# Constraining composite Higgs models with direct and indirect searches

#### **Christoph Niehoff**

Excellence Cluster Universe & Technische Universität München

in collaboration with Peter Stangl and David M. Straub

 $_{\text{based on}} arXiv:1508.00569$ 

Lyon, November 25, 2015



#### Introduction

The hierarchy problem...

... can be solved elegantly and naturally (!) if the Higgs is a Composite pseudo-Nambu-Goldstone boson. Flavour constraints can be avoided by partial compositeness.

#### Introduction

The hierarchy problem...

... can be solved elegantly and naturally (!) if the Higgs is a Composite pseudo-Nambu-Goldstone boson. Flavour constraints can be avoided by partial compositeness.

Our goal...

... is to perform a comprehensive numerical analysis including all relevant experimental constraints.

Such as:

- realistic electroweak symmetry breaking
- indirect constraints (e.g. from flavour)
- direct collider searches

Our philosophy ...

 $\ldots$  is to concentrate on calculable effects (other effects would increase the constraints)



#### Analysis





#### Conclusion



2 Analysis





#### Leading principles

- Study 4D description of Composite Higgs with partial compositeness
- Minimality in the model setup and number of parameters, but still realistic

Leading principles

- Study 4D description of Composite Higgs with partial compositeness
- Minimality in the model setup and number of parameters, but still realistic

Protection of EWPO's

 $\begin{array}{l} \mbox{Custodial symmetry} \\ \mbox{SU}(2)_L \subset \mbox{SU}(2)_L \times \mbox{SU}(2)_R = \mbox{SO}(4) \end{array}$ 

Leading principles

- Study 4D description of Composite Higgs with partial compositeness
- Minimality in the model setup and number of parameters, but still realistic

Protection of EWPO's

 $\begin{array}{l} \mbox{Custodial symmetry} \\ \mbox{SU}(2)_L \subset \mbox{SU}(2)_L \times \mbox{SU}(2)_R = \mbox{SO}(4) \end{array}$ 

Minimal Higgs sector SO(5)/SO(4) symmetry breaking  $\rightarrow$  only one Higgs doublet

Leading principles

- Study 4D description of Composite Higgs with partial compositeness
- Minimality in the model setup and number of parameters, but still realistic

Protection of EWPO's

Custodial symmetry  $SU(2)_L \subset SU(2)_L \times SU(2)_R = SO(4)$  Minimal Higgs sector SO(5)/SO(4) symmetry breaking  $\rightarrow$  only one Higgs doublet

Protection of  $Zb_L b_L$ -vertex

Use fundamental  ${\bf 5}\text{-representations}$ 

Leading principles

- Study 4D description of Composite Higgs with partial compositeness
- Minimality in the model setup and number of parameters, but still realistic

Protection of EWPO's

 $\begin{array}{l} \mbox{Custodial symmetry} \\ \mbox{SU}(2)_L \subset \mbox{SU}(2)_L \times \mbox{SU}(2)_R = \mbox{SO}(4) \end{array}$ 

Protection of  $Zb_L b_L$ -vertex

Use fundamental 5-representations

Minimal Higgs sector

SO(5)/SO(4) symmetry breaking  $\rightarrow$  only one Higgs doublet

Minimal number of parameters

2-site description

 $\rightarrow$  only one level of resonances

Leading principles

- Study 4D description of Composite Higgs with partial compositeness
- Minimality in the model setup and number of parameters, but still realistic

Protection of EWPO's

 $\begin{array}{l} \mbox{Custodial symmetry} \\ \mbox{SU}(2)_L \subset \mbox{SU}(2)_L \times \mbox{SU}(2)_R = \mbox{SO}(4) \end{array}$ 

Protection of  $Zb_L b_L$ -vertex

Use fundamental 5-representations

Calculable Higgs potential

dimensional deconstruction, rather than Weinberg sum rules

Minimal Higgs sector

SO(5)/SO(4) symmetry breaking  $\rightarrow$  only one Higgs doublet

Minimal number of parameters

2-site description

 $\rightarrow$  only one level of resonances

Leading principles

- Study 4D description of Composite Higgs with partial compositeness
- 0 Minimality in the model setup and number of parameters, but still realistic

