$B \rightarrow DD$

CP Violation in Heavy Meson Systems

Martin Jung

LIO International Conference on Flavour, Composite Higgs and Dark Matter

24th of November 2015, IPNL, Lyon, France

Interpretation of CPV

Interpreting CPV inherently difficult:

- Different phenomenological sources [see Yasmine's talk]
 CPV in mixing, decay and interference.
- Each can receive contributions in the SM and from NP

Methods:

- Identify SM null tests
- Find "simple" SM prediction
 (e.g. S = sin 2β)
 - perform consistency checks (e.g. global UT fit)
- SM flavour sector established:
- "Small" NP influence

Subleading SM contributions important

 $B \rightarrow DD$

 $D \rightarrow$

Conclusions

Consequences of the Flavour Problem

Higher precision necessary

- Experimental challenge: Control systematics at high luminosities
- Theoretical challenge: Reduce hadronic uncertainties

More complex analyses, e.g.

- Inclusion of neglected contributions
- Differential distributions even for rare decays
- Possible due to experimental advances!

Combination of many observables

- Use more available information
- Tests of more realistic models
 - Danger of higher model-dependence
- Model-independent analyses e.g. in HEFT
 Rather weak statements regarding flavour

Introduction

- Apparent large effects, $|\phi_s| \gg \phi_s^{SM} \stackrel{\triangleleft}{\underline{e}}$
- Driven by ϕ_s from CDF,D0 and $a_{\rm SL}$ from D0
- Both could be fitted by Δ_{d,s}

Introduction

NP in B, mixing - with A_

Re ∆.

- Best fit basically SM, large effects excluded
- ϕ_{s} and $A_{
 m SL}$ not compatible

Extracting weak phases in hadronic decays

UT angles extracted from non-leptonic decays

Hadronic matrix elements (MEs) main theoretical difficulty!

Options:

- Lattice: not (yet) feasible for (most) three-meson MEs
- Other non-perturbative methods: idem, precision
- QCDF/SCET: applicability, power corrections
- Symmetry methods: limited applicability or precision
- New/improved methods necessary!

UT angles extracted by avoiding direct calculation of MEs Revisit approximations for precision analyses

Here: Improve SU(3) analysis in $B \rightarrow J/\psi M$, $B \rightarrow DD \& D \rightarrow PP$

Flavour SU(3) and its breaking

- SU(3) flavour symmetry $(m_u = m_d = m_s)$...
 - does not allow to calculate MEs, but relates them (WE theorem)
 - provides a model-independent approach
 - allows to determine MEs from data
 improves "automatically"!
 - includes final state interactions

SU(3) breaking...

- is sizable, $\mathcal{O}(20-30\%)$
- can systematically be included: tensor (octet) ~ m_s [Savage'91,Gronau et al.'95,Grinstein/Lebed'96,Hinchliffe/Kaeding'96]
 ▶ even to arbitrary orders [Grinstein/Lebed'96]

Main questions:

- How large is the SU(3)-expansion parameter?
- Is the number of reduced MEs tractable?

flavour octet

Power counting

SU(3) breaking typically $\mathcal{O}(30\%)$

Several other suppression mechanisms involved:

- CKM structure (λ , but also $R_u \sim 1/3$)
- Topologial suppression: penguins and annihilation
- $1/N_C$ counting

All these effects should be considered!

- Combined power counting in $\delta \sim 30\%$ for all effects
- Neglect/Constrain only multiply suppressed contributions

Yields predictive frameworks with weaker assumptions!

- Uses full set of observables for related decays
- Assumptions can be checked within the analysis
- Applied here for $B
 ightarrow J/\psi M$ and B
 ightarrow DD

Introduction

 $B
ightarrow J/\psi M$ decays - basics

- $B_d \rightarrow J/\psi K$, $B_s \rightarrow J/\psi \phi$:
 - Amplitude $A = \lambda_{cs}A_c + \lambda_{us}A_u$
 - Clearly dominated by A_c [Bigi/Sanda '81]
 - Very clear experimental signature
 - Subleading terms:
 - Doubly Cabibbo suppressed
 - Penguin suppressed
 - Estimates $|\lambda_{us}A_u|/|\lambda_{cs}A_c| \lesssim 10^{-3}$

[Boos et al.'03, Li/Mishima '04, Gronau/Rosner '09]

