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1.    Motivation

 Address SM Hierarchy Problem: mechanism to protect Higgs mass.

•   Naturalness                                   new physics at the TeV

•   Environmental Selection

•   Finite Naturalness, …

•   Cosmological Relaxation

•   ??
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5

Hooft matching then requires

l1#+ ... = (2Nc + 1)(Nc − 1) (2.1)

where li are the number of composite fermions with ... .

Therefore

We notice that for NQ = 4 and Nc = 2 and ... nicely match. In this case ...

spin SU(4)×SU(6) Sp(4)×SO(6) names

QQ 0 (6,1) (1,1) σ

(5,1) π

χχ 0 (1,21) (1,1) σc

(1,20) πc

χQQ 1/2 (6,6) (1,6) ψ1
1

(5,6) ψ5
1

χQ̄Q̄ 1/2 (6,6) (1,6) ψ1
2

(5,6) ψ5
2

Qχ̄Q̄ 1/2 (1, 6̄) (1,6) ψ3

Qχ̄Q̄ 1/2 (15, 6̄) (5,6) ψ5
4

(10,6) ψ10
4

Q̄σµQ 1 (15,1) (5,1) a

(10,1) ρ

χ̄σµχ 1 (1,35) (1,20) ac
(1,15) ρc

Table 2: Bound states of the model with spin and group properties with respect to the global

flavour group and the unbroken subgroups.

3 new section, for what?

4 Conclusions
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1.    Introduction

Strong dynamics breaking EW symmetry.

Coupling to quarks:

• linear mixing (partial compositeness)

• bilinear mixing (TC-like)

1 LATEX Formulae for Planck 2015 presentation

q̄LOqL + ūROqR q̄LqRO (1.1)

1

1 LATEX Formulae for Planck 2015 presentation

q̄LOqL + ūROqR q̄LqRO (1.1)
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2.    Partial Compositeness
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2.    Partial Compositeness
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L = ψ̄i/∂ψ + Ōi/∂O + �ψ̄O + . . .+ h.c. (0.83)

d�

d logµ
= γ�+ . . . , γ = dim (O)− 5/2 (0.84)
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2.    Partial Compositeness

•   Flavor hierarchies

•   GIM-like mechanism suppressing FCNC and CP
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∆

− 2
u

f2

u

u−M2
∆

�
(0.79)

Wel ⊇
λAB

U
Λ

ΛL

�
ξiaL,U

�A�
ξibU

�B

Mab +
λAB

D
Λ

ΛL

�
ξiaL,D

�A�
ξibD

�B

Mab (0.80)

Mab = Uca�Mcd�Udb L ⊇ λDΛ

ΛL

�Mnn� − �M55�√
2f

b̄RbLh (0.81)

⇒ O ∈ (0.82)

L = ψ̄i/∂ψ + Ōi/∂O + �ψ̄O + . . .+ h.c. (0.83)

d�

d logµ
= γ�+ . . . , γ = dim (O)− 5/2 (0.84)

L = ψ̄i/∂ψ + Ō(i/∂ −mM )O + �ψ̄O + h.c. (0.85)

light = ψ cosφ+O sinφ

heavy = −ψ sinφ+O cosφ
(0.86)

5

Agashe, Perez, Soni    0408134
Cacciapaglia et al.    0709.1714
Redi, Weiler           1106.6357
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2.    Flavor constraints
Panico Wulzer   1506.01961

m∗ > O(1) TeV

m∗ > 10 TeV εK

m∗ > O(10) TeV ∆F = 0

m∗ > 480 TeV

1
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2.    Flavor constraints: lepton sector
Feruglio et al    1509.03241

m∗ > O(1) TeV

m∗ > 10 TeV εK

m∗ > O(10) TeV ∆F = 0

m∗ > O(10) TeV e EDM

m∗ > O(10) TeV µ → eγ

1



7Alberto Parolini 26/11/2015

2.    Flavor constraints: lepton sector

m∗ > O(1) TeV

m∗ > 10 TeV εK

m∗ > O(10) TeV ∆F = 0

m∗ > O(10) TeV e EDM

m∗ > O(10) TeV µ → eγ

1

m∗ > O(1) TeV

m∗ > 10 TeV εK

m∗ > O(10) TeV ∆F = 0

m∗ > O(10) TeV e EDM

m∗ > O(10) TeV µ → eγ

mχχχ SU(Nχ) → SO(Nχ)

Y ∗
L = 0 is a (stable) solution

1

Feruglio et al    1509.03241
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1.    An alternative model

Strong dynamics breaking EW symmetry.

