Introduction	$c \rightarrow ull: SM$	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion

BSM searches with rare charm decays

Stefan de Boer

based on works with Gudrun Hiller, arXiv:1510.00311 [hep-ph] and SdB, B. Müller, D. Seidel to appear, DO-TH 15/11, QFET-2015-27

LIO conference on Flavour, 24.11.2015

Introduction	c ightarrow ull: SM 0000	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion
●00		000	00000	O
Flavour				

Flavour related questions

- Hierarchy of fermion masses/Yukawas?
- Flavour mixing/CP violation solely due to CKM?
- (Different) structures in CKM and PMNS?
- Lepton Non-Universality (LNU) in R(K), $R(D^*)$?

Introduction	$c \rightarrow ull: SM$ 0000	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion
●00		000	00000	O
Flavour				

Flavour related questions

- Hierarchy of fermion masses/Yukawas?
- Flavour mixing/CP violation solely due to CKM?
- (Different) structures in CKM and PMNS?
- Lepton Non-Universality (LNU) in R(K), $R(D^*)$?

and answers via?

- Lepton Flavour Violating (LFV) decays.
- Link SM-anomalies in *b*-physics to charm Flavour Changing Neutral Currents (FCNC).
- Quark lepton interface.

High precision experiments at LHCb, BaBar, Belle 11, CLEO-c, BESIII, ...

Most stringent limit to date $\mathcal{B}^{\rm nr}(D^+ \to \pi^+ \mu^+ \mu^-) < 7.3 \times 10^{-8} \quad \text{@CL=90\%} \quad \text{[LHCb 2013]}.$

Rare in the SM due to GIM suppression.

Precise measurements of $D^0 \to \pi^+\pi^-\mu^+\mu^-$ and $D^0 \to K^+K^-\mu^+\mu^-$ are possible [LHCb 2015], [Cappiello et al. 2013].

Introduction	$c \rightarrow ull: SM$ 0000	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion
0●0		000	00000	O
Present S	Status on (Charm FCNCs		

High precision experiments at LHCb, BaBar, Belle 11, CLEO-c, BESIII, ...

 $\begin{array}{ll} \mbox{Most stringent limit to date} \\ \mathcal{B}^{\rm nr}(D^+ \to \pi^+ \mu^+ \mu^-) < 7.3 \times 10^{-8} & \mbox{OCL=90\%} & \mbox{[LHCb 2013]}. \end{array} \end{array}$

Rare in the SM due to GIM suppression.

Precise measurements of $D^0 \to \pi^+\pi^-\mu^+\mu^-$ and $D^0 \to K^+K^-\mu^+\mu^-$ are possible [LHCb 2015], [Cappiello et al. 2013].

Ask for/Probe convergence of calculations by means of $\Lambda_{\rm QCD}/m_c.$ Two orders of magnitude difference in calculations of the branching ratios [Burdman et al. 2002], [Fajfer et al. 2003], [Paul et al. 2011] is resolved, this talk [SdB, B. Müller, D. Seidel to appear, DO-TH 15/11, QFET-2015-27].

Introduction	$c \rightarrow ull: SM$ 0000	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion
00●		000	00000	O
and this	Talk			

Study $c \rightarrow ull'$ transitions

- in the SM (l = l').
- and BSM sensitivity model-independently.
- within Leptoquark models supplemented by flavour patterns.

How much beauty is in rare charm decays?