The golden modes of *B* physics: $|S| = \sin \phi$

However:

- Quantitative calculation still unfeasible [but see Frings+'15]
- Fantastic precision expected at LHC and Belle II
- Subleading contributions should be controlled: Apparent phase $\tilde{\phi} = \phi_{SM}^{mix} + \Delta \phi_{NP}^{mix} + \Delta \phi_{pen}$

Including $|A_u| \neq 0$ – Penguin Pollution

$$A_u
eq 0 \ \Rightarrow \ S
eq \sin \phi, \ A_{
m CP}^{
m dir}
eq 0$$

Idea: U-spin-related modes constrain A_u [Fleischer'99, Ciuchini et al.'05,'11, Faller/Fleischer/MJ/Mannel'09, ...]

- Increased relative penguin influence in b
 ightarrow d
- Extract $\phi = \phi_{\mathrm{SM}}^{\mathrm{mix}} + \Delta \phi_{\mathrm{NP}}^{\mathrm{mix}}$ and $\Delta \phi_{\mathrm{pen}}$
- Issue: Dependence of $\Delta \phi_{
 m pen}$ on SU(3) breaking

Using full SU(3) analysis: [MJ'12]

ightarrow Determines model-independently SU(3) breaking: $\sim 20\%$

Improved extraction of $\phi_d(o\Delta\phi^{
m mix}_{
m NP})$ and $\Delta\phi_{
m pen}!$

Remaining weaker approximations:

- SU(3) breaking for A_c , only (but to all orders for $P = \pi, K!$)
- EWPs with $\Delta I = 1, 3/2$ neglected (tiny!)
- $A(B_s \rightarrow J/\psi \pi^0) = 0$: testable (challenging)

Digression: BR measurements and isospin violation

Again: detail due to high precision and small NP Not specific to $B \rightarrow J/\psi K^{(*)}!$

Branching ratio measurements require normalization...

- B factories: depends on $\Upsilon o B^+ B^-$ vs. $B^0 ar{B}^0$
- LHCb: normalization mode, usually obtained from *B* factories Assumptions entering this normalization:
 - PDG: assumes $r_{+0}\equiv \Gamma(\Upsilon o B^+B^-)/\Gamma(\Upsilon o B^0 ar{B}^0)\equiv 1$
 - LHCb: assumes $f_u \equiv f_d$, uses $r_{+0}^{\rm HFAG} = 1.058 \pm 0.024$

Both approaches problematic: [MJ 1510.03423]

- Potential large isospin violation in $\Upsilon o BB$ [Atwood/Marciano'90]
- Measurements in r₊₀^{HFAG} assume isospin in exclusive decays
 This is one thing we want to test!
- Avoiding this assumption yields $r_{+0} = 1.027 \pm 0.037$
- ▶ Isospin asymmetry $B \rightarrow J/\psi K$: $A_I = -0.009 \pm 0.024$

Preliminary results for $B \rightarrow J/\psi P$ [MJ'12,Beaujean/MJ/Knegjens('15)] Fit to $B_{d,u,s} \rightarrow J/\psi(K, \pi)$ data (including correlations)

- PDG uncertainties applied
- Annihilation included
- SU(3) breaking \leq 55% allowed
- $P/T, A_u/T \le (100, 55, 16, 0)\%$
- Excellent fit $(\chi^2/\mathrm{dof} \leq 1)$
- SU(3) breaking \lesssim 30%
- Pen. + Ann. consistent with 0
- Issues: $R_{\pi K}$, $S_{
 m CP}(B
 ightarrow J/\psi \pi^0)$

N.B.: $|\Delta \phi| \leq 0.7^\circ$ for [Frings+'15]

Application to $B \rightarrow J/\psi V$

Differences for $B \rightarrow J/\psi V$ ($V = \phi, \omega, \rho, K^*$):

- Polarization! ⇒ 3× #parameters
 ▶ but *larger* increase in measurements
- Final states with from octet and singlet
 - Slightly complicates *SU*(3) analysis
 - Control modes with K^*, ρ not sufficient!

Annihilation in A_c is important!

