From the epigenome to the functional and structural nuclear organisation

Benjamin Audit

Equipe SIgnaux, SYstèmes et PHysiquE (SISYPHE) Laboratoire de Physique de l'ENS-Lyon

ENS de Lyon

Françoise Argoul Alain Arneodo Antoine Baker Pierre Borgnat **Rasha Boulos** Guénola Drillon Pablo Jensen Hanna Julienne Nicolas Tremblay Cédric Vaillant Lamia Zaghloul

CGM, Gif-sur-Yvette

Yves d'Aubenton-Carafa Chun-Long Chen Claude Thermes

<u>CEA, Saclay</u>

Arach Goldar

<u>ENS, Paris</u> Guillaume Guilbaud Olivier Hyrien Malik Kahli Nataliya Petryk Aurélien Rappailles

Heterochromatin and euchromatin

Figure 4 Example TEM micrographs. (a) Histologically normal rectal cell nuclei from control patients and those harboring a pre-cancerous adenoma elsewhere in the colon, representing field CRC. Scale bars correspond to 500 nm. **(b)** Histologically normal colonic cell nuclei from control rats and those treated with azoxymethane for 10 weeks (premalignant time point), representing early CRC. Scale bars correspond to 250 nm.

Cherkezyan, BMC Cancer (2014)

Heterochromatin: dense, transcriptionally silent

Euchromatin: decondensed, transcriptionally active

Organisation of eukaryotic nucleus

Cremer, Nat Rev Genet 2, 2001 – Cook, Science 284, 1999 - Pombo, EMBO J 18, 1999

Chromosome territories

Chicken fibroblast nucleus where the 7 macro-chromosome are revealed by FISH

Regionalisation of nuclear functions

HeLa Cell

RNA (5-bromo-UTP / FITC)

Chromatin conformation capture for the human genome Hi-C data from Lieberman-Aiden, Science 326 (2009)

Co-localisation frequency matrix

A dichotomous view of chromatin organization and topology at Mb resolution

A dichotomous view of chromatin organization and topology at Mb resolution

Maximum Dinimum

Ryba, Genome Research (2010)

Human chromatin is characterised by 4 epigenetic states at scale 100 kbp

Julienne, PLoS Computational Biology (2013)

Principal Component Analysis using 13 epigenetic marks

80% of the variance is explained by the first 3 principal components

Number of clusters

10

Characterisation of chromatin states in K562

Julienne, PLoS Computational Biology (2013)

1 - Transcriptionally active chromatin

- 3 Silent unmarked chromatin
- 2 Domain of gene repression by Polycomb
- 4 HP1 heterochromatin

Gene expression

4 chromatin states in all differentiated human cell types

Julienne, PLoS Computational Biology (2013, 2015)

Chromatin states are replicated at different times

Julienne, PLoS Computational Biology (2013, 2015)

first principal component

-2

2

4

0

-8 -6 -4

10 4

Embryonic stem cell specific chromatin organization

Julienne, PLoS Computational Biology (2015)

Highly dynamic heterochromatic state in embryonic stem cell

Genome-wide segmentation of the human genome into 4 chromatin states

Julienne, PLoS Computational Biology (2013)

Chromatin states 1+2 and 3+4 colocalize

Distribution of chromatin states in K562 replication U-domains

Julienne, PLoS Computational Biology (in press)

46% of the genome is covered by U-domains

Chromatin conformation capture for the human genome Hi-C data from Lieberman-Aiden, Science 326 (2009)

chromosome

Packing of chromatin is consistent with the behavior of a fractal globule

Lieberman-Aiden, Science 326 (2009) Mirny, Chromosome Research (2011)

 $F(s) = k.s^{\alpha}$

Non equilibrium fractal globule: a = -1

Equilibrium globule:

$$a = -d_f/d_w$$

d_f: geometrical fractal dimension d_f=3: space-filling state d_w: dynamical fractal dimension d_w=2: normal diffusion

a = -3/2

Structural organization of chromatin domains

Boulos, FEBS Letters (2015)

Structural organization of chromatin domains in K562

Boulos, FEBS Letters (2015)

