24]. Ces
méthodes utilisent pour la plupart la connaissance a priori de
l’agencement des sites le long du génome et supposent que
les domaines structuraux recherchés sont des intervalles du gé-
nomes. Par exemple, certaines reposent sur la partition d’un si-
gnal 1D quantifiant la symétrie de la fréquence des interactions
avec les régions en amont et en aval du site d’intérêt (index
de directionalité) [12, 21]. D’autres utilisent des algorithmes
de programmation dynamique qui utilise explicitement l’ordre
génomique [23, 24]. Comme illustré sur la Fig. 1, la structura-
tion du génome se fait sur une large gamme d’échelle [18] et est
susceptible de faire intervenir des domaines emboîtés. Seule la
méthode proposée par Filippova et al. [23] est construite afin
de pouvoir identifier des domaines à diverses échelles d’obser-
vation.

L’objectif du travail présenté ici est de proposer une nou-
velle méthode d’analyse des données Hi-C qui permette une
identification multi-échelle de domaines structuraux et qui ne
repose pas sur l’assemblage spécifique des génomes de ré-
férence. En effet, dû aux polymorphismes au sein d’une es-

FIGURE 2 – (a) Taille moyenne des communautés pour le chro-
mosome 1 en fonction de l’indice d’échelle dans les lignées cel-
lulaires H1 ES (bleu) et IMR90 (rouge). (b) Histogrammes des
longueurs génomiques des communautés-intervalles en repré-
sentation doublement logarithmique et calculés dans des bins
de 100 knuc. Les couleurs ont la même signification qu’en (a).

pèce ou au réarrangements chromosomiques caractéristiques
des cancers par exemple [25], cet assemblage particulier ne re-
présente pas nécessairement l’assemblage véritable pour la li-
gnée cellulaire étudiée. Une matrice de fréquence d’interaction
construite à partir de données Hi-C est positive et symétrique,
elle peut donc être interprétée comme la matrice d’adjacence
du réseau des interactions où les nœuds sont les différents frag-
ments d’ADN et les arrêtes reflètent la fréquence d’interaction
entre ces fragments, et être analysée par l’intermédiaire des ou-
tils de la théorie des graphes comme nous l’avons précédem-
ment expérimenté [26, 27]. Cette représentation ne dépend de
l’assemblage du génome qu’à l’échelle de la résolution utilisée
pour construire la matrice Hi-C. Dans la théorie des graphes,
un ensemble de nœuds appartient à une même communauté

lorsqu’ils partagent plus de connections entre eux qu’avec le
reste du graphe [28]. Ainsi, nous proposons de reformuler la
question de recherche de domaines structuraux comme le pro-
blème de recherche de communautés dans le réseau des interac-
tions. Cette approche a été expérimentée précédemment sur le
réseau des interactions internes aux domaines chromosomiques
de type A ou B [22]. Ici, afin de ne privilégier aucune échelle
particulière dans l’analyse, nous effectuons le partitionnement
multi-échelle en communautés des réseaux d’interaction intra-
chromosomique complets en utilisant l’algorithme basé sur les
ondelettes sur graphe que nous avons développé récemment
[29].

Détection multi-échelle rapide de communautés

Notre méthode de recherche de communautés repose sur une
construction précise d’ondelettes sur graphe afin d’introduire
la notion d’échelle [30]. Les ondelettes à une échelle s caracté-
risent la structure locale du graphe autour de chaque nœud sur
une “distance” contrôlée par s. A une échelle fixée, la similarité
entre les voisinages de 2 nœuds est calculée comme la corré-
lation entre les ondelettes centrées sur chacun des 2 nœuds à
cette échelle. On applique alors un algorithme de partitionne-
ment hiérarchique avec la méthode de chaînage moyenné (ave-
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Figure 5.2. Mean community size across scales. (A) Mean community size for
chromosome 1 as a function of the index of scale in IMR90 (blue), H1 ES (yellow). (B)
same as in (A) for all the chromosomes when considering the second approach.

5.2.1 Wavelet-based community detection in the DNA network

As we saw in Chapter 4 (Section 4.2) Hi-C matrices can be represented as graphs where
nodes represent DNA loci and the edges connect loci that interact. Here we reformulate
the question of finding structural domains as a question of finding communities in the
DNA interaction network. As introduced in Chapter 2 (Section 2.5) a community in a
graph is an ensemble of nodes that are highly connected to each other and less with the
other nodes. In here we use the wavelet-based multi-scale community detection method
(Chapter 2 Section 2.5.3.1) in order to scan many scales and not to prefer only one. We
use the fast algorithm (See page 72) to calculate the distance correlation matrix with
÷ = 200 random vectors. In a first approach we considered the two human cell lines Hi-C
data: IMR90 and H1 ES. We filter the data as discussed in Chapter 1 (page 48), almost
≥ 10% of the data is masked and we have 314 (resp. 326) node of 100 kb for chromosome
21 in IMR90 (resp. H1 ES) an 2179 (resp. 2172) nodes for chromosome 1 in IMR90
(resp. H1 ES).We consider for each cell line the 22 matrices for each chromosome. We
systematically apply the wavelet-based multi-scale community detection method to all
the connected networks scanning 100 scales logarithmically distributed in the range of
availbale scales (between s

min

= 1
⁄1

and s
max

= 1
⁄2

1
(page 74)). We obtain 100 partitions

of the masked genome for each cell line constituted of 419 757 (resp. 89 770) community
for IMR90 (resp. H1 ES). As expected the size of the communities increase with the
scale (Fig. 5.2). For H1 ES the increase of the mean community size along the scales is
homogeneous suggesting that ther is no caracteristic size for the community structure.
For IMR90 we observe a first range of scales where the communities reduce to a singleton
(mean size ≥ 1) and after an abrupt transition the mean size for the communities is ≥
17 suggesting that at small scales the structure is more homogeneous (small not trivial
communities tend to be larger) in IMR90 than in H1 ES. The existence of the singletons
on a relatively large range of scaless explains why in total the number of communities in
IMR90 is larger than in H1 ES.
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de 15 Mnuc du chromosome 10 humain pour les lignées cel-
lulaires H1 ES (resp. IMR90) au dessous (resp. au dessus)
de la diagonale (données Hi-C de [12]). Les matrices ont
été obtenues en comptant le nombre d’interactions observées
entre fenêtres non-chevauchantes de 100 knuc. Les lignes bleus
marquent les domaines topologiques identifiés dans [12]. Les
pointillés jaunes (resp. rouge) marquent la partition en com-
munautés obtenues à une petite (resp. grande) échelle. Les co-
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(Fig. 1). Ces blocs sont la signature d’une compartimentation
structurelles des chromosomes dont les liens avec l’organisa-
tion et la dynamique fonctionnelle du génome sont au coeur
d’une intense activité de recherche [8, 12, 13, 15, 16, 19–21].
Afin de mener à bien ces recherches, diverses approches ont été
développées permettant d’extraire objectivement cette compar-
timentation structurelle des données Hi-C [8, 12, 20–24]. Ces
méthodes utilisent pour la plupart la connaissance a priori de
l’agencement des sites le long du génome et supposent que
les domaines structuraux recherchés sont des intervalles du gé-
nomes. Par exemple, certaines reposent sur la partition d’un si-
gnal 1D quantifiant la symétrie de la fréquence des interactions
avec les régions en amont et en aval du site d’intérêt (index
de directionalité) [12, 21]. D’autres utilisent des algorithmes
de programmation dynamique qui utilise explicitement l’ordre
génomique [23, 24]. Comme illustré sur la Fig. 1, la structura-
tion du génome se fait sur une large gamme d’échelle [18] et est
susceptible de faire intervenir des domaines emboîtés. Seule la
méthode proposée par Filippova et al. [23] est construite afin
de pouvoir identifier des domaines à diverses échelles d’obser-
vation.