I ntroduction	$c \rightarrow ull: SM = 0000$	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion
000		000	00000	O
(N)NLO	Calculation	າ		

[SdB, B. Müller, D. Seidel to appear, DO-TH 15/11, QFET-2015-27]

Matching at μ_W ($P_{1,2}$: W-induced current-current operators)

$$\begin{split} \mathcal{L}_{\text{eff}}^{\text{weak}}\big|_{\mu_W \geq \mu > \mu_b} &= \frac{4G_F}{\sqrt{2}} \sum_{q=d,s,b} V_{cq}^* V_{uq} \\ & \times \left(\tilde{C}_1(\mu) P_1^{(q)}(\mu) + \tilde{C}_2(\mu) P_2^{(q)}(\mu) \right) \end{split}$$

and matching at μ_b (P_{3-10} : *b*-induced penguin operators)

$$\begin{split} \mathcal{L}_{\text{eff}}^{\text{weak}} \bigg|_{\mu_b > \mu \ge \mu_c} &= \frac{4G_F}{\sqrt{2}} \sum_{q=d,s} V_{cq}^* V_{uq} \\ & \times \left(\tilde{C}_1(\mu) P_1^{(q)}(\mu) + \tilde{C}_2(\mu) P_2^{(q)}(\mu) + \sum_{i=3}^{10} \tilde{C}_i(\mu) P_i(\mu) \right) \,. \end{split}$$

Introduction	$c \rightarrow ull: SM$	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion
	0000			

SM Wilson Coefficients at $\mu_c = m_c$

	j = 1	j = 2	j = 7	j = 8	j = 9
$ ilde{C}_{j}^{(0)}$	-1.0275	1.0925	0	0	-0.0030
$(\alpha_s/(4\pi))\tilde{C}_j^{(1)}$	0.3214	-0.0549	0.0035	-0.0019	-0.0064
$(\alpha_s/(4\pi))^2 \tilde{C}_j^{(2)}$	0.0766	-0.0037	0.0002	-0.0003	-0.0037
$ ilde{C}_j$	-0.6295	1.0339	0.0037	-0.0022	-0.0131

Table: Additionally, $\tilde{C}_3 = -0.0080$, $\tilde{C}_4 = -0.0924$, $\tilde{C}_5 = 0.0005$, $\tilde{C}_6 = 0.0012$ and $\tilde{C}_{10} = 0$.

 $ilde{C}_1$ and $ilde{C}_2$ partially cancel in effective Wilson coefficients.

Non-resonant SM Branching Ratios

Effective GIM suppression in non-resonant decays, e.g.

q^2 -bin	$\mathcal{B}(D^+ \to \pi^+ \mu^+ \mu^-)_{\rm nr}^{\rm SM}$	90% CL limit
full q^2	$3.7 \cdot 10^{-12} (\pm 3, ^{+16}_{-15}, \pm 1, ^{+4}_{-1}, ^{+158}_{-1}, ^{+16}_{-12})$	$7.3 \cdot 10^{-8}$
low q^2	$7.4 \cdot 10^{-13} \left(\pm 4, \substack{+23 \\ -21}, \substack{+10 \\ -11}, \substack{+11 \\ -1}, \substack{+238 \\ -23}, \substack{+6 \\ -5} \right)$	$2.0 \cdot 10^{-8}$
high q^2	$7.4 \cdot 10^{-13} \left(\pm 6, ^{+15}_{-14}, \pm 6, ^{+2}_{-1}, ^{+136}_{-45}, ^{+27}_{-20} \right)$	$2.6 \cdot 10^{-8}$

Table: Full q^2 : $(2m_{\mu})^2 \leq q^2 \leq (m_{D^+} - m_{\pi^+})^2$, low q^2 : $0.250^2 \,\text{GeV}^2 \leq q^2 \leq 0.525^2 \,\text{GeV}^2$ and high q^2 : $q^2 \geq 1.25^2 \,\text{GeV}^2$. Non-negligible uncertainties are labelled as $(m_c, m_s, \mu_W, \mu_b, \mu_c, f_+)$ [%], where μ_c is varied as $m_c/\sqrt{2} \leq \mu_c \leq \sqrt{2}m_c$.

Introduction	$c \rightarrow ull: SM \\ 0000$	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion
000		000	00000	O
and Reso	nant Mode	νς.		