Coupling to quarks:

• linear mixing (partial compositeness)

• bilinear mixing (TC-like)

1 LATEX Formulae for Planck 2015 presentation

q̄LOqL + ūROqR q̄LqRO (1.1)

1

1 LATEX Formulae for Planck 2015 presentation

q̄LOqL + ūROqR q̄LqRO (1.1)

1

1 LATEX Formulae for Planck 2015 presentation

q̄LOqL + ūROqR q̄LqRO q̄LqRq̄LqR (1.1)

1
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1.    An alternative model

Mixed couplings: 

• linear mixing for top (potentially bottom)

• bilinear mixing for other quarks
      (charm mass is compatible with                       )

1 LATEX Formulae for Planck 2015 presentation

q̄LOqL + ūROqR q̄LqRO (1.1)

1

1 LATEX Formulae for Planck 2015 presentation

q̄LOqL + ūROqR q̄LqRO (1.1)

1

with g�∗ ∼ gS,B. The coefficient C̃uc

1 can be obtained from Cuc

1 using the replacement described below

Eq.(3.31). The constraints on Cbd

1 , Cbs

1 and Csd

1 imply, respectively,

|V ∗

dL33VdL31| < 10−3 , |V ∗

dL33VdL32| < 10−2 , |V ∗

dL32VdL31| < 10−5 . (3.34)

Similarly to the case of scalar resonances, a larger mass and a smaller coupling may lift the bound by an

additional factor (4π)2 ∼ 102.

3.3 UV contribution to flavour violations

It is equally important to consider the effect of four fermion interactions generated at the UV cutoff

ΛUV and to make sure that their presence does not reintroduce the flavour problem. We can rewrite the

Lagrangian Eq.(2.6) responsible for the generation of light quark masses as

L = λu(ΛUV ) q̄u O + h.c. (3.35)

focusing on the up sector and neglecting flavour indices for brevity; quark masses are then given by

L = λu(ΛHC)Λ
[O]
HC

v

f
q̄u+ h.c. = 4πλu(ΛHC)Λ

[O]−1
HC

v q̄u+ h.c. , (3.36)

employing �O� = Λ[O]
HC

v/f and ΛHC � 4πf , [O] being the dimension of the operator O. If we assume

that the theory is an interacting CFT between ΛUV and an infrared fixed point ΛHC , where SO(5) is

broken to SO(4), [O] is nearly scale independent and the running of λu is well captured by

λu(ΛHC) = λu(ΛUV )

�
ΛHC

ΛUV

�[O]−1

. (3.37)

Moreover we can define a dimensionless coupling λ̄u(ΛUV ) = λu(ΛUV )Λ
[O]−1
UV

. Putting everything together

we find quark masses

4πλ̄u(ΛUV )

�
ΛHC

ΛUV

�2([O]−1)

v . (3.38)

Requiring that Eq.(3.38) reproduces the charm mass, or equivalently the charm Yukawa times v, and

imposing λ̄u(ΛUV ) ≤ 4π, namely perturbativity at the scale where the operator O is generated, we have
�
ΛHC

ΛUV

�
≥

� yc
16π2

� 1
2([O]−1) � 6× 10−5 (3.39)

choosing [O] = 1.5 [75] (see also [76] and references therein). Since ΛHC � 4πf � 10 TeV we get

ΛUV � 105 TeV. Therefore four fermions interactions of the form

L =
1

Λ2
UV

(q̄q)2 + h.c. (3.40)

do not reintroduce any flavour problem as large enough suppression scales are allowed. These four-

fermion interactions are a generic prediction of the physics responsible of Eq.(3.35) and from an effective

theory point of view they can be suppressed only decoupling the UV cutoff: we avoid tensions typical of

technicolour theories because we need to fix the charm – and not the top – mass. Finally notice that the

same line of reasoning is applied to the down sector and a single cutoff ΛUV is consistent since mc ∼ mb.