- Suppression unclear for heavy final states • $\sim 20\%$ in $A_c(B \rightarrow DD)$ [MJ/Schacht'15]
- Determines singlet contributions in $B_s
 ightarrow J/\psi \phi$
 - ▶ Penguin pollution in $B_s \rightarrow J/\psi \phi$ potentially underestimated
 - Affects $\eta \eta'$ mixing angle from $B_{d,s} \rightarrow J/\psi \eta^{(\prime)}$
- Analysis in progress. . . [Beaujean/MJ/Knegjens('16)]

B ightarrow DD decays [MJ/Schacht '14]

 $B_s \rightarrow D_s^+ D_s^-$ theoretically golden mode Clean extraction of ϕ_s w/o angular analysis!

Furthermore:

- Other correlations in $B \rightarrow DD \rightarrow NP$ searches
- Quasi-isospin rules for rates, test $\Delta I = 1, 3/2$ NP
- Learn about annihilation

Aspects of the analysis:

- Inclusion of singlets unproblematic
- Larger rates, but experimentally more difficult
 - Ideas for increasing selection efficiency?
- Extraction of γ not feasible because of RI
- Exp. issue: $A_{
 m CP}(t)(B^0 o D^+D^-)$ Belle vs. BaBar
- Assumptions: SU(3) breaking only in A_c, other terms included (theoretically restricted)

$B \rightarrow DD$ decays: Results [MJ/Schacht '14]

Red: expected PC. Blue: enhanced penguins (dark BaBar, light WA)

- Outside red: large penguins or NP. Outside blue: NP.
- Any sizable CPV in $b \rightarrow s$ transitions: NP
- Measurements like $A_{CP}(\bar{B}_s o D^- D_s^+)$ influential

$B \rightarrow DD$ decays: Results [MJ/Schacht '14]

Red: expected PC. Blue: enhanced penguins (dark BaBar, light WA)

- Outside red: large penguins or NP. Outside blue: NP.
- Any sizable CPV in $b \rightarrow s$ transitions: NP
- Fit with present data! "2022": $\Delta \phi_s^{
 m pen} \lesssim 0.6^\circ$

CPV in $D \rightarrow PP$

Expected to be tiny
$$(\sim \lambda^4 \times P/T)$$

 $\Delta A_{CP} = A_{CP}(D \rightarrow KK) - A_{CP}(D \rightarrow \pi\pi)$
"back to normal" (both tagging methods)
Long discussion whether ΔA_{CP} is NP or not...
We need more information!

What are we aiming at?

- NP or enhanced penguins other modes should be affected
- Independent of enhancement: SM implies pattern in CPV
- Find a description of the full D → PP data, not just ΔA_{CP}
 Branching ratios and CP asymmetries, δ_{Kπ}
- Find (more) discriminants between NP and SM

How are we doing this?

Exact limits do not work well
 Include corrections!

Direct CPV in D decays

Results of the full $D \rightarrow PP$ fit:

- SU(3) breaking (30 40%) for whole multiplet - not trivial!
- New data: more correlations visible [Hiller/MJ/Schacht'15, in prep.]
- Red: SM. Blue/Yellow: NP models
 Differentiable!
- Both, BRs and CPAs are important!
- A few "non-fit" possibilities:
 - ${\cal A}^{
 m SM}_{
 m CP}(D^- o\pi^-\pi^0)\equiv 0$ [also Bucella et al.'93, Grossman et al.'12]
 - Isospin sum rules [Grossman et al.'12]
 - Enhancements for hadronic decays with suppressed rates, e.g. $D^0 \rightarrow K_S K_S$: [Atwood/Soni'13,Hiller/MJ/Schacht'13,Nierste+'15]

$$A_{CP}(D^0 o K_S K_S) \sim rac{1}{\epsilon} A_{CP}(D^0 o K^+ K^-)$$

- Smallness of NP poses new challenges to CPV interpretation
- SU(3) with breaking enables model-independent analyses
- Combined power counting of small effects necessary
- High precision \rightarrow Control penguins and annihilation
 - Possible for ϕ_d by $B \to J/\psi P$, $|\Delta \phi| \le 0.6^{\circ}$ (95% CL)
- Careful interpretation of BR data necessary
- Results will improve with coming data, penguins tamed
- B_s → D_s⁺D_s⁻ theoretically golden mode
 ▶ Extraction of φ_s w/o angular analysis
- Predictions for CPV observables from global $B \rightarrow DD$ analysis
- Various NP tests: CPV correlations and quasi-isospin rules
- ΔA_{CP} gone, but charm remains interesting
- SM correlations can be tested in global fit, also e.g. isospin predictions

Exciting times ahead!