Figure: The solid blue curve is the non-resonant SM prediction at $\mu_c = m_c$ and the lighter blue band its μ_c -uncertainty. The orange band represents the pure resonant modes modelled via a Breit-Wigner shape to fit the data and varying the relative strong phases. The dashed black line denotes the 90% CL experimental upper limit.

Introduction	c ightarrow ull: SM 0000	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion
000		●00	00000	O
Lorentz 9	tructures			

$$\mathcal{L}_{ extsf{eff}}^{ extsf{weak}}(\mu\sim m_c) = rac{4G_F}{\sqrt{2}} rac{lpha_e}{4\pi} \sum_i C_i^{(l)} Q_i^{(l)}$$
 ,

$$\begin{split} Q_{9}^{(l)} &= \left(\bar{u} \gamma_{\mu} P_{L} c \right) \left(\bar{l} \gamma^{\mu} l \right) , \qquad Q_{9}^{(l)\prime} &= \left(\bar{u} \gamma_{\mu} P_{R} c \right) \left(\bar{l} \gamma^{\mu} l \right) , \\ Q_{10}^{(l)} &= \left(\bar{u} \gamma_{\mu} P_{L} c \right) \left(\bar{l} \gamma^{\mu} \gamma_{5} l \right) , \qquad Q_{10}^{(l)\prime} &= \left(\bar{u} \gamma_{\mu} P_{R} c \right) \left(\bar{l} \gamma^{\mu} \gamma_{5} l \right) , \\ Q_{S}^{(l)} &= \left(\bar{u} P_{R} c \right) \left(\bar{l} l \right) , \qquad Q_{S}^{(l)\prime} &= \left(\bar{u} P_{L} c \right) \left(\bar{l} l \right) , \\ Q_{P}^{(l)} &= \left(\bar{u} P_{R} c \right) \left(\bar{l} \gamma_{5} l \right) , \qquad Q_{P}^{(l)\prime} &= \left(\bar{u} P_{L} c \right) \left(\bar{l} \gamma_{5} l \right) , \\ Q_{T}^{(l)} &= \frac{1}{2} \left(\bar{u} \sigma^{\mu\nu} c \right) \left(\bar{l} \sigma_{\mu\nu} l \right) , \qquad Q_{T5}^{(l)} &= \frac{1}{2} \left(\bar{u} \sigma^{\mu\nu} c \right) \left(\bar{l} \sigma_{\mu\nu} \gamma_{5} l \right) \end{split}$$

and analogue for LFV decays.

$$D
ightarrow Pll$$
 and $D^0
ightarrow ll$ are correlated via $C_{10}^{(\prime)}$ and $C_{S,P}^{(\prime)}$.

Introduction	$c \rightarrow ull: SM$	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion
000	0000	000	00000	
X A (1) - 1		D I		

Window in Branching Ratio

Figure: The solid blue curve is the non-resonant SM prediction at $\mu_c = m_c$ and the lighter blue band its μ_c -uncertainty, the dashed black line denotes the 90% CL experimental upper limit and the orange band represents the resonant modes. The additional curves show $|C_9| = |C_{10}| = 0.6$ (dot-dashed cyan curve) and $C_i^{(\prime)} = 0.05$ (dotted purple curve).

Introduction	$c \rightarrow ull: SM$ 0000	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion
000		00●	00000	O
Null Test	s of SM			

$$\frac{1}{\Gamma}\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta} = \frac{3}{4}(1-F_H)(1-\cos^2\theta) + A_{FB}\cos\theta + \frac{1}{2}F_H$$

(θ is the angle between l^- and D in dilepton center-of-mass frame).

At high q^2 $(q^2 \ge 1.25 \text{ GeV}^2)$

$$|A_{\rm FB}(D^+ \to \pi^+ \mu^+ \mu^-)| \lesssim 0.6$$
,
 $F_H(D^+ \to \pi^+ \mu^+ \mu^-) \lesssim 1.5$.

