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Interpretation of CPV
Interpreting CPV inherently difficult:

• Different phenomenological sources [see Yasmine’s talk]

CPV in mixing, decay and interference.

• Each can receive contributions in the SM and from NP

Methods:

• Identify SM null tests

• Find “simple” SM prediction
(e.g. S = sin 2β)

perform consistency checks
(e.g. global UT fit)

SM flavour sector established:

“Small” NP influence

Subleading SM contributions important
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Consequences of the Flavour Problem
Higher precision necessary

• Experimental challenge:
Control systematics at high luminosities

• Theoretical challenge:
Reduce hadronic uncertainties

More complex analyses, e.g.

• Inclusion of neglected contributions

• Differential distributions even for rare decays

Possible due to experimental advances!

Combination of many observables

• Use more available information

• Tests of more realistic models
Danger of higher model-dependence

• Model-independent analyses e.g. in HEFT
Rather weak statements regarding flavour
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CPV & NP in mixing
Three parameters in Bq mixing:

∆Mq ' 2|Mq
12| , ∆Γq ' 2|Γq

12| cosφ12
q ,

aqSL =
|Γq

12|
|Mq

12|
sinφ12

q

NP in Γ12 severely constrained
Not considered here

[Dighe et al.’10,Bauer/Dunn, Oh/Tandean,

Dorsner et al., Bobeth/Haisch ’11]

Parametrization for NP only in M12: Mq
12 = ∆qM

SM
12 .

Development for Bs -mixing:
[Lenz et al. ’10,’12, CKMfitter]

2010:

• Apparent large effects, |φs | � φSMs
• Driven by φs from CDF,D0 and
aSL from D0

• Both could be fitted by ∆d ,s
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CPV & NP in mixing
Three parameters in Bq mixing:
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NP in Γ12 severely constrained
Not considered here

[Dighe et al.’10,Bauer/Dunn, Oh/Tandean,

Dorsner et al., Bobeth/Haisch ’11]

Parametrization for NP only in M12: Mq
12 = ∆qM

SM
12 .

Development for Bs -mixing:
[Lenz et al. ’10,’12, CKMfitter]

2014:

• LHC (and CDF) results fix φs , ∆Γ

• Best fit basically SM, large
effects excluded

• φs and ASL not compatible
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Extracting weak phases in hadronic decays
UT angles extracted from non-leptonic decays

Hadronic matrix elements (MEs) main theoretical difficulty!

Options:
• Lattice: not (yet) feasible for (most) three-meson MEs
• Other non-perturbative methods: idem, precision
• QCDF/SCET: applicability, power corrections
• Symmetry methods: limited applicability or precision

New/improved methods necessary!

UT angles extracted by avoiding direct calculation of MEs
Revisit approximations for precision analyses

Here: Improve SU(3) analysis in
B → J/ψM, B → DD & D → PP



Introduction Penguin pollution in the golden modes B → DD D → PP Conclusions

Flavour SU(3) and its breaking
SU(3) flavour symmetry (mu = md = ms). . .

• does not allow to calculate MEs,
but relates them (WE theorem)

• provides a model-independent approach

• allows to determine MEs from data
improves “automatically”!

• includes final state interactions flavour octet

SU(3) breaking. . .

• is sizable, O(20− 30%)

• can systematically be included: tensor (octet) ∼ ms

[Savage’91,Gronau et al.’95,Grinstein/Lebed’96,Hinchliffe/Kaeding’96]

even to arbitrary orders [Grinstein/Lebed’96]

Main questions:
• How large is the SU(3)-expansion parameter?
• Is the number of reduced MEs tractable?
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Power counting
SU(3) breaking typically O(30%)

Several other suppression mechanisms involved:

• CKM structure (λ, but also Ru ∼ 1/3)

• Topologial suppression: penguins and annihilation

• 1/NC counting

All these effects should be considered!
Combined power counting in δ ∼ 30% for all effects
Neglect/Constrain only multiply suppressed contributions

Yields predictive frameworks with weaker assumptions!