Input Values for $B \rightarrow J/\psi P$ Decays: BRs

Observable	Value	Ref./Comments
$\frac{1}{c_{-}}$ BR $(B^{-} \rightarrow J/\psi K^{-})$	$(10.27\pm0.31) imes10^{-4}$	
$rac{1}{c} { m BR}(B^- ightarrow J/\psi \pi^-)$	$(0.38\pm 0.07) imes 10^{-4}$	
$\frac{\mathrm{BR}(B^- \to J/\psi\pi^-)}{\mathrm{BR}(B^- \to J/\psi K^-)}$	0.040 ± 0.004	scaling factor 3.2
	0.0386 ± 0.0013	Excluding BaBar
	0.052 ± 0.004	Excluding LHCb
$rac{1}{c_0}\mathrm{BR}(ar{B}^0 o J/\psiar{K}^0)$	$(8.73\pm0.32) imes10^{-4}$	
$r \frac{\text{BR}(B^- \to J/\psi K^-)}{\text{BR}(\bar{B}^0 \to J/\psi \bar{K}^0)}$	1.090 ± 0.045	correlations neglected
$rac{1}{c_0}{ m BR}(ar{B}^0 o J/\psi\pi^0)$	$(0.176\pm 0.016) imes 10^{-4}$	scaling factor 1.1
$\frac{f_s}{f_d} \frac{\text{BR}(\bar{B}_s \to J/\psi K_S)}{\text{BR}(\bar{B}^0 \to J/\psi K_S)}$	0.0112 ± 0.0006	$f_s/f_d=f_s/f_d _{\rm LHCb}$
$\frac{\mathrm{BR}(\bar{B}_s \to J/\psi K_S)}{\mathrm{BR}(\bar{B}^0 \to J/\psi K_S)}$	0.038 ± 0.009	uses $f_s/f_d = f_s/f_d _{\mathrm{Tev}}$
$\frac{1}{20} \operatorname{BR}(\bar{B}^0 \to J/\psi \eta)$	$0.123 \pm 0.019 \times 10^{-4}$	
$\ddot{\mathrm{BR}}(\bar{B}_s \rightarrow J/\psi \eta)$	$(5.1\pm1.1) imes10^{-4}$	
$R_s = rac{\mathrm{BR}(B_s \to J/\psi \eta')}{\mathrm{BR}(\bar{B}_s \to J/\psi \eta)}$	$\textbf{0.73} \pm \textbf{0.14}$	$ ho(BR,R_s)=-23\%$
Rs	0.902 ± 0.084	$ ho(R_s,R)=1\%$
$R = rac{{ m BR}(ar{B}^0 ightarrow J/\psi \eta')}{{ m BR}(ar{B}^0 ightarrow J/\psi \eta)}$	1.11 ± 0.48	$ ho({\sf R},{\sf R}_\eta)=-73\%$
$rac{f_d}{f_s} R_\eta = rac{f_d}{f_s} rac{\mathrm{BR}(\bar{B}^0 ightarrow J/\psi \eta)}{\mathrm{BR}(\bar{B}_s ightarrow J/\psi \eta)}$	0.072 ± 0.024	$ ho(R_\eta,R_s)=9\%$

Input Values for $B \rightarrow J/\psi P$ Decays: CP Asymmetries

Observable	Value	Ref./Comments
${\cal A}_{ m CP}(B^- o J/\psi K^-)$	0.003 ± 0.006	
${\cal A}_{ m CP}(B^- o J/\psi \pi^-)$	0.001 ± 0.028	
$-\eta_{\rm CP} S_{\rm CP} (\bar{B}^0 o J/\psi K_{S,L})$	0.687 ± 0.019	
$\mathcal{A}_{\mathrm{CP}}(ar{B}^0 o J/\psi K_{\mathcal{S},L})$	0.016 ± 0.017	$ ho(\mathcal{S}_{ ext{CP}},\mathcal{A}_{ ext{CP}})=-15\%$
${\cal S}_{ m CP}(ar B^0 o J/\psi \pi^0)$	-0.94 ± 0.29	
	-0.65 ± 0.22	Belle only
${\cal A}_{ m CP}(ar B^0 o J/\psi \pi^0)$	0.13 ± 0.13	
	0.08 ± 0.17	Belle only
$\mathcal{S}_{ ext{CP}}(ar{B}_{s} ightarrow J/\psi K_{S})$	-0.08 ± 0.41	
$\mathcal{A}_{\mathrm{CP}}(ar{B}_s o J/\psi K_S)$	$\textbf{0.28} \pm \textbf{0.42}$	
${\cal A}_{\Delta\Gamma}(ar B_s o J/\psi K_S)$	$0.49^{+0.77}_{-0.65}\pm0.06$	
$\left. f_{s}/f_{d} \right _{\rm LHCb}$	0.259 ± 0.015	
y _s	0.0611 ± 0.0037	
$r = f_{+-}/f_{00}$	1.027 ± 0.037	