17

1501.03818
JHEP 1506 (2015) 085

G. Cacciapaglia, H. Cai, T. Flacke, S. Lee, AP, H. Serodio
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⇒    V(h)≠0

2.    Higgs as a pNGB

L ⊇ i
√
2µgmTr[λmψ]− i

√
2µg0Tr[λ0ψ] +

1

2
m̃g,2Tr[λ0λ0] + h.c. (0.16)

ξia =
1√
2





b1L b2L b3L 0

−ib1L −ib2L −ib3L 0

t1L t2L t3L 0

it1L it2L it3L 0

0 0 0 0





2/3

, φia =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ψc





−2

(0.17)

SU(4) ⊃ SU(3)c ×U(1)X (0.18)

4 = 32/3 + 12 10 = 12 + 32/3 + 6−2/3 (0.19)

Λel = E exp

(
−

8π2

b g2el(E)

)
b = 3(N − 2)−Nf (N − 2) < Nf < 3(N − 2) (0.20)

(N − 2) < Nf ≤
3

2
(N − 2) ⇒ gmag

IR−→ 0 (0.21)

L ⊇ m̃2
1elQ

†aQa + m̃2
2elQ

†iQi m̃2
2el

m̃2
1el

>
8

5
(0.22)

Gf = SO(5)×U(1)X Hf = SO(4) ×U(1)X Y = T3R +X (0.23)

Gf/Hf , SU(2)×U(1) ⊆ Hf (0.24)

U → g U h† (0.25)

δm2
∣∣
top

∼ −
Nc|yt|2

8π2
Λ2 δm2 ∼

#

16π2
Λ2 (0.26)

U = exp

(

i

√
2

f
hâTâ

)

, f =
√
2µ (0.27)

qnb = exp
( i

√
2

f
hâTâ +

i

2f
πaTa

)

bc
q̃mc exp

( i

2f
πaTa

)

mn
, (0.28)

SO(5)/SO(4) (0.29)

2

L ⊇ i
√
2µgmTr[λmψ]− i

√
2µg0Tr[λ0ψ] +

1

2
m̃g,2Tr[λ0λ0] + h.c. (0.17)

ξia =
1√
2





b1L b2L b3L 0

−ib1L −ib2L −ib3L 0

t1L t2L t3L 0

it1L it2L it3L 0

0 0 0 0





2/3

, φia =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ψc





−2

(0.18)

SU(4) ⊃ SU(3)c ×U(1)X (0.19)

4 = 32/3 + 1−2 10 = 12 + 32/3 + 6−2/3 (0.20)

Λel = E exp

(
− 8π2

b g2el(E)

)
b = 3(N − 2)−Nf (N − 2) < Nf < 3(N − 2) (0.21)

(N − 2) < Nf ≤ 3

2
(N − 2) ⇒ gmag

IR−→ 0 (0.22)

L ⊇ m̃2
1elQ

†aQa + m̃2
2elQ

†iQi +

(
1

2
m̃λλ

abλab + h.c.

)
(0.23)

m̃2
2el

m̃2
1el

>
8

5
(0.24)

Gf = SO(5)×U(1)X Hf = SO(4)×U(1)X Y = T3R +X, Hs (0.25)

Gf/Hf , SU(2)×U(1) ⊆ GSM ⊆ Hf (0.26)

U → g U h† (0.27)

δm2
∣∣
top

∼ −Nc|yt|2

8π2
Λ2 δm2 ∼ #

16π2
Λ2
NP , ΛNP ∼ MP l (0.28)

U = exp

(

i

√
2

f
hâTâ

)

, U → g U h†, f =
√
2µ (0.29)

qnb = exp
( i

√
2

f
hâTâ +

i

2f
πaTa

)

bc
q̃mc exp

( i

2f
πaTa

)

mn
, (0.30)

SO(5)/SO(4) (0.31)

Wel ⊇ QN
a QN

b ξRξL Wmag ⊇ MabξRξL ∆L ∼ b̄RbLh
Λ

ΛL
(〈Mnn〉 − 〈M55〉) (0.32)

∆L = ∆ψ̄O [O] =
5

2
+ γ ∆IR = ∆IR(∆UV , γ) (0.33)

Mij Mi5 ψM55
(0.34)

Reqn5 , ReM5n MIJ ∼ QN
I QN

J (0.35)

N = Nf = 11 N = Nf = 9 (0.36)

Mia → UabMib, ψMia → UabψMib
(0.37)

2

⇒  V(h)=0  at tree level

L ⊇ i
√
2µgmTr[λmψ]− i

√
2µg0Tr[λ0ψ] +

1

2
m̃g,2Tr[λ0λ0] + h.c. (0.16)

ξia =
1√
2





b1L b2L b3L 0

−ib1L −ib2L −ib3L 0

t1L t2L t3L 0

it1L it2L it3L 0

0 0 0 0





2/3

, φia =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ψc





−2

(0.17)