Protection of FWPO's

Custodial symmetry  $SU(2)_L \subset SU(2)_L \times SU(2)_R = SO(4)$ 

Protection of  $Zb_1 b_1$ -vertex

Use fundamental 5-representations

Calculable Higgs potential

dimensional deconstruction. rather than Weinberg sum rules Minimal Higgs sector

SO(5)/SO(4) symmetry breaking  $\rightarrow$  only one Higgs doublet

Minimal number of parameters

2-site description

 $\rightarrow$  only one level of resonances

Concentrate on guark flavour

trivial (elementary) lepton sector

Christoph Niehoff (EXC Universe, TUM)

(In)direct contraints on pNGB-CHM's

| Model |  |
|-------|--|
|-------|--|

We choose the M4dCHM<sub>5</sub>. Alternative models:

[De Curtis,Redi,Tesi '11]

[Panico,Wulzer '11; Marzocca,Serone,Shu '12]

Protection of EWPO's Custodial symmetry

 $SU(2)_L \subset SU(2)_L \times SU(2)_R = SO(4)$ 

Protection of  $Zb_Lb_L$ -vertex Use fundamental **5**-representations

Calculable Higgs potential dimensional deconstruction, rather than Weinberg sum rules Minimal Higgs sector SO(5)/SO(4) symmetry breaking  $\rightarrow$  only one Higgs doublet

Minimal number of parameters

2-site description

ightarrow only one level of resonances

Concentrate on quark flavour

trivial (elementary) lepton sector

Christoph Niehoff (EXC Universe, TUM) (In)direct contraints on pNGB-CHM's

#### Flavour structure

[Barbieri,Buttazzo,Sala,Straub '12; Redi,Weiler '11; Cacciapaglia et al. '07]

Generic flavour structure leads to too large flavour violation

Assume flavour symmetries broken only by couplings to the elementary sector

 $\mathcal{L} \supset (\mathsf{elementary}) + (\mathsf{composite}) + \epsilon_{ij} \, ar{\psi}_{\mathsf{elem}}^{(i)} \, \psi_{\mathsf{comp}}^{(j)}$ 

#### Flavour structure

Generic flavour structure leads to too large flavour violation

Assume flavour symmetries broken only by couplings to the elementary sector

 $\mathcal{L} \supset (\mathsf{elementary}) + (\mathsf{composite}) + \epsilon_{ij} \, ar{\psi}_{\mathsf{elem}}^{(i)} \, \psi_{\mathsf{comp}}^{(j)}$ 

| U(3) <sup>3</sup> left compositeness                               | U(3) <sup>3</sup> right compositeness                                     |
|--------------------------------------------------------------------|---------------------------------------------------------------------------|
| $\epsilon_L \propto \mathbb{1},  \epsilon_R \propto diag. V_{CKM}$ | $\epsilon_L \propto V_{CKM}^\dagger.diag,  \epsilon_R \propto \mathbb{1}$ |

#### Flavour structure

Generic flavour structure leads to too large flavour violation

Assume flavour symmetries broken only by couplings to the elementary sector

 $\mathcal{L} \supset (\mathsf{elementary}) + (\mathsf{composite}) + \epsilon_{ij} \, ar{\psi}_{\mathsf{elem}}^{(i)} \, \psi_{\mathsf{comp}}^{(j)}$ 



# Electroweak symmetry breaking

Higgs potential

radiatively generated via Coleman-Weinberg mechanism

$$V_{
m eff}(h) \propto \sum_n m_n^4(h) \log \left[m_n^2(h)
ight]$$

 $m_n(h)$ : Higgs dependent mass; bosonic, fermionic

## Electroweak symmetry breaking

Higgs potential

radiatively generated via Coleman-Weinberg mechanism

$$V_{
m eff}(h) \propto \sum_n m_n^4(h) \log \left[m_n^2(h)
ight]$$

 $m_n(h)$ : Higgs dependent mass; bosonic, fermionic











## Strategy

#### Goal

Find parameter points  $\vec{\theta}$  that satisfy all experimental constraints.