Data in both tables: PDG, HFAG, LHCb, Belle, BaBar

A word on meson mixing

Neutral singlets and octets can mix under QCD Complicates SU(3) analysis

 $B
ightarrow J/\psi P$: η, η' not necessary to determine ϕ_d

 $B \rightarrow J/\psi V$: ϕ central mode

Meson mixing has to be dealt with

 $N_C \rightarrow \infty$ and in the SU(3) limit: degenerate $P_{1,8}$ and $V_{1,8}$ Relative size of corrections determines mixing angle Large mixing does not mean breakdown of SU(3)!

 η, η' : large correction to $1/N_C$ from anomaly (singlet) η, η' remain approximate SU(3) eigenstates ϕ, ω : $1/N_C$ effects small (OZI) \rightarrow SU(3) breaking dominant \bullet eigenstates according to strange content, large mixing

> Only the octet part can be controlled by K^* and ρ ! Data for ω necessary to control singlet in SU(3)

Annihilation contributions in $B \rightarrow J/\psi M$

Annihilation is important!

- Suppression unclear for heavy final states
 - $\sim 20\%$ in $A_c(B
 ightarrow DD)$ [MJ/Schacht'15]
- Determines singlet contributions in $B_s
 ightarrow J/\psi \phi$
- Affects extraction of $\eta \eta'$ mixing angle from $B_{d,s} o J/\psi \eta^{(\prime)}$
- Its neglect correlates e.g. A_u in $B^- \to J/\psi \pi^-$ and $B^0 \to J/\psi K^0$, directly
 - Overly "precise" predictions for CP asymmetries
- In $B \rightarrow J/\psi M$ three annihilation contributions:
 - Annihilation in A_c, taken into account where appropriate
 - Two annihilation contributions in A_u , $a_2 \sim a_1/N_C$
 - ▶ $a_2 \ll 1 \rightarrow BR(B_s \rightarrow J/\psi\pi^0, \rho^0) \approx 0$, $A_I(B \rightarrow J/\psi K) \approx 0$ $BR(B_s \rightarrow J/\psi\rho) \leq 3.6 \times 10^{-6}$ (90%CL)
 - No improvement from inclusion (unlike [Ligeti/Robinson'15])
 - Only leading contribution included later

Factorization in $B \rightarrow J/\psi M$

- $B \rightarrow J/\psi M$ formally factorizes for $m_{c,b} \rightarrow \infty...$ [BBNS'00] b ... but corrections are large: $\Lambda_{QCD}/(\alpha_s m_{c,b})$
- $B \rightarrow J/\psi M$ formally factorizes for $N_C \rightarrow \infty...$ [Buras+'86] b... but corrections are large: $A_c \sim C_0 v_0 + C_8 (v_8 - a_8)$ [Frings+'15] Non-factorizable $a_8, v_8 \sim v_0/N_C$, but $C_8 \sim 17C_0$!

 $BR(B \rightarrow J/\psi M)$ remains uncalculable N.B.: No reason to assume $F_{B\rightarrow K}/F_{B\rightarrow \pi}$ for SU(3) breaking

Factorization for P/T: [Frings+'15]

- $\mathcal{A}(B \rightarrow J/\psi M) = \lambda_{cs}A_c + \lambda_{us}A_u$, A_u "penguin pollution"
- ▶ $A_u \sim p + a$, includes penguin and annihilation contributions No annihilation in $B_d \rightarrow J/\psi K$, but in $B_s \rightarrow J/\psi \phi$
- $p = \sum_{j} \langle J/\psi M | \mathcal{O}_{j}^{u} | B \rangle = \sum_{k} \langle J/\psi M | \mathcal{O}_{k}^{c} | B \rangle + \mathcal{O}(\Lambda/m_{J/\psi})$
- Estimating $\langle J/\psi M | \mathcal{O}_k^c | B \rangle$ in $1/N_C$ yields $\Delta \phi_{d,s}|_p \lesssim 1^\circ$