SU(4) ⊃ SU(3)c ×U(1)X (0.18)

4 = 32/3 + 12 10 = 12 + 32/3 + 6−2/3 (0.19)

Λel = E exp

(
−

8π2

b g2el(E)

)
b = 3(N − 2)−Nf (N − 2) < Nf < 3(N − 2) (0.20)

(N − 2) < Nf ≤
3

2
(N − 2) ⇒ gmag

IR−→ 0 (0.21)

L ⊇ m̃2
1elQ

†aQa + m̃2
2elQ

†iQi m̃2
2el

m̃2
1el

>
8

5
(0.22)

Gf = SO(5)×U(1)X Hf = SO(4) ×U(1)X Y = T3R +X (0.23)

Gf/Hf , SU(2)×U(1) ⊆ Hf (0.24)

U → g U h† (0.25)

2

L ⊇ λq̄O + h.c. (0.25)

�qna � =




µ14

���������

0

0

0

0




(0.26)

SO(5)× SU(N − 5) ⊇ SU(3)c × SU(2)0,L ×U(1)0,Y (0.27)

L ⊇ i
√
2µgmTr[λmψ]− i

√
2µg0Tr[λ0ψ] +

1

2
�mg,2Tr[λ0λ0] + h.c. (0.28)
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−2

(0.29)

SU(4) ⊃ SU(3)c ×U(1)X (0.30)

4 = 32/3 + 1−2 10 = 12 + 32/3 + 6−2/3 (0.31)

Λel = E exp

�
− 8π2

b g2el(E)

�
b = 3(N − 2)−Nf (N − 2) < Nf < 3(N − 2) (0.32)

G = SO(5)×U(1)X H = SO(4)×U(1)X Y = T3R +X, Hs (0.33)

G/H, SU(2)×U(1) ⊆ GSM ⊆ H (0.34)

dimG/H ≥ 4 (0.35)

U → g U h† (0.36)

δm2
��
top

∼ −Nc|yt|
2

8π2
Λ2 δm2 ∼ #

16π2
Λ2
NP , ΛNP ∼ MP l (0.37)

U = exp

�
i

√
2

f
hâTâ

�
, U → g U h†, f =

√
2µ (0.38)

qnb = exp

� i
√
2

f
hâTâ +

i

2f
πaTa

�

bc
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� i

2f
πaTa

�

mn
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∆L = ∆ψ̄O [O] =
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2
+ γ ∆IR = ∆IR(∆UV , γ) (0.41)

N = Nf = 11 N = Nf = 9 (0.42)

Mia → UabMib, ψMia → UabψMib (0.43)
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dimG/H ≥ 4 , (0.35)

U → g U h† (0.36)

δm2
��
top

∼ −Nc|yt|
2

8π2
Λ2 δm2 ∼ #

16π2
Λ2
NP , ΛNP ∼ MP l (0.37)

U = exp

�
i

√
2

f
hâTâ

�
, U → g U h†, f =

√
2µ (0.38)

qnb = exp

� i
√
2

f
hâTâ +

i

2f
πaTa

�

bc
�qmc exp

� i

2f
πaTa

�

mn
, (0.39)

SO(5)/SO(4) (0.40)

∆L = ∆ψ̄O [O] =
5

2
+ γ ∆IR = ∆IR(∆UV , γ) (0.41)

N = Nf = 11 N = Nf = 9 (0.42)

Mia → UabMib, ψMia → UabψMib (0.43)

2

Partial compositeness    (at least for the top)
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and the decay constant f depends on the detail of the UV theory. Following naive arguments, we fix

4πf � ΛHC . The pion matrix U transforms non-linearly under g ∈ SO(5): U → gUh
†(g, h), where

h ∈ SO(4). It is convenient to define Σ = U · (0 0 0 0 1)t, transforming linearly as a 5 under SO(5). We

also define

� = �h�/f , (2.3)

s� = sin � and c� = cos �. The EW scale is set by v = s�f � 246 GeV, and we focus on values s2� ∼ 0.1

which implies f � 800 GeV, as set by electroweak precision bounds [47].