• Uses full set of observables for related decays

• Assumptions can be checked within the analysis

• Applied here for B → J/ψM and B → DD
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B → J/ψM decays - basics
Bd → J/ψK , Bs → J/ψφ :

• Amplitude A = λcsAc + λusAu

• Clearly dominated by Ac [Bigi/Sanda ’81]

• Very clear experimental signature

• Subleading terms:
• Doubly Cabibbo suppressed
• Penguin suppressed

Estimates |λusAu|/|λcsAc | . 10−3

[Boos et al.’03, Li/Mishima ’04, Gronau/Rosner ’09]

The golden modes of B physics: |S | = sinφ

However:

• Quantitative calculation still unfeasible [but see Frings+’15]

• Fantastic precision expected at LHC and Belle II

Subleading contributions should be controlled:
Apparent phase φ̃ = φmix

SM + ∆φmix
NP + ∆φpen



Introduction Penguin pollution in the golden modes B → DD D → PP Conclusions

Including |Au| 6= 0 – Penguin Pollution

Au 6= 0 ⇒ S 6= sinφ, Adir
CP 6= 0

Idea: U-spin-related modes constrain Au [Fleischer’99,

Ciuchini et al.’05,’11, Faller/Fleischer/MJ/Mannel’09, . . .]

• Increased relative penguin influence in b → d

• Extract φ = φmix
SM + ∆φmix

NP and ∆φpen

• Issue: Dependence of ∆φpen on SU(3) breaking

Using full SU(3) analysis: [MJ’12]

Determines model-independently SU(3) breaking: ∼ 20%

Improved extraction of φd(→ ∆φmix
NP ) and ∆φpen!

Remaining weaker approximations:
• SU(3) breaking for Ac , only (but to all orders for P = π,K !)
• EWPs with ∆I = 1, 3/2 neglected (tiny!)
• A(Bs → J/ψπ0) = 0: testable (challenging)
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Digression: BR measurements and isospin violation
Again: detail due to high precision and small NP

Not specific to B → J/ψK (∗)!

Branching ratio measurements require normalization. . .

• B factories: depends on Υ→ B+B− vs. B0B̄0

• LHCb: normalization mode, usually obtained from B factories

Assumptions entering this normalization:

• PDG: assumes r+0 ≡ Γ(Υ→ B+B−)/Γ(Υ→ B0B̄0) ≡ 1

• LHCb: assumes fu ≡ fd , uses rHFAG
+0 = 1.058± 0.024

Both approaches problematic: [MJ 1510.03423]

• Potential large isospin violation in Υ→ BB [Atwood/Marciano’90]

• Measurements in rHFAG
+0 assume isospin in exclusive decays

This is one thing we want to test!

Avoiding this assumption yields r+0 = 1.027± 0.037

Isospin asymmetry B → J/ψK : AI = −0.009± 0.024
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Preliminary results for B → J/ψP [MJ’12,Beaujean/MJ/Knegjens(’15)]

Fit to Bd,u,s → J/ψ(K, π) data (including correlations)

• PDG uncertainties applied

• Annihilation included

• SU(3) breaking ≤ 55% allowed

• P/T ,Au/T ≤ (100, 55, 16, 0)%

• Excellent fit (χ2/dof ≤ 1)

• SU(3) breaking . 30%

• Pen. + Ann. consistent with 0

• Issues: RπK , SCP(B → J/ψπ0)

|P,A/T | φ/◦ ∆φ/◦(95%)

100% 22.2± 0.9 [−0.5, 1.0]
55% 22.1± 0.8 [−0.5, 0.6]
16% 22.0± 0.8 [−0.2, 0.2]

N.B.: |∆φ| ≤ 0.7◦ for [Frings+’15]
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Application to B → J/ψV

Differences for B → J/ψV (V = φ, ω, ρ,K ∗):

• Polarization! ⇒ 3× #parameters
but larger increase in measurements

• Final states with from octet and singlet
Slightly complicates SU(3) analysis
Control modes with K ∗, ρ not sufficient!

Annihilation in Ac is important!

• Suppression unclear for heavy final states
∼ 20% in Ac(B → DD) [MJ/Schacht’15]

• Determines singlet contributions in Bs → J/ψφ
Penguin pollution in Bs → J/ψφ potentially underestimated
Affects η − η′ mixing angle from Bd ,s → J/ψη(′)

Analysis in progress. . . [Beaujean/MJ/Knegjens(’16)]
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B → DD decays [MJ/Schacht ’14]

Bs → D+
s D−s theoretically golden mode

Clean extraction of φs w/o angular analysis!

Furthermore:

• Other correlations in B → DD → NP searches

• Quasi-isospin rules for rates, test ∆I = 1, 3/2 NP

• Learn about annihilation

Aspects of the analysis:

• Inclusion of singlets unproblematic

• Larger rates, but experimentally more difficult
Ideas for increasing selection efficiency?