LFV and dineutrino modes are close to their experimental limits $\mathcal{B}(D^+ \to \pi^+ e^\pm \mu^\mp) \lesssim 3 \cdot 10^{-6}$ [BaBar 2011], $\mathcal{B}(D^+ \to \pi^+ \nu \bar{\nu}) \sim 10^{-5}$ sensitivity at BESIII.

LNU [Fajfer et al. 2015] and CP-asymmetries, in Leptoquark models.

Introduction 000	$c \rightarrow ull: SM$	BSM: Model-Independently 000	BSM: Leptoquark Models ●0000	Conclusion O
Leptoqua	rk Models			

Bottom-up approach $(\mathcal{L}_{LQ} \supset)$

$$\left(\lambda_{S_{1L}}\mathbf{Q}_{L}^{T}i\tau_{2}\mathbf{L}_{L}+\lambda_{S_{1R}}q_{R}l_{R}\right)S_{1}^{\dagger}+\ldots+\lambda_{V_{3}}\bar{\mathbf{Q}}_{L}\gamma_{\mu}\vec{\tau}\mathbf{L}_{L}\cdot\left(\vec{V_{3}}^{\mu}\right)^{\dagger}$$

- Collider experiments set $M\gtrsim 1\,{
 m TeV}$.
- Couplings to quark doublets constrained by rare kaon decays.
- Couplings to electrons and muons constrained by $\mu \to e \gamma$ and μe conversion in nuclei.

• Update and extend charm (up) constraints of [Davidson et al. 1994]. SM-anomalies in R(K) and $R(D^{\ast})$ could be softened by S_1 [Bauer et al. 2015] and V_3 [Fajfer et al. 2015].

Introduction	$c \rightarrow ull: SM$ 0000	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion
000		000	0●000	O
Flavour F	Patterns			

Inspired by Frogatt-Nielsen U(1) (quarks, rows) and A_4 (leptons, columns) symmetries [de Medeiros Varzielas et al. 2015]

$$\lambda_{i,ii,iii} \sim \begin{pmatrix} \rho_d \kappa & \rho_d & \rho_d \\ \rho \kappa & \rho & \rho \\ \kappa & 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{pmatrix}, \quad \begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{pmatrix} \dots$$

Study 1) couplings to quark singlets and 2) couplings to quark doublets.

Introduction	$c \rightarrow ull: SM$ 0000	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion
000		000	00●00	O
Branchin	g Ratios			

	$\mathcal{B}(D^+ \to \pi^+ \mu^+ \mu^-)$	$\mathcal{B}(D^0\to\mu^+\mu^-)$
i)	SM-like	SM-like
ii.1)	$\lesssim 7\cdot 10^{-8}~(2\cdot 10^{-8})$	$\lesssim 3 \cdot 10^{-9}$
ii.2)	SM-like	$\lesssim 4 \cdot 10^{-13}$
iii.1)	SM-like	SM-like
iii.2)	SM-like	SM-like
exp.	$< 7.3 \cdot 10^{-8} (2.6 \cdot 10^{-8})$	$< 6.2 \cdot 10^{-9}$

Table: Branching ratios on the full q^2 -range (high q^2 -range) for different classes of leptoquark couplings. All $c \rightarrow u e^+ e^-$ branching ratios are "SM-like" in the models studied. Additionally, $\mathcal{B}(D^0 \rightarrow \tau^{\pm} e^{\mp}) \sim 5 \cdot 10^{-9} \times |\text{Wilson coefficient}|^2$.