L’objectif du travail présenté ici est de proposer une nou-
velle méthode d’analyse des données Hi-C qui permette une
identification multi-échelle de domaines structuraux et qui ne
repose pas sur l’assemblage spécifique des génomes de ré-
férence. En effet, dû aux polymorphismes au sein d’une es-
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mosome 1 en fonction de l’indice d’échelle dans les lignées cel-
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pèce ou au réarrangements chromosomiques caractéristiques
des cancers par exemple [25], cet assemblage particulier ne re-
présente pas nécessairement l’assemblage véritable pour la li-
gnée cellulaire étudiée. Une matrice de fréquence d’interaction
construite à partir de données Hi-C est positive et symétrique,
elle peut donc être interprétée comme la matrice d’adjacence
du réseau des interactions où les nœuds sont les différents frag-
ments d’ADN et les arrêtes reflètent la fréquence d’interaction
entre ces fragments, et être analysée par l’intermédiaire des ou-
tils de la théorie des graphes comme nous l’avons précédem-
ment expérimenté [26, 27]. Cette représentation ne dépend de
l’assemblage du génome qu’à l’échelle de la résolution utilisée
pour construire la matrice Hi-C. Dans la théorie des graphes,
un ensemble de nœuds appartient à une même communauté

lorsqu’ils partagent plus de connections entre eux qu’avec le
reste du graphe [28]. Ainsi, nous proposons de reformuler la
question de recherche de domaines structuraux comme le pro-
blème de recherche de communautés dans le réseau des interac-
tions. Cette approche a été expérimentée précédemment sur le
réseau des interactions internes aux domaines chromosomiques
de type A ou B [22]. Ici, afin de ne privilégier aucune échelle
particulière dans l’analyse, nous effectuons le partitionnement
multi-échelle en communautés des réseaux d’interaction intra-
chromosomique complets en utilisant l’algorithme basé sur les
ondelettes sur graphe que nous avons développé récemment
[29].

Détection multi-échelle rapide de communautés

Notre méthode de recherche de communautés repose sur une
construction précise d’ondelettes sur graphe afin d’introduire
la notion d’échelle [30]. Les ondelettes à une échelle s caracté-
risent la structure locale du graphe autour de chaque nœud sur
une “distance” contrôlée par s. A une échelle fixée, la similarité
entre les voisinages de 2 nœuds est calculée comme la corré-
lation entre les ondelettes centrées sur chacun des 2 nœuds à
cette échelle. On applique alors un algorithme de partitionne-
ment hiérarchique avec la méthode de chaînage moyenné (ave-
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Figure 5.9. Genomic length dis-
tribution of intervals-communities.
Histogram of intervals-communities ge-
nomic length in a log-log representation
and calculated in 100 kb bins for di�er-
ent cell lines IMR90 (blue), H1 ES (yel-
low), GM06990 (pink) and K562 (pur-
ple).

Cell line H1 ES GM06990 IMR90 K562
H1 ES 1 0.38 0.34 0.47

GM06990 0.44 1 0.34 0.46
IMR90 0.44 0.39 1 0.40
K562 0.43 0.37 0.29 1

Table 5.2. Proportion of matching communities. Proportion of matching communities
between pairs of cell lines. Communities are supposed to be shared if they share more than
80% of their mutual length.
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Figure 5.3. Multi-scale intervals-communities. Multi-scale community structure along
20 Mb of human chromosome 12 in H1 ES (B) and IMR90 (A) cell lines. At each scale
the intervals-communities are represented by a colored segment (colors were limited to 10
for lisibility) bordered by grey +. When a community is found at 2 consecutive scales the
same color is used.
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Figure 1.1. Hi-C contact maps reveal a multi-
scale organisation. Hi-C contact map along
15 Mb of human chromosome 10 in H1 ES (resp.
IMR90) under (resp. above) the diagonal with
intensity of interactions color coded according to
the right colormap. Blue lines represent TADs [22]
in the two cell lines. Colored dashed lines corre-
spond to 2 partitions into communities obtained
at 2 scales (yellow (resp. red) small (resp. large)
scale. Black lines and rows correspond to regions
that has been masked.

Another method for the 2D segmentation of Hi-C data using dynamic programming [244]
also explicitly take advantage of the genomic order. This method rely on the fact that
Hi-C matrices are symmetric and instead of looking for squares of high interactions in
the whole matrix where a genomic interval intensively interact with another one, it is
enough to look for triangle blocks along the diagonal of the matrix. The authors of [244]
prove that maximization of the likelihood with respect to the block boundaries can be
rephrased in terms of 1D segmentation problem. Comparison of the blocks obtained with
this method showed good agreement with TADs. Actually, the segmentations obtained
for di�erent human chromosomes (with H1 ES) data were a little bit di�erent but the
boundaries of the blocks were close. Nevertheless, this segmentation don’t take into ac-
count multi-scale organisation of the genome. In fact, lookig at Figure 1.1 it is clear that
the topological domains can be nested in bigger domains or even sometimes that there
exist smaller domains in them.

Only the method proposed in [243] propose a multi-scale alternative segmentation of
Hi-C data. Introducing a scale parameterv “ to set the size of the intervals forming the
interaction blocks, the authors identified a set of domains that show high interaction
within them than in-between them. Interestingly, comparison of the domains obtained
with this method (at the resolution corresponding to the TADs) showed a good agree-
ments between the two partitions.

1.2 Structural communities of DNA network form a
hierarchy of genome intervals

The objective of this work is to propose a novel method for Hi-C data segmentation
that allow the identification of multi-scale structural domains without relying on the
1D genome structure, in other words without assuming that the domains should be
contiguous genomic intervals.