• Extraction of γ not feasible because of RI

• Exp. issue: ACP(t)(B0 → D+D−) Belle vs. BaBar

• Assumptions: SU(3) breaking only in Ac , other terms included
(theoretically restricted)
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B → DD decays: Results [MJ/Schacht ’14]

Predictions for unmeasured CP asymmetries from data!
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• Outside red: large penguins or NP. Outside blue: NP.

• Any sizable CPV in b → s transitions: NP

• Measurements like ACP(B̄s → D−D+
s ) influential
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B → DD decays: Results [MJ/Schacht ’14]

Predictions for unmeasured CP asymmetries from data!
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• Outside red: large penguins or NP. Outside blue: NP.

• Any sizable CPV in b → s transitions: NP

• Fit with present data! “2022”: ∆φpens . 0.6◦
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CPV in D → PP

Expected to be tiny (∼ λ4 × P/T )
∆ACP = ACP(D → KK ) − ACP(D → ππ)
“back to normal” (both tagging methods)
Long discussion whether ∆ACP is NP or not. . .

We need more information!

What are we aiming at?
• NP or enhanced penguins - other modes should be affected
• Independent of enhancement: SM implies pattern in CPV
• Find a description of the full D → PP data, not just ∆ACP

Branching ratios and CP asymmetries, δKπ
• Find (more) discriminants between NP and SM

How are we doing this?

• Exact limits do not work well
Include corrections!
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Direct CPV in D decays
Results of the full D → PP fit:

• SU(3) breaking (30− 40%) for whole
multiplet - not trivial!

• New data: more correlations visible
[Hiller/MJ/Schacht’15, in prep.]

• Red: SM. Blue/Yellow: NP models
Differentiable!

Both, BRs and CPAs are important!
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A few “non-fit” possibilities:
• ASM

CP(D− → π−π0) ≡ 0 [also Bucella et al.’93, Grossman et al.’12]

• Isospin sum rules [Grossman et al.’12]

• Enhancements for hadronic decays with suppressed rates,
e.g. D0 → KSKS : [Atwood/Soni’13,Hiller/MJ/Schacht’13,Nierste+’15]

ACP(D0 → KSKS) ∼ 1

ε
ACP(D0 → K+K−)
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Conclusions
• Smallness of NP poses new challenges to CPV interpretation
• SU(3) with breaking enables model-independent analyses
• Combined power counting of small effects necessary

• High precision → Control penguins and annihilation
Possible for φd by B → J/ψP, |∆φ| ≤ 0.6◦ (95% CL)

• Careful interpretation of BR data necessary
• Results will improve with coming data, penguins tamed

• Bs → D+
s D−s theoretically golden mode

Extraction of φs w/o angular analysis
• Predictions for CPV observables from global B → DD analysis
• Various NP tests: CPV correlations and quasi-isospin rules

• ∆ACP gone, but charm remains interesting
• SM correlations can be tested in global fit, also e.g. isospin

predictions
Exciting times ahead!
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Input Values for B → J/ψP Decays: BRs
Observable Value Ref./Comments

1
c−

BR(B− → J/ψK−) (10.27± 0.31)× 10−4

1
c−

BR(B− → J/ψπ−) (0.38± 0.07)× 10−4

BR(B−→J/ψπ−)

BR(B−→J/ψK−)
0.040± 0.004 scaling factor 3.2

0.0386± 0.0013 Excluding BaBar
0.052± 0.004 Excluding LHCb

1
c0
BR(B̄0 → J/ψK̄0) (8.73± 0.32)× 10−4

r BR(B−→J/ψK−)

BR(B̄0→J/ψK̄0)
1.090± 0.045 correlations neglected

1
c0
BR(B̄0 → J/ψπ0) (0.176± 0.016)× 10−4 scaling factor 1.1

fs
fd

BR(B̄s→J/ψKS )

BR(B̄0→J/ψKS )
0.0112± 0.0006 fs/fd = fs/fd |LHCb

BR(B̄s→J/ψKS )

BR(B̄0→J/ψKS )
0.038± 0.009 uses fs/fd = fs/fd |Tev

1
c0
BR(B̄0 → J/ψη) 0.123± 0.019× 10−4

BR(B̄s → J/ψη) (5.1± 1.1)× 10−4

Rs = BR(B̄s→J/ψη′)
BR(B̄s→J/ψη)

0.73± 0.14 ρ(BR,Rs) = −23%

Rs 0.902± 0.084 ρ(Rs ,R) = 1%

R = BR(B̄0→J/ψη′)
BR(B̄0→J/ψη)