- 1+2 vs 1+2 interactions
- 1+2 vs 3+4 interactions
- 3+4 vs 3+4 interactions
- \checkmark Exponent **a** = -1 is specific to 3+4 domains
- \checkmark 1+2 domains compatible with $\alpha = -3/2$
- Segregation between 1+2 and 3+4 domains

Structural organization of chromatin domains in IMR90

Boulos, FEBS Letters (2015)

- 1+2 vs 1+2 interactions
- 1+2 vs 3+4 interactions
- 3+4 vs 3+4 interactions
- \checkmark Exponent **a** = -1 is specific to 3+4 domains
- \checkmark 1+2 domains compatible with $\alpha = -3/2$

Segregation between 1+2 and 3+4 domains

Structural organization of chromatin domains in IMR90

3+4 domains associated to lamina at nuclear envelop $\rightarrow d_f=2$: plane-filling state

2D equilibrium globule: a = -d_f/d_w geometrical fractal dimension: d_f=2 plane-filling state dynamical fractal dimension: d_w=2: normal diffusion → a = -1

Measurement in mouse embryonic fibroblast:

 $d_f = 2.2, d_w = 2.6$ (subdiffusion) $\rightarrow \alpha = -0.85$

Bancaud, EMBO Journal (2009); Nucleic Acids Research (2012)

Structural organization and the DNA replication program in IMR90

Segmentation of the genome in replication timing deciles

Boulos, FEBS Letters (2015)

Early (D1) vs early (D1) interactions

Mid-early (D4) vs mid-early (D4) interactions

Mid-late (D7) vs mid-late (D7) interactions

Late (D10) vs late (D10) interactions

Timing as a measure of the radial positioning within the nucleus

Consistently with the change of spatial distribution of replication foci during S-phase from central to peripheral positioning

Structural organization of chromatin domains in ES cells

Boulos, FEBS Letters (2015)

- 1+2 vs 1+2 interactions
- 1+2 vs 3+4 interactions
- 3+4 vs 3+4 interactions
- ✓ All domains compatible with a = -3/2
- Weak segregation between 1+2 and 3+4 domains

Structural organization and the DNA replication program in ES cells

Segmentation of the genome in replication timing deciles

Boulos, FEBS Letters (2015)

Early (D1) vs early (D1) interactions

Mid-early (D4) vs mid-early (D4) interactions

Mid-late (D7) vs mid-late (D7) interactions

Late (D10) vs late (D10) interactions

All timing domains in 3D space

Spatial organization of chromatin domains related to cell fate decision ?

Dynamics of replication foci during S-phase in differentiated cells

Quantitative Live Imaging of Endogenous DNA Replication in Mammalian Cells Burgess, PLoS One (2012)

Dynamics of replication foci during S-phase in differentiated cells

Quantitative Live Imaging of Endogenous DNA Replication in Mammalian Cells Burgess, PLoS One (2012)

Epigenetically controlled functional and structural organization of the human genome

A cascade model for replication origin activation through 4 chromatin states along U-domains

Hyrien, Journal of Molecular Biology (2013)

Replication domains and chromatin conformation domains

Replication timing U-domains appear as large scale structural units

Replication domain boundaries share a near one-to-one correlation with topologically associating domains (TAD) boundaries

Pope, Nature (2012)

Replication domain borders are giant hubs in the chromatin conformation graph in K562

Boulos, Physical Review Letters (2013)

1.5

Co-localisation matrix as the adjacency matrix of the chromatin interaction graph

Delineating Structural Domains in Hi-C Data

Dynamical programming Filippova, Algorithms for Molecular Biology (2014) Lévy-Leduc, Bioinformatics (ECCB 2014)

Most methods suppose that structural domains are chromosome intervals and/or do not allow for nested structures

Delineating Structural Domains in Hi-C Data

Genome assembly using chromosomal contact data

Burton, Genes Genomes Genetics (2014) Marbouty, Elife (2014) Marie-Nelly, Nature Communications (2014)

Boulos, FEBS letters (2015)

Detect multi-scale communities in the chromatin interaction graph

Tremblay, IEEE Transactions on Signal Processing (2014)

Tremblay, IEEE Transactions on Signal Processing (2014)

A partition in 3 communities at small scales

Tremblay, IEEE Transactions on Signal Processing (2014)