3
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Figure 6.10. TADs are structural communities. Mean best mutual coverage (Equa-
tion 6.2, Section 6.3.3) of TADs with interval-communities (A); proportion of TADs that
have a match in the interval-community database (Section 6.3.3) (B) and proportion of
TAD boundaries that have a matching interval-community border (C) as a function of
the TAD size (Section 6.3.3), in H1 ES (yellow) and IMR90 (blue). In (C) the TAD size
associated with a border is the minimum of the size of the two bordering domains; only the
set of interval-community borders covering 35% of the genome are used (Section 6.3.3).
The black horizontal dashed line shows the expected border matching proportion.

lowering of mutual coverage. Now looking at the proportion of TADs that have a match-
ing structural community, we see that, the proportion of recovered TADs increases with
the domain size (Fig. 6.10 B). Only about 1/5 of the smallest TADs (. 500 kb) are
recovered consistently with the fact that in this scale range a match has to be exact. For
TADs longer than 1 Mb the proportion of match is relatively high: in IMR90 it increase
from 40% for TADs of 1 Mb up to 70% for TADs Ø 2 Mb and in H1 ES from 70% for
TADs ≥ 1 Mb up to 85% for TADs of ≥ 2 Mb (Fig. 6.10 B). Comparison of TAD borders
to interval-community borders shows good concordance for the two datasets (Fig. 6.10
C). In fact, we classify the TAD borders according to the smallest TAD size they bor-
der and for the interval-community borders we restrict the analysis to the borders with
associated size large enough so that at 100 kb resolution (± 1 pixel) they collectively
cover 35% of the genome (Section 6.3.3). We clearly see that H1 ES TAD borders are
recovered from 50% up to ≥ 90% depending on the TAD border associated size, and that
IMR90 TAD borders were recovered from 50% up to ≥80%, while the expected match
by chance is 35% (Fig. 6.10 C). These results quantify the high level of TAD recovery by
interval-communities for domain length & 1 Mb.

Altogether, these results show that there is a significant agreement between TADs and
the interval-communities. This provides further evidence that the interval-communities
are indeed structural domains of the human genome.

6.3.5 Structural communities during the cell cycle
To further test the robustness of the wavelet-based community detection method with
respect to the possible absence of a community structure over some scale range, we apply
the method to two Hi-C datasets obtained in synchronised HeLaS3 cells during G1 and
M phase, respectively [243]. A recent study [243] showed that the highly compartmen-
talised organisation described before from non synchronous cells [14, 16, 242, 244, 245]
is restricted to interphase and that during a cell cycle, chromosomes transit from a de-
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the TAD size (Section 6.3.3), in H1 ES (yellow) and IMR90 (blue). In (C) the TAD size
associated with a border is the minimum of the size of the two bordering domains; only the
set of interval-community borders covering 35% of the genome are used (Section 6.3.3).
The black horizontal dashed line shows the expected border matching proportion.

lowering of mutual coverage. Now looking at the proportion of TADs that have a match-
ing structural community, we see that, the proportion of recovered TADs increases with
the domain size (Fig. 6.10 B). Only about 1/5 of the smallest TADs (. 500 kb) are
recovered consistently with the fact that in this scale range a match has to be exact. For
TADs longer than 1 Mb the proportion of match is relatively high: in IMR90 it increase
from 40% for TADs of 1 Mb up to 70% for TADs Ø 2 Mb and in H1 ES from 70% for
TADs ≥ 1 Mb up to 85% for TADs of ≥ 2 Mb (Fig. 6.10 B). Comparison of TAD borders
to interval-community borders shows good concordance for the two datasets (Fig. 6.10
C). In fact, we classify the TAD borders according to the smallest TAD size they bor-
der and for the interval-community borders we restrict the analysis to the borders with
associated size large enough so that at 100 kb resolution (± 1 pixel) they collectively
cover 35% of the genome (Section 6.3.3). We clearly see that H1 ES TAD borders are
recovered from 50% up to ≥ 90% depending on the TAD border associated size, and that
IMR90 TAD borders were recovered from 50% up to ≥80%, while the expected match
by chance is 35% (Fig. 6.10 C). These results quantify the high level of TAD recovery by
interval-communities for domain length & 1 Mb.

Altogether, these results show that there is a significant agreement between TADs and
the interval-communities. This provides further evidence that the interval-communities
are indeed structural domains of the human genome.

6.3.5 Structural communities during the cell cycle
To further test the robustness of the wavelet-based community detection method with
respect to the possible absence of a community structure over some scale range, we apply
the method to two Hi-C datasets obtained in synchronised HeLaS3 cells during G1 and
M phase, respectively [243]. A recent study [243] showed that the highly compartmen-
talised organisation described before from non synchronous cells [14, 16, 242, 244, 245]
is restricted to interphase and that during a cell cycle, chromosomes transit from a de-
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Figure 6.12. Matching interval-communities between cell lines. For each reference
cell line (the di�erent plots), we look at the proportion of interval-communities in the dif-
ferent query cell lines H1 ES (yellow), IMR90 (blue), GM06990 (pink) and K562 (purple).
An interval-community of a cell line has a match in the reference cell line when there exists
an interval-community in the reference cell line such that the two interval-communities
have a mutual coverage larger than 0.8 (Section 6.3.3). Proportion of interval-community
matches is computed over groups of 50 query interval-communities ordered by size (Sec-
tion 6.3.3).
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Figure 6.14. Are replication domains structural communities? Same as in Fig. 6.10
for replication domains in di�erent cell lines: H1 ES (yellow), IMR90 (blue), GM06990
(pink) and K562 (purple).

the relationship between replication (split-) U-domains and interval-communities is more
complex for smaller domains. As initially reported in Drosophila [20] and more recently in
human using higher resolution (kb) Hi-C data [244], fine scale structural domains corre-
spond to regions of homogeneous chromatin status. Given the open chromatin structure
(± 200 kb) around replication domain borders [44, 51] and the gradient of chromatin state
from replication domain borders to center [53, 54], replication (split-) U-domais might in
fact be related to structural domains in the following way. Replication domain borders
would sit inside but close to the borders of an open chromatin structural- domain explain-
ing their association to interval-community borders slightly above the random expectation
(Fig. 6.14 C). Replication domain central regions would correspond to heterochromatin
structural domains covering more than 80% of the domain length for the largest (split-
) U-domain only, explaining the good concordance of these largest replication domain
with interval-communities observed in (Fig. 6.14 B). This prompts us to test the corre-
spondance between chromatin state domains (Section 6.5.2) and interval-communities.