1.11± 0.48 ρ(R,Rη) = −73%

fd
fs
Rη = fd

fs

BR(B̄0→J/ψη)

BR(B̄s→J/ψη)
0.072± 0.024 ρ(Rη ,Rs) = 9%
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Input Values for B → J/ψP Decays: CP Asymmetries

Observable Value Ref./Comments

ACP(B− → J/ψK−) 0.003± 0.006
ACP(B− → J/ψπ−) 0.001± 0.028
−ηCPSCP(B̄0 → J/ψKS,L) 0.687± 0.019
ACP(B̄0 → J/ψKS,L) 0.016± 0.017 ρ(SCP,ACP) = −15%
SCP(B̄0 → J/ψπ0) −0.94± 0.29

−0.65± 0.22 Belle only
ACP(B̄0 → J/ψπ0) 0.13± 0.13

0.08± 0.17 Belle only
SCP(B̄s → J/ψKS ) −0.08± 0.41
ACP(B̄s → J/ψKS ) 0.28± 0.42

A∆Γ(B̄s → J/ψKS ) 0.49+0.77
−0.65 ± 0.06

fs/fd |LHCb 0.259± 0.015
ys 0.0611± 0.0037
r = f+−/f00 1.027± 0.037

Data in both tables: PDG, HFAG, LHCb, Belle, BaBar
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A word on meson mixing

Neutral singlets and octets can mix under QCD
Complicates SU(3) analysis

B → J/ψP: η, η′ not necessary to determine φd
B → J/ψV : φ central mode

Meson mixing has to be dealt with

NC →∞ and in the SU(3) limit: degenerate P1,8 and V1,8

Relative size of corrections determines mixing angle
Large mixing does not mean breakdown of SU(3)!

η, η′: large correction to 1/NC from anomaly (singlet)
η, η′ remain approximate SU(3) eigenstates

φ, ω: 1/NC effects small (OZI) → SU(3) breaking dominant
eigenstates according to strange content, large mixing

Only the octet part can be controlled by K ∗ and ρ!
Data for ω necessary to control singlet in SU(3)
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Annihilation contributions in B → J/ψM
Annihilation is important!

• Suppression unclear for heavy final states
∼ 20% in Ac(B → DD) [MJ/Schacht’15]

• Determines singlet contributions in Bs → J/ψφ

• Affects extraction of η − η′ mixing angle from Bd ,s → J/ψη(′)

• Its neglect correlates e.g. Au in B− → J/ψπ− and
B0 → J/ψK 0‘ directly

Overly “precise” predictions for CP asymmetries

In B → J/ψM three annihilation contributions:

• Annihilation in Ac , taken into account where appropriate

• Two annihilation contributions in Au, a2 ∼ a1/NC

a2 � 1 → BR(Bs → J/ψπ0, ρ0) ≈ 0, AI (B → J/ψK ) ≈ 0
BR(Bs → J/ψρ) ≤ 3.6× 10−6 (90%CL)
No improvement from inclusion (unlike [Ligeti/Robinson’15] )
Only leading contribution included later
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Factorization in B → J/ψM

B → J/ψM formally factorizes for mc,b →∞. . . [BBNS’00]

. . . but corrections are large: ΛQCD/(αsmc,b)

B → J/ψM formally factorizes for NC →∞. . . [Buras+’86]

. . . but corrections are large: Ac ∼ C0v0 +C8(v8− a8) [Frings+’15]

Non-factorizable a8, v8 ∼ v0/NC , but C8 ∼ 17C0!

BR(B → J/ψM) remains uncalculable
N.B.: No reason to assume FB→K/FB→π for SU(3) breaking

Factorization for P/T : [Frings+’15]

• A(B → J/ψM) = λcsAc + λusAu, Au “penguin pollution”

Au ∼ p + a, includes penguin and annihilation contributions
No annihilation in Bd → J/ψK , but in Bs → J/ψφ

• p =
∑

j〈J/ψM|Ou
j |B〉 =

∑
k〈J/ψM|Oc

k |B〉+O(Λ/mJ/ψ)

• Estimating 〈J/ψM|Oc
k |B〉 in 1/NC yields ∆φd ,s |p . 1◦
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Reparametrization invariance and NP sensitivity

A = N (1 + r e iφs e i φw )→ Ñ (1 + r̃ e i φ̃s e i φ̃w )

Reparametrization invariance:
[London et al.’99,Botella et al.’05,Feldmann/MJ/Mannel’08]

Transformation changes weak phase, but not form of amplitude
Sensitivity to (subleading) weak phase lost (presence visible)

• φw = γ in given analyses
• Usually broken by including symmetry partners

Proposals to extract γ in B → J/ψP or B → DD
• However: partially restored when including SU(3) breaking!