Reparametrization invariance and NP sensitivity

$$\mathcal{A} = \mathcal{N}(1 + r \, e^{i\phi_s} e^{i \, \phi_w})
ightarrow \tilde{\mathcal{N}}(1 + \tilde{r} \, e^{i ilde{\phi}_s} e^{i ilde{\phi}_w})$$

Reparametrization invariance:

[London et al.'99,Botella et al.'05,Feldmann/MJ/Mannel'08]

Transformation changes weak phase, but not form of amplitude

Sensitivity to (subleading) weak phase lost (presence visible)

- $\phi_w = \gamma$ in given analyses
- Usually broken by including symmetry partners

▶ Proposals to extract γ in $B \rightarrow J/\psi P$ or $B \rightarrow DD$

 However: partially restored when including SU(3) breaking! [MJ/Schacht'14]

 \blacktriangleright Reason for large range for γ observed in [Gronau et al.'08]

- Extracted phase fully dependent on SU(3) treatment
- **•** NP phases in \mathcal{A} not directly visible
- NP tests remain possible
- Addition of new terms, e.g. $A_c^{\Delta l=1}$ additional option

NP in mixing II Less change in B_d mixing, 2012 results: [Lenz et al. '12]

- a_{SL} marginally compatible
- p-value $\Delta_d = 1$ (SM): 3σ
- However: Largely due to $B \rightarrow \tau \nu$
 - Not a mixing observable

NP in mixing II 2014 results (incl. $B \rightarrow \tau \nu_{\text{Belle}}$): [CKMfitter]

 a^d_{SL} compatible (new measurements agree with SM)

• p-value
$$\Delta_d = 1$$
 (SM): 1.2σ

NP in mixing II 2014 results (incl. $B \rightarrow \tau \nu_{\text{Belle}}$): [CKMfitter]

 a^d_{SL} compatible (new measurements agree with SM)

• p-value
$$\Delta_d = 1$$
 (SM): 1.2σ

Alltogether:

- Worse fit than 2010 with only NP in M_{12}
- Semileptonic asymmetry in conflict with φ_{d,s}
 ▶ Independent check important!
- Additional NP in Γ_{12}^q possible, but difficult
- Interpretation of $\Delta \sin 2\beta$ as NP in mixing challenged

Quasi-isospin relations in $B \rightarrow D^{(*)}D$

 $\begin{array}{l} \mbox{Observation: } \mathcal{H}_c \mbox{ is basically an SU(3) triplet [Lipkin/Sanda'88]} \\ \hline \mbox{Quasi-isospin relations for } \mathcal{A}_c \mbox{ in } b \rightarrow d \mbox{ and } b \rightarrow s \mbox{ decays [Sanda/Xing'97,Gronau et al.'05,'08]} \\ \end{array}$

Can be extended to include penguins! [MJ/Schacht'14]

$$\begin{array}{lll} \mathcal{A}_{\bar{B}^0 \to D_s^- D^+} &=& \mathcal{A}_{B^- \to D_s^- D^0} + \mathcal{O}(\delta^5) \,, \\ \mathcal{A}_{\bar{B}_s \to D^- D^+} &=& -\mathcal{A}_{\bar{B}_s \to \bar{D}^0 D^0} + \mathcal{O}(\delta^6) \,, \quad \text{and} \\ \mathcal{A}_{B^- \to D^- D^0} &=& \mathcal{A}_{\bar{B}^0 \to D^- D^+} + \mathcal{A}_{\bar{B}^0 \to \bar{D}^0 D^0} + \mathcal{O}(\delta^3) \,. \end{array}$$