6.5.2 Are chromatin states structural communities?
As mentioned above, recent results suggest that chromatin states correlate with the 3D
structural organisation of the genome [20, 244]. Here, we ask whether chromatin state
domains are better matched by interval-communities than replication (split-) U-domains.
We reproduce the same analysis as in Section 6.5.1, replacing (split-) U-domains by the
di�erent chromatin blocks C1+C2 (resp. EC1+ EC2) and C3+C4 (resp. EC3+EC4)
(Fig. 6.15).

The analysis of the mean best mutual coverage and proportion of domain recovery pro-
vides very similar results for chromatin blocks (Fig. 6.15 A12, A34, B12, B34) as those
previously obtained for (split-) U-domains (Fig. 6.14). The mean best mutual coverage
decreases to 30%-40% depending on block type and cell line, for the smallest chromatin
block sizes (≥ 200 kb) (Fig. 6.15 A12, A34). The proportion of chromatin blocks of size
. 500 kb with an interval-community counterpart is systematically below 10% (Fig. 6.15
B12, B34). However, for the 4 cell lines and the 2 chromatine block types, the propor-
tion of chromatin block borders that match an interval-border at 100 kb resolution (±
1pixel) is rather constant with chromatin block size and takes values significantly larger
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Figure 5. MRT and skew profiles along a 5 Mb long fragment of
human chromosome 1 in the cell types (from top to bottom)
GM06990, IMR90, HeLa (Replica 1), K562, BG02 and the
germline. Right (left) half U/N-domains are marked by a horizontal
red (green) lines and their right (left) borders by vertical red (green)
lines. Above the MRT profile, gene positions in the cell line quoted
in parentheses are indicated by a horizontal segment of orange color
(blue) for expressed (non expressed) genes with a RPKM ! 1 (<1)
(equation (2)).

with ‘Valouev’ in vitro data (figure 9(a)). This is an indica-
tion that the lack of available space to a nucleosome position-
ing near ubiquitous MaOris due to the local enrichement of
nucleosome-excluding energy barriers (figure 7) starts to be-
come noticeable in the ‘Valouev’ in vitro experiment. It might
mean that, either, in this experiment, the nucleosome coverage
of the ∼0.6–1.7 kb DNA fragments bordering intrinsic NFRs is
lower than in our in silico simulations at low coverage, or that,
in our simulations, where this effect is not reproduced at low
coverage (figures 8(a, a′)), we need to increase the chemical
potential µ̃ (at least locally).

Figure 6. Mean GC-content (equation (1)) computed in 100 kb
windows inside GM06990 MRT U-domains as a function of the
distance to the closest U-domain border. The averaging was
performed over the 451 borders specific to the GM06990 cell line
(◦) with a conservation index n = 1 (section 2.1.3) and for
comparison over the 56 ubiquitous borders commonly found in the
n = 6 cell types considered in this study including the germline (•)
(section 2.1).

Figure 7. Mean excluding energy barrier density (per kb) predicted
by the sequence-dependent physical model (section 3), (a) versus
the distance to the closest MRT U-domain border specific to
GM06990 (n = 1, ◦) or ubiquitous (n = 6, •) to the six cell types
considered in this study including the germline. (a′) The same as (a)
after normalizing the observed values in each 100 kb window by the
expected value given the GC-content of the window (section 2.5).

4.5. MaOris at U/N-domain borders are hypersensitive to
DNase I digestion

We have also examined the DNase I HS site coverage around
the set of GM06990 MRT U-domain borders. As shown in
figures 10(a) and (a′), for specific (n = 1) and ubiquitous
(n = 6) domain borders, the similar increase of DNase I sen-
sitivity from domain centre to border cannot be attributed to
the enrichment in GC-content reported in figure 6. But when
using, as a control, DNase I HS data from a different cell type,
e.g. the fibroblast BJtert cell line, we realize that the mean pro-
file near ubiquitous domain borders is rather unaffected. This
contrasts with the important change to a milder increasing pro-
file observed near specific domain borders (figure 10(b)) that
totally reflects the underlying GC enrichment (figure 10(b′)).
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Figure 1. Our physical modelling consists of computing the energy cost to bend a DNA fragment of length lw into the almost two turns of
the DNA double helix that are involved in the crystallized nucleosome particle (radius R = 4.19 nm, pitch P = 2.59 nm). Adapted with
permission from [128].

the DNA chain is assimilated into a fluid of rods of finite ex-
tension lw (the DNA wrapping length around the octamer),
binding and moving in an external potential E(s) (the effec-
tive nucleosome formation potential) and interacting (potential
v(s, s ′)) on a 1D substrate (the DNA chain). Within the grand
canonical formalism, considering that the fluid is in contact
with a thermal bath at a reciprocal temperature β and a histone
octamer reservoir at chemical potential µ, the thermodynamic
equilibrium properties of the system are described by the grand
partition function:

Ξ =
Nmax∑

N=1

1
N !

∫
D[s(N)] exp

(
−β(V (s(N)) − µN)

)
, (3)

where V (s(N)) is the total potential energy of the N rods sys-
tem:

V
(
s(N)

)
=

N∑

1

E(sk) + 1/2
∑

j ̸=k

v(sk, sj ). (4)

From equations (3) and (4), we get the nucleosome density
profile as:

ρ(s) = −β−1 ∂ ln Ξ
∂E(s)

= 1
Ξ

Nmax∑

N=1

exp (βµN)

(N − 1)!

×
∫

D[s(N−1)]exp
(
−βV (s, s(N−1))

)
. (5)

The thermodynamics of such systems has been addressed in
pioneering studies. For monodisperse hard rods of a uniform
external potential, this is the well known Tonks gas [125]. In
the case of a non uniform external potential of interest here,
Percus derived an exact functional relationship between the
residual chemical potential µ − E(s) and the hard rods’ den-
sity ρ(s) [126].

3.1. Intrinsic nucleosome formation energy

The energy landscape associated with the formation of one
nucleosome at a given position along DNA, is obtained by
assuming [47] that (i) DNA is an unshearable elastic rod whose
conformations are described by the set of three local angles
Ω1(s) (tilt), Ω2(s) (roll), Ω3(s) (twist), and (ii) the DNA chain

along the nucleosome at position s is constrained to form
an ideal superhelix of radius R = 4.19 nm and pitch P =
2.59 nm, as observed in the x-ray crystallographic nucleosome
structure [127, 128] over a total wrapping length lw which
fixes the distribution of angular deformations (Ωnuc

i (u))i=1,2,3,
u = s, s + 1, · · · , s + lw (figure 1). Within linear elasticity
approximation, the energy cost for nucleosome formation is
given by:

E(s) = 1
β

∫ s+lw

s

3∑

i=1

Ai

2
(Ωnuc

i (u) − Ωo
i (u))2du, (6)

where A1, A2 and A3 are the stiffnesses associated with the tilt,
roll and twist deformations around their intrinsic values Ωo