The composite sector typically contains many spin-1/2 fermionic resonances. We choose here to use

the minimal set apt to generate a mass for the top via linear mixing, i.e. a four-plet Q and a singlet T̃

of SO(4), originating from a 5 of SO(5):

ψ =

�
Q

T̃

�
=

1√
2





i B − i X5/3

B +X5/3

i T + i X2/3

−T +X2/3√
2 T̃




. (2.4)

The most general Lagrangian we can write is then

Lcomp =iQL,R (D/+ E/)QL,R + iT̃L,RD/T̃L,R −M4
�
QLQR +QRQL

�

−M1

�
T̃LT̃R + T̃RT̃L

�
+ icLQ

i

Lγ
µdiµT̃L + icRQ

i

Rγ
µdiµT̃R + h.c.

−Lmix =yL4,1fq
5
3LUψR + yR4,1ft

5
RUψL + h.c.

=yL4f
�
bLBR + c2

θ/2tLTR + s2
θ/2tLX2/3R

�
− yL1f√

2
sθtLT̃R

+ yR4f

�
sθ√
2
tRTL − sθ√

2
tRX2/3L

�
+ yR1fcθtRT̃L + h.c. ,

(2.5)

where Eµ and dµ denote the CCWZ Cartan-Maurer one-forms (c.f., e.g., Ref.[48] for the explicit expres-

sions). Masses and couplings deriving from this Lagrangian are detailed in Appendix A. The terms in

Lmix are responsible for the partial compositeness of the top quark. Top partial compositeness and the

gauging of SU(2)
L
×U(1)

X
lift the Higgs and radiatively induce EWSB. The detailed study of the Higgs

potential is out of the scope of this work, it has been extensively investigated in [21, 22, 23], and we shall

just rely on those results concerning the Higgs vacuum expectation value and mass. They suggest us,

in agreement with conclusions obtained in 5D models as in [26], to fix the masses of the heavy coloured

fermions appearing in Eq.(2.5) to be around 1 TeV, and above the currents experimental bounds, roughly

650− 800 GeV depending on the quantum numbers and on the branching ratios [49, 50, 51]. The naive

expectation, being these fermions composite objects, would be g∗f with g∗ a coupling of the strong sector

and therefore in the multi-TeV range; nevertheless we voluntarily choose lighter masses since they are

preferred by the observed value of the Higgs mass: increasing these masses, and asking for the correct

value of the top mass, requires larger mixing angles which result in a larger Higgs mass, or in a higher

level of fine tuning at fixed Higgs mass. The details of this behaviour are model dependent and this

expectation may be not realistic in general but it holds for the present case. Note that Eq.(2.5) naturally

6

singles out the top quark as the only elementary field that couples to the composite fermions. We would

also like to point out that, in the context of the model we are discussing, another possibility exists: to

assume that tR is a fully composite state. With this choice, the Lagrangian giving rise to masses and

couplings would be different from Eq.(2.5) [52]2. However, we have checked that the conclusions of the

analysis we present here will stay the same, as the general flavour would be unaffected by changing tR
from partially composite into fully composite (see Appendix B).

In addition we assume the presence of direct Yukawa interactions of all fermions, quarks and leptons,

generated at a scale ΛUV > ΛHC : they appear in the effective Lagrangian as couplings between pairs of

SM elementary fermions and operators belonging to the composite sector. A simple example is provided

by conformal technicolour-like theories, where they are four-fermion interactions with the component

fermions of the strong dynamics. This mixed possibility, partial compositeness for the top and additional

deformations for the other quarks, has been recently considered in [54] in a supersymmetric theory and

it has been analysed in the presence of flavour symmetries in [55]. Similarly, it has been proposed in

a non-supersymmetric model based on the coset SU(5)/SO(5) [31]. In this scenario we loose the nice

feature of partial compositeness naturally generating flavour hierarchies but we can study microscopical

models in realistic situations and still account for a single separation of scale, between the top and all

the other quarks. Schematically, we complement the Lagrangian with the following interactions at the

scale ΛUV

LY = q̄L,αλ
u

α,β
uR,β Ou + ¯̃qL,αλ

d

α,β
dRβ Od + h.c. , (2.6)

where α and β are indices over the 3 SM generations, and Ou,d are operators of the new dynamics. As

these terms are generated independently on the partial compositeness of the top, their embedding in the

global symmetry SO(5) is free. For concreteness, we will for now choose the same embedding as of the

top, so that the spurions appearing in the above equations transform as 5’s. The fields qL and uR are

thus a generalization of Eq.(2.1) to include three families, and q̃L and dR are defined by

q̃5αL =





−1

1

1

−1




q5αL , d5αR =





0

0

0

0

dαR




, (2.7)

with U(1)X charge ±1/3. Ou,d are composite operators in a non trivial representation of the broken