[MJ/Schacht’14]

Reason for large range for γ observed in [Gronau et al.’08]

Extracted phase fully dependent on SU(3) treatment

NP phases in A not directly visible
NP tests remain possible
Addition of new terms, e.g. A∆I=1

c additional option
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NP in mixing II
Less change in Bd mixing, 2012 results: [Lenz et al. ’12]

• aSL marginally compatible

• p-value ∆d = 1 (SM): 3σ

• However: Largely due to B → τν
Not a mixing observable
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NP in mixing II
2014 results (incl. B → τνBelle): [CKMfitter]

• adSL compatible (new measurements
agree with SM)

• p-value ∆d = 1 (SM): 1.2σ
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NP in mixing II
2014 results (incl. B → τνBelle): [CKMfitter]

• adSL compatible (new measurements
agree with SM)

• p-value ∆d = 1 (SM): 1.2σ

Alltogether:

• Worse fit than 2010 with only NP in M12

• Semileptonic asymmetry in conflict with φd ,s
Independent check important!

• Additional NP in Γq
12 possible, but difficult

• Interpretation of ∆ sin 2β as NP in mixing challenged
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Quasi-isospin relations in B → D(∗)D
Observation: Hc is basically an SU(3) triplet [Lipkin/Sanda’88]

Quasi-isospin relations for Ac in b → d and b → s decays
[Sanda/Xing’97,Gronau et al.’05,’08]

Can be extended to include penguins! [MJ/Schacht’14]

AB̄0→D−s D+ = AB−→D−s D0 +O(δ5) ,

AB̄s→D−D+ = −AB̄s→D̄0D0 +O(δ6) , and

AB−→D−D0 = AB̄0→D−D+ +AB̄0→D̄0D0 +O(δ3) .

• Unaffected by SU(3) breaking!
• b → s rules yield penguin-independent precision predictions!
• b → d rule tests annihilation and yields correlations

BRB−→D−s D0 = rτ,PSBRB̄0→D−s D+

(
1 +O(δ5)

)
,

BRB̄s→D̄0D0 = BRB̄s→D−D+

(
1 +O(δ4)

)
,

BRB̄0→D−D+ = r̃τ,PSBRB−→D−D0

(
1 +O(δ2)

)
.
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Confronting quasi-isospin relations with data

BRB−→D−s D0

BRB̄0→D−s D+

− rτ,PS
LHCb

= 0.14± 0.07
SM
= O(δ5) . 0.004

∼ 2σ tension
Confirmation of CV would imply NP with ∆I = 1!
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Confronting quasi-isospin relations with data

BRB−→D−s D0

BRB̄0→D−s D+

− rτ,PS
LHCb

= 0.14± 0.07
SM
= O(δ5) . 0.004

∼ 2σ tension
Confirmation of CV would imply NP with ∆I = 1!

BRB̄s→D̄0D0
SM
= BRB̄s→D−D+ = (0.21± 0.03)× 10−3 ,

BRB̄s→D̄0D0
LHCb

= (0.19± 0.04)× 10−3 ,

BRB̄s→D−D+
LHCb

= (0.27± 0.05)× 10−3 .

Agreement, for NP with ∆I = 1 signal potentially enhanced
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Confronting quasi-isospin relations with data

BRB−→D−s D0

BRB̄0→D−s D+

− rτ,PS
LHCb

= 0.14± 0.07
SM
= O(δ5) . 0.004

∼ 2σ tension
Confirmation of CV would imply NP with ∆I = 1!

BRB̄s→D̄0D0
SM
= BRB̄s→D−D+ = (0.21± 0.03)× 10−3 ,

BRB̄s→D̄0D0
LHCb

= (0.19± 0.04)× 10−3 ,

BRB̄s→D−D+
LHCb

= (0.27± 0.05)× 10−3 .

Agreement, for NP with ∆I = 1 signal potentially enhanced

BRB−→D∗−s D0

BRB̄0→D∗−s D+

/
BRB−→D−s D∗0

BRB̄0→D−s D∗+

− r̃τ,PS
SM
= O(δ5) .

Double-ratio independent of e.g. fu/fd !
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