1 , Ωo
2

and Ωo
3 , respectively. Consistent with our previous works [47,

129–131], we assume that A1 = A2 = A3 = 200 bp and we
use the ‘Pnuc’ structural bending table [132] which is mainly
a trinucleotide roll coding table (Ωo

2 ), with zero tilt (Ωo
1 = 0)

and constant twist (Ωo
3 = 2π/10.5) (see table 1 in [5]). The

energy landscape defined by equation (6) can thus be seen as an
effective potential accounting for DNA-histone complexation
including electrostatic interactions [133, 134]

3.2. Intrinsic nucleosome density profile

Since there are several nucleosomes along the chromatin fibre,
interactions between neighbouring nucleosomes have to be
considered. We assumed that these interactions are dominated
by steric hindrance, modelled by a hard core potential of size lw
between 1D rods. According to Percus [126], the equilibrium
density ρ(s) of hard rods in an external field E(s) obeys the
nonlinear integral equation:

βµ = βE(s) + ln ρ(s) − ln
(

1 −
∫ s+lw

s

ρ(s ′)ds ′
)

+
∫ s

s−lw

ρ(s ′)

1 −
∫ s ′+lw
s ′ ρ(s ′′)ds ′′

ds ′. (7)

This equation has an explicit solution [135] that requires
numerical integration. Various numerical schemes were
proposed to compute the nucleosome density via equation (7)
[38, 135, 136]. We refer the reader to [43] for a review of
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Figure 6.13. Sequence encoded NFR density around community borders. Mean
excluding energy barrier density (per kb) as a function of the distance from the closest
interval-community border in di�erent cell lines and in di�erent interval-community size
categories (color coded like as in Fig. 6.6).

a comparison, we perform the same analysis over the TADs that were shown to be con-
served between H1 ES and IMR90 cell lines [16](Supplementary Fig. B.13). As observed
when comparing interval-communities, the correspondance between TADs in the two cell
lines decreases for domain sizes . 600 kb. For larger domain sizes, we observe that H1 ES
TAD dataset contains more (maximal value ≥ 60%) of the IMR90 TADs than the IMR90
TAD dataset contains H1 ES TADs (≥ 45%). These results underline a conservation of
structural domains between cell line in the 45%-70% range for both interval-communities
and TADs of size ≥ 1 Mb up to the largest interval-communities of size ≥ 10 Mb.

Previous analyses of replication (split-) U-domain have shown that ubiquitous U-domain
borders systematically found in 6 di�erent cell lines are encoded in the DNA sequence
via a local enrichment in nucleosome excluding energy barriers [365]. Here we ask to
which extent this sequence-encoded chromatin property could explain structural domain
conservation across cell lines. Previous work revealed that promoter regions for protein-
coding genes are extremely hypersensitive to DNase I digestion [184]. These regions were
shown to be nucleosome depleted [180–184], very much like the nucleosome free regions
(NFRs) observed at yeast promoters [186, 187]. Numerical studies showed that, to a large
extent, these NFRs are coded in the DNA sequence via high energy barriers that impair
nucleosome formation [414–416]. Furthermore, these excluding genomic energy barriers
were shown to play a fundamental role in the collective nucleosomal organisation observed
over rather large distances along the chromatin fiber [414]. Using the same physical mod-
eling of nucleosome formation energy based on sequence-dependent bending properties
introduced for modeling nucleosome occupancy profiles in the yeast genome [414, 415]
sequence encoded NFRs were identified in the human genome as the genomic energy
barriers that are high enough to induce a nucleosome depleted region in the nucleosome
occupancy profile [51, 365].

When mapping these intrinsic NFRs inside the interval-communities (Fig. 6.13), we ob-
serve an enrichment around the community borders for all the cell lines. Note that the
decrease from the borders to the center of the interval-communities is sharper in H1

155

CHAPTER 6. DELINEATING STRUCTURAL COMMUNITIES INTO THE DNA
INTERACTION NETWORK

Figure 6.13. Sequence encoded NFR density around community borders. Mean
excluding energy barrier density (per kb) as a function of the distance from the closest
interval-community border in di�erent cell lines and in di�erent interval-community size
categories (color coded like as in Fig. 6.6).

a comparison, we perform the same analysis over the TADs that were shown to be con-
served between H1 ES and IMR90 cell lines [16](Supplementary Fig. B.13). As observed
when comparing interval-communities, the correspondance between TADs in the two cell
lines decreases for domain sizes . 600 kb. For larger domain sizes, we observe that H1 ES
TAD dataset contains more (maximal value ≥ 60%) of the IMR90 TADs than the IMR90
TAD dataset contains H1 ES TADs (≥ 45%). These results underline a conservation of
structural domains between cell line in the 45%-70% range for both interval-communities
and TADs of size ≥ 1 Mb up to the largest interval-communities of size ≥ 10 Mb.

Previous analyses of replication (split-) U-domain have shown that ubiquitous U-domain
borders systematically found in 6 di�erent cell lines are encoded in the DNA sequence
via a local enrichment in nucleosome excluding energy barriers [365]. Here we ask to
which extent this sequence-encoded chromatin property could explain structural domain
conservation across cell lines. Previous work revealed that promoter regions for protein-
coding genes are extremely hypersensitive to DNase I digestion [184]. These regions were
shown to be nucleosome depleted [180–184], very much like the nucleosome free regions
(NFRs) observed at yeast promoters [186, 187]. Numerical studies showed that, to a large
extent, these NFRs are coded in the DNA sequence via high energy barriers that impair
nucleosome formation [414–416]. Furthermore, these excluding genomic energy barriers
were shown to play a fundamental role in the collective nucleosomal organisation observed
over rather large distances along the chromatin fiber [414]. Using the same physical mod-
eling of nucleosome formation energy based on sequence-dependent bending properties
introduced for modeling nucleosome occupancy profiles in the yeast genome [414, 415]
sequence encoded NFRs were identified in the human genome as the genomic energy
barriers that are high enough to induce a nucleosome depleted region in the nucleosome
occupancy profile [51, 365].

When mapping these intrinsic NFRs inside the interval-communities (Fig. 6.13), we ob-
serve an enrichment around the community borders for all the cell lines. Note that the
decrease from the borders to the center of the interval-communities is sharper in H1

155

CHAPTER 6. DELINEATING STRUCTURAL COMMUNITIES INTO THE DNA
INTERACTION NETWORK

Figure 6.13. Sequence encoded NFR density around community borders. Mean
excluding energy barrier density (per kb) as a function of the distance from the closest
interval-community border in di�erent cell lines and in di�erent interval-community size
categories (color coded like as in Fig. 6.6).

a comparison, we perform the same analysis over the TADs that were shown to be con-
served between H1 ES and IMR90 cell lines [16](Supplementary Fig. B.13). As observed
when comparing interval-communities, the correspondance between TADs in the two cell
lines decreases for domain sizes . 600 kb. For larger domain sizes, we observe that H1 ES
TAD dataset contains more (maximal value ≥ 60%) of the IMR90 TADs than the IMR90
TAD dataset contains H1 ES TADs (≥ 45%). These results underline a conservation of
structural domains between cell line in the 45%-70% range for both interval-communities
and TADs of size ≥ 1 Mb up to the largest interval-communities of size ≥ 10 Mb.