Introduction	$c \rightarrow ull: SM$	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion
000		000	000●0	O
Branchin	g Ratios			

Stefan de Boer LIO conference on Flavour

Introduction	$c \rightarrow ull: SM$	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion
			00000	

CP Asymmetries

$$A_{CP} \sim \operatorname{Im}[V_{cd}^* V_{ud} \Delta_9^*] \operatorname{Im}[c_d] f_+ + \operatorname{Im}[V_{cs}^* V_{us} \Delta_9^*] \operatorname{Im}[c_s] f_+ + (\mathsf{SM} \simeq 0)$$

$$\Delta_9 = C_9^{BSM} + C_9', \quad c_{d,s} = \frac{4\pi}{\alpha_s} 2C_7^{\mathsf{eff}(d,s)} f_T \frac{m_c}{m_D} + C_9^{\mathsf{R}}|_{\rho,\phi} \frac{f_+}{V_{c(d,s)}^* V_{u(d,s)}}.$$

Figure: A_{CP} normalized to the shown bins for case ii.2) around ϕ (left plot) and at high q^2 (right plot). From yellow (upper curves above ϕ) to red (lower curves above ϕ) each bunch represents $\delta_{\phi} = \pi/2, \pi, 0, 3/2\pi$.

Probe $Q_9 \sim \bar{u}cll$ independent of strong phases of ϕ and small C_9 as linked to K/B physics at high q^2 .

Introduction	$c \rightarrow ull: SM$ 0000	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion
000		000	00000	•
Conclusio	n			

(N)NLO calculation of the non-resonant SM $c \rightarrow ull$ branching ratios to resolve discrepancies in the literature.

BSM sensitivity in rare charm decays via

- $\mathcal{B}(D^+ \to \pi^+ \mu^+ \mu^-)$ above the resonances.
- angular observables.
- CP asymmetries.
- dineutrino and LFV modes.

Leptoquark models link kaon/bottom physics (LNU) and direct searches as a bottom-up approach.

BSM physics depend on flavour patterns and vice versa.

[Burdman et al. 2002], [Paul et al.

Scales are not consistently factorized, e.g. 2011]. [Wang et al. 2015]

$$C_9(\mu_W) = \sum_{q=d,s,b} V_{cq}^* V_{uq} C_{9,\mathsf{IL}}^{(q)} \simeq -0.29,$$

yields discrepancies in branching ratios

$$\begin{split} \mathcal{B}_{D^+\to\pi^+\mu\mu}^{\rm nr,SM} &= 6\cdot 10^{-12} \quad \text{[Fajfer et al. 2006],} \\ \mathcal{B}_{D^+\to\pi^+\mu\mu}^{\rm nr,SM} &= [4.59, 8.04]\cdot 10^{-10} \quad \text{[Wang et al. 2015].} \end{split}$$

Introduction	$c \rightarrow ull: SM$ 0000	BSM: Model-Independently	BSM: Leptoquark Models	Conclusion
000		000	00000	O
SM Oper	ator Basis			

$$P_{1,2}^{(q)} = (\bar{u}_L \gamma_{\mu_1} T^a q_L) (\bar{q}_L \gamma^{\mu_1} T^a c_L) ,$$

$$P_{3,4} = (\bar{u}_L \gamma_{\mu_1} T^a c_L) \sum_{\{q:m_q < \mu\}} (\bar{q} \gamma^{\mu_1} T^a q) ,$$

$$P_{5,6} = (\bar{u}_L \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{\mu_3} T^a c_L) \sum_{\{q:m_q < \mu\}} (\bar{q} \gamma^{\mu_1} \gamma^{\mu_2} \gamma^{\mu_3} T^a q) ,$$

$$P_{7} = \frac{e}{g^{2}} m_{c} (\bar{u}_{L} \sigma^{\mu_{1}\mu_{2}} c_{R}) F_{\mu_{1}\mu_{2}} ,$$

$$P_{a} = \frac{1}{g^{2}} m_{c} (\bar{u}_{L} \sigma^{\mu_{1}\mu_{2}} T^{a}_{a} c_{L}) C^{a}_{a}$$

$$P_8 = -\frac{m_c}{g} (\bar{u}_L \sigma^{\mu_1 \mu_2} T^a c_R) G^a_{\mu_1 \mu_2} ,$$

$$P_{9,10} = \frac{e^2}{g^2} (\bar{u}_L \gamma_{\mu_1} c_L) \left(\bar{l} \gamma^{\mu_1} \gamma_5 l \right) \,.$$