A partition in 2 communities at large scales

Tremblay, IEEE Transactions on Signal Processing (2014) Boulos, GRETSI (2015)

Obtaining an objective multi-scale segmentation of the human genome into structural communities

Multi-scale structural communities in IMR90 and H1 ES Boulos, GRETSI (2015)

Proportion of interval communities in groups of 100 communities

> 99% of structural communities are chromosomal intervals in both cell lines

Multi-scale structural communities in IMR90 and H1 ES

Boulos, GRETSI (2015)

Multi-scale structural communities in IMR90 and H1 ES

Boulos, GRETSI (2015)

Structural communities form a hierarchy of chromosome intervals

Structural community borders have 'insulator' like properties Boulos, PhD thesis (2015)

Structural communities vs TAD

Boulos, PhD thesis (2015)

Proportion of TADs that have a structural community counter part (80% mutual overlap)

Large and small scale structural communities TADS

Conservation of structural communities between cell lines

Boulos, PhD thesis (2015)

Proportion of structural communities in one cell line that have a counter part in an other cell line (80% mutual overlap)

Structural communities vs replication U-domains

Boulos, PhD thesis (2015)

Large and small scale structural communities Replication U-domains in IMR90 and H1 ES Proportion of U-domains that have a structural community counter part (80% mutual overlap)

H1 ES IMR90 GM06990 K562

Proportion of U-domain borders that have a structural community border counter part (±100kp)

Structural community borders are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers Boulos, PhD thesis (2015)

Vaillant, Physical Review Letters (2007) Chevereau, Physical Review Letters (2009)

Ubiquitous U-domain borders
GM specific U-domain borders

Drillon, Journal of Physics: Condensed Matter (2015)

$0.6 \le L < 1 Mb$	3 ≤ L < 5 Mb
$1 \le L < 2 Mb$	5 ≤ L < 10 Mb
2 ≤ L < 3 Mb	10 ≤ L < 100 Mb

Structural communities vs chromatin state domains

Euchromatin and heterochromatin domains Large and small scale structural communities

Proportion of chromatin domains that have a structural community counter part (80% mutual overlap)

Proportion of chromatin domain borders that have a structural community border counter part (±100kp)

Conclusion

Towards a multivariate view of genome organisation in the nucleus

Are they / what are the link between chromatin states, replication, transcription and structural domains?

What are the implications for development, cancer progression ?

Characterizing replication stress in cancer using replication timing and fork polarity profiles

In some leukemias, replication timing changes associated to translocations precede and possibly predispose chromosomes to the translocation

Rvba, Genome Research (2012)

RUNX1 is involved in normal hematopoiesis and is one of the most frequently disrupted genes in leukemia

220 R1

From the epigenome to the functional and structural nuclear organisation

Benjamin Audit

Equipe SIgnaux, SYstèmes et PHysiquE (SISYPHE) Laboratoire de Physique de l'ENS-Lyon

ENS de Lyon

Françoise Argoul Alain Arneodo Antoine Baker Pierre Borgnat **Rasha Boulos** Guénola Drillon Pablo Jensen Hanna Julienne Nicolas Tremblay Cédric Vaillant Lamia Zaghloul

CGM, Gif-sur-Yvette

Yves d'Aubenton-Carafa Chun-Long Chen Claude Thermes

<u>CEA, Saclay</u>

Arach Goldar

<u>ENS, Paris</u> Guillaume Guilbaud Olivier Hyrien Malik Kahli Nataliya Petryk Aurélien Rappailles

Towards graph spectral analysis

Fourier modes are eigen-functions of the Laplacian operator

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}\cos(\omega t) = -\omega^2\cos(\omega t)$$

Discretized Laplacian operator L

2

-1

L = 0 - 1

0

0

-1

2

0

0 -1 2

$$L\chi_i = \lambda_i\chi_i$$

L is related to the adjacency matrix A and degree matrix *D* of the linear graph: L = D - A

Towards graph spectral analysis

Graph Fourier modes are the eigen-functions of the graph Laplacian operator L = D - A

Some Fourier modes

Graph Fourier modes convey information on the graph topology Used in graph spectral clustering

Structural communities during HeLaS3 cell cycle

Naumova, Science (2013)