Previous analyses of replication (split-) U-domain have shown that ubiquitous U-domain
borders systematically found in 6 di�erent cell lines are encoded in the DNA sequence
via a local enrichment in nucleosome excluding energy barriers [365]. Here we ask to
which extent this sequence-encoded chromatin property could explain structural domain
conservation across cell lines. Previous work revealed that promoter regions for protein-
coding genes are extremely hypersensitive to DNase I digestion [184]. These regions were
shown to be nucleosome depleted [180–184], very much like the nucleosome free regions
(NFRs) observed at yeast promoters [186, 187]. Numerical studies showed that, to a large
extent, these NFRs are coded in the DNA sequence via high energy barriers that impair
nucleosome formation [414–416]. Furthermore, these excluding genomic energy barriers
were shown to play a fundamental role in the collective nucleosomal organisation observed
over rather large distances along the chromatin fiber [414]. Using the same physical mod-
eling of nucleosome formation energy based on sequence-dependent bending properties
introduced for modeling nucleosome occupancy profiles in the yeast genome [414, 415]
sequence encoded NFRs were identified in the human genome as the genomic energy
barriers that are high enough to induce a nucleosome depleted region in the nucleosome
occupancy profile [51, 365].

When mapping these intrinsic NFRs inside the interval-communities (Fig. 6.13), we ob-
serve an enrichment around the community borders for all the cell lines. Note that the
decrease from the borders to the center of the interval-communities is sharper in H1

155

CHAPTER 6. DELINEATING STRUCTURAL COMMUNITIES INTO THE DNA
INTERACTION NETWORK

Figure 6.13. Sequence encoded NFR density around community borders. Mean
excluding energy barrier density (per kb) as a function of the distance from the closest
interval-community border in di�erent cell lines and in di�erent interval-community size
categories (color coded like as in Fig. 6.6).

a comparison, we perform the same analysis over the TADs that were shown to be con-
served between H1 ES and IMR90 cell lines [16](Supplementary Fig. B.13). As observed
when comparing interval-communities, the correspondance between TADs in the two cell
lines decreases for domain sizes . 600 kb. For larger domain sizes, we observe that H1 ES
TAD dataset contains more (maximal value ≥ 60%) of the IMR90 TADs than the IMR90
TAD dataset contains H1 ES TADs (≥ 45%). These results underline a conservation of
structural domains between cell line in the 45%-70% range for both interval-communities
and TADs of size ≥ 1 Mb up to the largest interval-communities of size ≥ 10 Mb.

Previous analyses of replication (split-) U-domain have shown that ubiquitous U-domain
borders systematically found in 6 di�erent cell lines are encoded in the DNA sequence
via a local enrichment in nucleosome excluding energy barriers [365]. Here we ask to
which extent this sequence-encoded chromatin property could explain structural domain
conservation across cell lines. Previous work revealed that promoter regions for protein-
coding genes are extremely hypersensitive to DNase I digestion [184]. These regions were
shown to be nucleosome depleted [180–184], very much like the nucleosome free regions
(NFRs) observed at yeast promoters [186, 187]. Numerical studies showed that, to a large
extent, these NFRs are coded in the DNA sequence via high energy barriers that impair
nucleosome formation [414–416]. Furthermore, these excluding genomic energy barriers
were shown to play a fundamental role in the collective nucleosomal organisation observed
over rather large distances along the chromatin fiber [414]. Using the same physical mod-
eling of nucleosome formation energy based on sequence-dependent bending properties
introduced for modeling nucleosome occupancy profiles in the yeast genome [414, 415]
sequence encoded NFRs were identified in the human genome as the genomic energy
barriers that are high enough to induce a nucleosome depleted region in the nucleosome
occupancy profile [51, 365].

When mapping these intrinsic NFRs inside the interval-communities (Fig. 6.13), we ob-
serve an enrichment around the community borders for all the cell lines. Note that the
decrease from the borders to the center of the interval-communities is sharper in H1

155

CHAPTER 6. DELINEATING STRUCTURAL COMMUNITIES INTO THE DNA
INTERACTION NETWORK

Figure 6.13. Sequence encoded NFR density around community borders. Mean
excluding energy barrier density (per kb) as a function of the distance from the closest
interval-community border in di�erent cell lines and in di�erent interval-community size
categories (color coded like as in Fig. 6.6).

a comparison, we perform the same analysis over the TADs that were shown to be con-
served between H1 ES and IMR90 cell lines [16](Supplementary Fig. B.13). As observed
when comparing interval-communities, the correspondance between TADs in the two cell
lines decreases for domain sizes . 600 kb. For larger domain sizes, we observe that H1 ES
TAD dataset contains more (maximal value ≥ 60%) of the IMR90 TADs than the IMR90
TAD dataset contains H1 ES TADs (≥ 45%). These results underline a conservation of
structural domains between cell line in the 45%-70% range for both interval-communities
and TADs of size ≥ 1 Mb up to the largest interval-communities of size ≥ 10 Mb.

Previous analyses of replication (split-) U-domain have shown that ubiquitous U-domain
borders systematically found in 6 di�erent cell lines are encoded in the DNA sequence
via a local enrichment in nucleosome excluding energy barriers [365]. Here we ask to
which extent this sequence-encoded chromatin property could explain structural domain
conservation across cell lines. Previous work revealed that promoter regions for protein-
coding genes are extremely hypersensitive to DNase I digestion [184]. These regions were
shown to be nucleosome depleted [180–184], very much like the nucleosome free regions
(NFRs) observed at yeast promoters [186, 187]. Numerical studies showed that, to a large
extent, these NFRs are coded in the DNA sequence via high energy barriers that impair
nucleosome formation [414–416]. Furthermore, these excluding genomic energy barriers
were shown to play a fundamental role in the collective nucleosomal organisation observed
over rather large distances along the chromatin fiber [414]. Using the same physical mod-
eling of nucleosome formation energy based on sequence-dependent bending properties
introduced for modeling nucleosome occupancy profiles in the yeast genome [414, 415]
sequence encoded NFRs were identified in the human genome as the genomic energy
barriers that are high enough to induce a nucleosome depleted region in the nucleosome
occupancy profile [51, 365].