Define scalar measure of "how good" a parameter point is  

$$\chi^{2}(\vec{\theta}) \equiv \sum_{i,j \in \text{observables}} \left( \mathcal{O}_{i}^{\text{th}}(\vec{\theta}) - \mathcal{O}_{i}^{\text{exp}} \right) \left[ \sigma_{\text{total}}^{2} \right]_{ij}^{-1} \left( \mathcal{O}_{j}^{\text{th}}(\vec{\theta}) - \mathcal{O}_{j}^{\text{exp}} \right)$$

$$\Rightarrow \text{Minimize } \chi^{2}(\vec{\theta}) !$$

#### Technically challenging

- large dimensionality (44 parameters for U(2), 30 for U(3))
- complicated functions of all parameters

#### **Numerics**



Find minima of  $\chi^2(\vec{\theta})$ 

- 1 Generate (random) starting point
- 2 Use global minimizer [NLopt] to find minimum
- ③ Use Markov Chain Monte Carlo [PyPMC] to sample around minimum and generate good points
- 4 Keep only points that satisfy every individual constraint on  $3\sigma$  level

#### Computations

performed on the C2PAP computing cluster in Munich

- SM parameters
  - Masses
  - CKM mixings
  - Higgs mass & vev

- Diagonalization of (Higgs dependent) mass matrices
   → interpret as values at µ = m<sub>t</sub>
- SM-RGE running of exp. values up to scale *m*<sub>t</sub>
- Neglect RGE running above m<sub>t</sub>

- CKM elements through tree-level *W*-vertices
- CKM matrix not unitary

SM parameters Masses CKM mixings • Higgs mass & vev • S- and T-parameter

#### T-parameter

- tree-level: custodially protected
- one-loop level: consider only fermion constributions

#### S-parameter

- already at tree-level
- effectively lower bound on spin-1 resonance masses

$$S\sim rac{1}{m_
ho^2}$$



[Straub '13]

[Agashe et al. '06]



[König,Neubert,Straub '14]

meson-meson-mixing

- SM parameters
  - Masses
  - CKM mixings
  - Higgs mass & vev
- S- and T-parameter
- Z-couplings
- Flavour observables
  - meson-meson-mixing
  - rare *B* decays
- Higgs physics



- SM parameters
  - Masses
  - CKM mixings
  - Higgs mass & vev
- S- and T-parameter
- Z-couplings
- Flavour observables
  - meson-meson-mixing
  - rare *B* decays
- Higgs physics
- Contact interactions



SM parameters

- Masses
- CKM mixings
- Higgs mass & vev
- S- and T-parameter
- Z-couplings
- Flavour observables
  - meson-meson-mixing
  - rare *B* decays
- Higgs physics
- Contact interactions
- Direct searches @ colliders



Experimental searches only apply if decay into fermion resonances is kinematically not possible Criterion:  $\Gamma/m \le 5\%$ 









# Compositeness of light quarks

Constrained by

- (first-row) CKM unitary
- hadronic Z width
- dijet angular distributions



Christoph Niehoff (EXC Universe, TUM)

(In)direct contraints on pNGB-CHM's

Lyon, November 25, 2015 13 / 21

# Failure of $U(3)^3_{LC}$

We did not find viable points for the  $U(3)^3_{LC}$  flavour structure.

 $U(3)_{LC}$  connects compositeness of light quarks to (large) compositeness of *t*-quark.  $\rightarrow$  strong constraints from CKM unitarity.

We will not consider it further.

## Fine tuning



Christoph Niehoff (EXC Universe, TUM) (In)direct contraints on pNGB-CHM's Lyon, November 25, 2015 15 / 21

#### Flavour Observables

 $\Delta M_d$  vs.  $\Delta M_s$ 

• Large effects (up to saturating exp. bounds) are possible  $\rightarrow$  mainly enhancement relative to SM



Christoph Niehoff (EXC Universe, TUM) (In)direct cont

(In)direct contraints on pNGB-CHM's

# $B ightarrow K^* \mu \mu$ anomalies

Global analyses...