- Unaffected by SU(3) breaking!
- $b \rightarrow s$ rules yield penguin-independent precision predictions!
- b
 ightarrow d rule tests annihilation and yields correlations

$$\begin{split} & \mathrm{BR}_{B^- \to D_s^- D^0} &= r_{\tau,\mathrm{PS}} \, \mathrm{BR}_{\bar{B}^0 \to D_s^- D^+} \left(1 + \mathcal{O}(\delta^5) \right) \,, \\ & \mathrm{BR}_{\bar{B}_s \to \bar{D}^0 D^0} &= \, \mathrm{BR}_{\bar{B}_s \to D^- D^+} \left(1 + \mathcal{O}(\delta^4) \right) \,, \\ & \mathrm{BR}_{\bar{B}^0 \to D^- D^+} &= \, \tilde{r}_{\tau,\mathrm{PS}} \, \mathrm{BR}_{B^- \to D^- D^0} \left(1 + \mathcal{O}(\delta^2) \right) \,. \end{split}$$

Confronting quasi-isospin relations with data

$$\frac{\mathrm{BR}_{B^- \to D_s^- D^0}}{\mathrm{BR}_{\bar{B}^0 \to D_s^- D^+}} - r_{\tau,\mathrm{PS}} \stackrel{LHCb}{=} 0.14 \pm 0.07 \stackrel{SM}{=} \mathcal{O}(\delta^5) \lesssim 0.004$$

 $ightarrow \sim 2\sigma$ tension

• Confirmation of CV would imply NP with $\Delta I = 1!$

Confronting quasi-isospin relations with data

$$\frac{\mathrm{BR}_{B^- \to D_s^- D^0}}{\mathrm{BR}_{\bar{B}^0 \to D_s^- D^+}} - r_{\tau,\mathrm{PS}} \stackrel{LHCb}{=} 0.14 \pm 0.07 \stackrel{SM}{=} \mathcal{O}(\delta^5) \lesssim 0.004$$

 $ightarrow \sim 2\sigma$ tension

• Confirmation of CV would imply NP with $\Delta I = 1!$

$$\begin{array}{ll} \mathrm{BR}_{\bar{B}_s \to \bar{D}^0 D^0} & \stackrel{SM}{=} & \mathrm{BR}_{\bar{B}_s \to D^- D^+} = (0.21 \pm 0.03) \times 10^{-3} \,, \\ \mathrm{BR}_{\bar{B}_s \to \bar{D}^0 D^0} & \stackrel{LHCb}{=} & (0.19 \pm 0.04) \times 10^{-3} \,, \\ \mathrm{BR}_{\bar{B}_s \to D^- D^+} & \stackrel{LHCb}{=} & (0.27 \pm 0.05) \times 10^{-3} \,. \end{array}$$

Agreement, for NP with $\Delta I = 1$ signal potentially enhanced

Confronting quasi-isospin relations with data

$$\frac{\mathrm{BR}_{B^- \to D_s^- D^0}}{\mathrm{BR}_{\bar{B}^0 \to D_s^- D^+}} - r_{\tau,\mathrm{PS}} \stackrel{LHCb}{=} 0.14 \pm 0.07 \stackrel{SM}{=} \mathcal{O}(\delta^5) \lesssim 0.004$$

 $ightarrow \sim 2\sigma$ tension

• Confirmation of CV would imply NP with $\Delta I = 1!$

$$\begin{array}{ll} \mathrm{BR}_{\bar{B}_s \to \bar{D}^0 D^0} & \stackrel{SM}{=} & \mathrm{BR}_{\bar{B}_s \to D^- D^+} = (0.21 \pm 0.03) \times 10^{-3} \,, \\ \mathrm{BR}_{\bar{B}_s \to \bar{D}^0 D^0} & \stackrel{LHCb}{=} & (0.19 \pm 0.04) \times 10^{-3} \,, \\ \mathrm{BR}_{\bar{B}_s \to D^- D^+} & \stackrel{LHCb}{=} & (0.27 \pm 0.05) \times 10^{-3} \,. \end{array}$$

Agreement, for NP with $\Delta I = 1$ signal potentially enhanced

$$\frac{\mathrm{BR}_{B^- \to D_s^{*-} D^0}}{\mathrm{BR}_{\bar{B}^0 \to D_s^{*-} D^+}} \left/ \frac{\mathrm{BR}_{B^- \to D_s^- D^{*0}}}{\mathrm{BR}_{\bar{B}^0 \to D_s^- D^{*+}}} - \tilde{r}_{\tau, \mathrm{PS}} \stackrel{\mathsf{SM}}{=} \mathcal{O}(\delta^5) \,.$$

bouble-ratio independent of e.g. $f_u/f_d!$