When mapping these intrinsic NFRs inside the interval-communities (Fig. 6.13), we ob-
serve an enrichment around the community borders for all the cell lines. Note that the
decrease from the borders to the center of the interval-communities is sharper in H1

155

� : Ubiquitous U-domain borders	
  
¢ : GM specific U-domain borders	
  
 

Structural community borders are encoded in the DNA 
sequence via a local enrichment in nucleosome excluding 

energy barriers" Boulos, PhD thesis (2015)"

Drillon, Journal of Physics: Condensed Matter (2015)"

Vaillant, Physical Review Letters (2007)"
Chevereau, Physical Review Letters (2009)"



CHAPTER 6. DELINEATING STRUCTURAL COMMUNITIES INTO THE DNA
INTERACTION NETWORK

Figure 6.15. Are chromatin states structural communities? Same as in Fig. 6.10 for
C1+C2 (resp. EC1+EC2) chromatin blocks (A12, B12, C12) and C3+C4 (resp.EC3+EC4)
chromatin blocks (A34, B34, C34): in IMR90 (blue), GM06990 (pink) and K562 (purple)
(resp. H1 ES (yellow)).

than the 35% random expectation level�. Border recovery is higher in K562 (≥ 70% in
C1+C2 and ≥ 80% in C3+C4 blocks) than in the other cell lines (≥ 60% in C1+C2/
EC1+EC2 and ≥ 60% in C3+C4/EC3+EC4 blocks) (Fig. 6.15 C12, C34). Repeating
this analysis separately for C1/EC1, C2/EC2, C3/EC3 and C4/EC4 chromatin blocks,
we obtain qualitatively and quantitatively the same results (Supplementary Fig. B.14).

We thus observe a significant localisation of chromatin block borders at interval-community
borders concomitant with a rather low recovery of complete chromatin blocks as structural
domains. A possible explanation of this situation is that there exists interval-community
borders inside chromatin blocks that persists to larger scale than the interval-community
borders colocalising with the chromatin block borders. These results provide evidence
that as previously suggested [20, 244], there is some correspondence between structural
domains and blocks of homogeneous chromatin states. They also question the rule that
governs the hierarchical association of neighbouring structural domains at small scales
to form the larger scale structural domains. It appears that neighbouring domains of
similar chromatin states do not necessarily group to form the larger structural domains.
The hierarchical segmentation of the genome in interval-communities performed at higher
resolution is likely to provide new insights to this question.

Recovering chromatin block borders as structural community borders is consistant with
the recent high resolution Hi-C study [244] suggesting the existence of small scale struc-

�Note that for a chromatin block of size comparable to the resolution used to match borders (±
100 kb), border matching simply reflects colocalisation of the chromatin block with an interval-community
border.
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Fig. 3. (A) Hi-C contact map corresponding to intra-chromosome interactions in a 16 Mb long fragment of human chromosome 11 (70.1–86.1 Mb). Top panel: MRT profiles in
H1hesc (BG02, see Fig. 1) (blue) [34] and IMR90 (red) [123]. Bottom panel: Hi-C interaction frequency in H1hesc (under the diagonal) [70] and in IMR90 (above the diagonal)
[70]; on the left of (resp. above) the interaction frequency map are represented 100 kb windows belonging to 500 kb EC1 + EC2 (resp. C1 + C2) blocks (pink) and to 1 Mb
block(s) with a coverage in EC1 + EC2 (resp. C1 + C2) higher than 60% (light pink); similarly are also represented 100 kb windows belonging to 500 kb EC3 + EC4 (resp.
C3 + C4) blocks (green) and to 1 Mb block(s) with a coverage in EC3 + EC4 (resp. C3 + C4) higher than 60% (light green). (B) Same as in (A) but for a longer 40 Mb fragment of
human chromosome 2 (0.1–40.1 Mb). The green rectangles illustrate long-range interactions between late replicating C3 + C4 blocks in IMR90. The pink rectangle illustrates
the weakest interactions between early replicating C1 + C2 blocks. (C) Mean intra-chromosome Hi-C contacts vs genomic distance (logarithmic representation) between pairs
of loci located in the same (dashed curve) or in different (solid curve) early active (pink) or late inactive (green) CTRs of length L P 1 Mb in H1hesc, IMR90, K562 and
Gm06990 from left to right. The black straight lines correspond to the power-law behavior Pc ! s"a (Eq. (2)) predicted by the ‘‘equilibrium’’ globule model (a = 3/2) [124–127]
and the fractal globule model (a = 1) [39,124,128]. (D) Mean intra-chromosome Hi-C contacts vs genomic distance (logarithmic representation) between pairs of loci
belonging to the earliest replicating first decile (red), and between loci in the latest (10th) decile and loci in the 10th (dark green), 7th (green), 4th (light green) and 1st (blue)
timing deciles. (E) Box plots of CTCF and Lamina B1 distributions computed in 100 kb windows in early replicating active EC1 + EC2 (resp. C1 + C2) CTRs (pink) and in late
replicating EC3 + EC4 (resp. C3 + C4) CTRs (green) in the human cell line H1hesc (resp. IMR90); Box plots are displayed between the first and the last decile of the
distributions. CTCF chromatin immunoprecipitation data for H1hesc and IMR90 (Nhdfad) were downloaded from the ENCODE project [123]. Lamina B1 chromatin
immunoprecipitation data for H1hesc (SHEF-2) and IMR90 (TIG3) were retrieved from Refs. [129] and [130], respectively. The Hi-C data in (C) for the cell lines K562 and
Gm06990 were retrieved from Ref. [39] and were normalized to 10 million reads.
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Figure 6.15. Are chromatin states structural communities? Same as in Fig. 6.10 for
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than the 35% random expectation level�. Border recovery is higher in K562 (≥ 70% in
C1+C2 and ≥ 80% in C3+C4 blocks) than in the other cell lines (≥ 60% in C1+C2/
EC1+EC2 and ≥ 60% in C3+C4/EC3+EC4 blocks) (Fig. 6.15 C12, C34). Repeating
this analysis separately for C1/EC1, C2/EC2, C3/EC3 and C4/EC4 chromatin blocks,
we obtain qualitatively and quantitatively the same results (Supplementary Fig. B.14).