[Altmannshofer et al. '15; Beaujean et al. '13; Descotes-Genon et al. '15]

... of  $b \rightarrow s\ell\ell$  favour NP contributions to  $C_9$  (and possibly  $C_{10}$ )



Christoph Niehoff (EXC Universe, TUM) (In)direct contraints on pNGB-CHM's Lyon, November 25, 2015 17 / 21

# $B ightarrow K^* \mu \mu$ anomalies

Global analyses... [Altmannshofer et al. '15; Beaujean et al. '13; Descotes-Genon et al. '15]

... of  $b \to s \ell \ell$  favour NP contributions to  $C_9$  (and possibly  $C_{10}$ )



Christoph Niehoff (EXC Universe, TUM) (In)direct of

#### LHC diboson excesses

ATLAS and CMS found excesses in  $\rho \rightarrow \{\textit{WZ},\textit{WW},\textit{Wh},\textit{Zh}\}$  searches of around  $3\sigma$ 



#### LHC diboson excesses

ATLAS and CMS found excesses in  $\rho \to \{\textit{WZ},\textit{WW},\textit{Wh},\textit{Zh}\}$  searches of around  $3\sigma$ 



Not a dedicated analysis...

... but this could explain the excesses.

#### Prospects for direct searches











Comprehensive numerical analysis of  $\mathsf{M4dCHM}_5$  respecting all relevant direct and indirect bounds with realistic EWSB

• U(3)<sub>LC</sub> flavour structure disfavoured

- U(3)<sub>LC</sub> flavour structure disfavoured
- Fine tuning  $\Delta_{BG} < 100$  possible

- U(3)<sub>LC</sub> flavour structure disfavoured
- Fine tuning  $\Delta_{\text{BG}} < 100$  possible
- $B \to K^* \mu \mu$  anomalies can be explained

- U(3)<sub>LC</sub> flavour structure disfavoured
- Fine tuning  $\Delta_{\text{BG}} < 100$  possible
- $B \to K^* \mu \mu$  anomalies can be explained
- LHC diboson excesses can be explained

- U(3)<sub>LC</sub> flavour structure disfavoured
- Fine tuning  $\Delta_{\text{BG}} < 100$  possible
- $B \to K^* \mu \mu$  anomalies can be explained
- LHC diboson excesses can be explained
- Identified most promissing channels for exp. searches

Backup slides

## **Oblique Corrections**



# Properties of our Markov Chains



Distribution of the total  $\chi^2$ . 48 individual contributions to  $\chi^2$ . (here for U(2)<sub>LC</sub>)



Number of individual constraints that a violatied by more than  $2\sigma$ . (here for U(2)<sub>LC</sub>)

#### Mass matrices - Fermions



#### Mass matrices - Spin-1



# Weinberg Sum rules

Cutoff dependence of the Coleman Weinberg potential

$$V_{\rm eff}(h) = \sum \frac{c_i}{64\pi^2} \left( 2 \operatorname{tr} \left[ M_i^2(h) \right] \Lambda^2 - \operatorname{tr} \left[ \left( M_i^2(h) \right)^2 \right] \log \left[ \Lambda^2 \right] + \operatorname{tr} \left[ \left( M_i^2(h) \right)^2 \log \left[ M_i^2(h) \right] \right] \right)$$

Divergent terms vanish for

$$\begin{aligned} &\operatorname{tr}\left[M_{i}^{2}(h)\right] - \operatorname{tr}\left[M_{i}^{2}(h=0)\right] = 0, \\ &\operatorname{tr}\left[\left(M_{i}^{2}(h)\right)^{2}\right] - \operatorname{tr}\left[\left(M_{i}^{2}(h=0)\right)^{2}\right] = 0, \end{aligned}$$

## Metropolis Hastings Algorithm