We thus observe a significant localisation of chromatin block borders at interval-community
borders concomitant with a rather low recovery of complete chromatin blocks as structural
domains. A possible explanation of this situation is that there exists interval-community
borders inside chromatin blocks that persists to larger scale than the interval-community
borders colocalising with the chromatin block borders. These results provide evidence
that as previously suggested [20, 244], there is some correspondence between structural
domains and blocks of homogeneous chromatin states. They also question the rule that
governs the hierarchical association of neighbouring structural domains at small scales
to form the larger scale structural domains. It appears that neighbouring domains of
similar chromatin states do not necessarily group to form the larger structural domains.
The hierarchical segmentation of the genome in interval-communities performed at higher
resolution is likely to provide new insights to this question.
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borders concomitant with a rather low recovery of complete chromatin blocks as structural
domains. A possible explanation of this situation is that there exists interval-community
borders inside chromatin blocks that persists to larger scale than the interval-community
borders colocalising with the chromatin block borders. These results provide evidence
that as previously suggested [20, 244], there is some correspondence between structural
domains and blocks of homogeneous chromatin states. They also question the rule that
governs the hierarchical association of neighbouring structural domains at small scales
to form the larger scale structural domains. It appears that neighbouring domains of
similar chromatin states do not necessarily group to form the larger structural domains.
The hierarchical segmentation of the genome in interval-communities performed at higher
resolution is likely to provide new insights to this question.

Recovering chromatin block borders as structural community borders is consistant with
the recent high resolution Hi-C study [244] suggesting the existence of small scale struc-

�Note that for a chromatin block of size comparable to the resolution used to match borders (±
100 kb), border matching simply reflects colocalisation of the chromatin block with an interval-community
border.
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whether they represent arrested development or are causally linked,
and should be pursued for their potential as biomarkers for risk
stratification.

To verify these findings by an independent method, one of
the replication-timing changes specific to the cell line REH was
analyzed by the singlet-doublet DNA replication assay (Fig. 5B–
D). After cellular fixation methods that separate sister chro-

matids, fluorescence in situ hybridization (FISH) reveals repli-
cated homologs as doublet signals in the nucleus, while unrep-
licated homologs appear as singlets. These results confirmed that
the REH-specific fingerprint region displayed a substantially
higher frequency of doublets than the same region in non-
leukemic GM06990 or than an adjacent region that replicates late
in both normal and leukemic cells. This result was further con-

Figure 6. Pan-leukemic replication-timing changes suggest common early events in leukemogenesis. (A) Example regions from a pan-leukemic fin-
gerprint between all leukemic cells versus B-cell controls. Fingerprint regions are highlighted in gray overlay. (B) Percentages of SS, DS, and DD con-
figurations for each of the FISH probes indicated in A, as probes 1 and 2 were scored as in Figure 5C (192 GM06990 and 516 REH nuclei scored). (C )
Quantification of the frequency with which one probe appeared to replicate prior to the other as in Figure 5D (384 GM06990 and 1032 REH chromosomes
scored). (D) A prospective model for common early events in leukemogenesis: (1) Loci in late-replicating compartments on the periphery undergo a switch
to earlier replication together with a switch to the wrong nuclear compartment, which may be precipitated by loss of anchorage on the periphery or
incorporation of accessibility-promoting chromatin factors in early-S phase. (2) Translocations occur between loci that now occupy the same compart-
ment. (3) Large rearrangements between chromosomes disrupt the normal distribution of chromatin in the nucleus, leading to further subnuclear
organization changes. (4) Subnuclear organization changes bring together additional loci that would normally not be in contact or share the same
compartment, leading to accumulation of additional secondary rearrangements and genome instability.
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Towards graph spectral analysis"
S(t) = a(∑ ω)cos(ωt)

d2

d t2
cos(ωt) = −ω 2 cos(ωt)

Fourier modes are eigen-functions of the 
Laplacian operator "

A =

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

L =

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

Discretized Laplacian operator L! Discrete Fourier modes are eigen-functions of L"

Lχ i = λiχ i

L is related to the adjacency matrix A and degree 
matrix D of the linear graph: L = D - A!

D =

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2



Graph Fourier modes are the eigen-functions of the  
graph Laplacian operator L = D – A!
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(D)

Figure 3.5. Some Fourier modes. A toy graph of 128 nodes with di�erent Fourier
modes represented on the nodes of the graph color coded respectively to each color map
at the right of the graph.

3.4.3.1 Classical operators

Classical convolution between two vectors f and g defined on R:

(f ú g)(t) =
⁄ +Œ

≠Œ
f(·)g(t ≠ ·)d·, ’x œ Z. (3.13)

Multiplication in Fourier space correspond to convolution in Euclidean space:

\(f ú g)(›) =
Ô

Nf̂(›)ĝ(›), ’k œ [1, N ]. (3.14)

Translation (or shift) of a signal f of u œ [1, N ] can be written using the convolution:

T
u

f(t) = f(t ≠ u) = (f ú ”
u

)(t) =
⁄ +Œ

≠Œ
f(·)”

u

(t ≠ ·)d· (3.15)

where ”
u

is the Dirac centered on u, i.e. a vector of size N , where ”
u

(i) = 1 if i = u and
”

u

(i) = 0 otherwise.

Modulating a signal f by u œ [1, N ] correspond to a multiplication by complex expo-
nentials:

M
u

f(t) = f(·)exp

≠2ifi(u ≠ 1)(· ≠ 1)
N =

Ô
Nf(t)F (·, u). (3.16)

where F is the Fourier matrix of size n ◊ n defined by F (j, k) = 1Ô
n

w(j≠1)(k≠1), where w

is the nth unity root: w = exp≠2ifi/n.
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Graph Fourier modes convey information on the graph topology"
Used in graph spectral clustering"



CHAPTER 1. RELATING GENOME STRUCTURAL/FUNCTIONAL
ORGANISATION

Figure 1.11. Structural communities and the cell cycle. Same as in Fig. 1.3 for
HeLaS3 cells during G1 (left) and during mitosis (right).

the Hi-C matrices and maybe the di�erence observed between the two moments of the
cell cycle analyzed here can be also observed at other stages of the cell cycle when data
will be available. Another question that arise is wether the domains will vary between
cells the analysis of single cell Hi-C with the community mining methodology can bring
insights on cell type specific conformations. (hal jemle beda reformulation w ref single
cell hic).

1.6 Structural-functional relationships in the nucleus
TADs were previously shown to correlate with the DNA one dimensional features such
as replication timing [22] and chromatin states [238]. In this sens we investigate in this
section the relationships between (i) replication split-U- and U- domains, (ii) chromatin
states blocks and (iii) communities.

1.6.1 Are replication domains structural communities?
Functional replication domains appeared in a preliminary study to correspond to struc-
tural domains [33], their borders were shown to have a particular role in regulating
the DNA structual network (Chapter ??), here we adress wether there exist structural
domains as counterpart of the replication domains or in other words if the replication
domains constitute communities in the DNA interactions network. For each cell line we
sort replication split-U- and U- domains according to their sizes and we look in groups
of 50 domains at (i) the mean coverage of the functional domains by the structural com-
munities identified in the corresponding cell line and (ii) the proportion of matchings (a

14

Structural communities during HeLaS3 cell cycle"

G1	
   Mitosis	
  

Naumova,	
  Science	
  (2013)	
  