SO(5) interpolating at low energy the Higgs doublet. If these operators are in a representation contained

in 5× 5 of SO(5), at low energy we obtain the following

LY =
√
2 (q̄5αLΣ)m

u

UVαβ
(ΣTu5

βR
) +

√
2 (¯̃q5αLΣ)m

d

UVαβ
(ΣTd5

βR
)

=
s2θ
2

�
ūαLm

u

UVαβ
uβR + d̄αLm

d

UVαβ
dβR

� (2.8)

where mu,d

UV ∝ λu,d such that s2�m
u,d

UV ∼ O(1) GeV to correctly reproduce the charm and bottom masses.

The way U appears is fixed by the representation of the operators Ou,d: our choice gives the same

2For other models with composite tR, see [53].
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and the decay constant f depends on the detail of the UV theory. Following naive arguments, we fix

4πf � ΛHC . The pion matrix U transforms non-linearly under g ∈ SO(5): U → gUh
†(g, h), where

h ∈ SO(4). It is convenient to define Σ = U · (0 0 0 0 1)t, transforming linearly as a 5 under SO(5). We

also define

� = �h�/f , (2.3)

s� = sin � and c� = cos �. The EW scale is set by v = s�f � 246 GeV, and we focus on values s2� ∼ 0.1

which implies f � 800 GeV, as set by electroweak precision bounds [47].

The composite sector typically contains many spin-1/2 fermionic resonances. We choose here to use

the minimal set apt to generate a mass for the top via linear mixing, i.e. a four-plet Q and a singlet T̃

of SO(4), originating from a 5 of SO(5):

ψ =

�
Q

T̃

�
=

1√
2





i B − i X5/3

B +X5/3

i T + i X2/3

−T +X2/3√
2 T̃




. (2.4)

The most general Lagrangian we can write is then

Lcomp =iQL,R (D/+ E/)QL,R + iT̃L,RD/T̃L,R −M4
�
QLQR +QRQL

�

−M1

�
T̃LT̃R + T̃RT̃L

�
+ icLQ

i

Lγ
µdiµT̃L + icRQ

i

Rγ
µdiµT̃R + h.c.

−Lmix =yL4,1fq
5
3LUψR + yR4,1ft

5
RUψL + h.c.

=yL4f
�
bLBR + c2

θ/2tLTR + s2
θ/2tLX2/3R

�
− yL1f√

2
sθtLT̃R

+ yR4f

�
sθ√
2
tRTL − sθ√

2
tRX2/3L

�
+ yR1fcθtRT̃L + h.c. ,

(2.5)

where Eµ and dµ denote the CCWZ Cartan-Maurer one-forms (c.f., e.g., Ref.[48] for the explicit expres-

sions). Masses and couplings deriving from this Lagrangian are detailed in Appendix A. The terms in

Lmix are responsible for the partial compositeness of the top quark. Top partial compositeness and the

gauging of SU(2)
L
×U(1)

X
lift the Higgs and radiatively induce EWSB. The detailed study of the Higgs

potential is out of the scope of this work, it has been extensively investigated in [21, 22, 23], and we shall

just rely on those results concerning the Higgs vacuum expectation value and mass. They suggest us,

in agreement with conclusions obtained in 5D models as in [26], to fix the masses of the heavy coloured

fermions appearing in Eq.(2.5) to be around 1 TeV, and above the currents experimental bounds, roughly

650− 800 GeV depending on the quantum numbers and on the branching ratios [49, 50, 51]. The naive

expectation, being these fermions composite objects, would be g∗f with g∗ a coupling of the strong sector

and therefore in the multi-TeV range; nevertheless we voluntarily choose lighter masses since they are

preferred by the observed value of the Higgs mass: increasing these masses, and asking for the correct

value of the top mass, requires larger mixing angles which result in a larger Higgs mass, or in a higher

level of fine tuning at fixed Higgs mass. The details of this behaviour are model dependent and this

expectation may be not realistic in general but it holds for the present case. Note that Eq.(2.5) naturally
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dependence obtained for the top from partial compositeness3. If the composite sector is fundamentally

a gauge theory of strongly interacting fermions Ψi one can secretly imagine the operators Ou,d as ΨiΨj

bilinears. If Ψ transform in the 5 of SO(5) at low energy we find the dependence expressed in Eq.(2.8). In

this case in the UV the interactions, written in terms of microscopical degrees of freedom, are of the form

q̄uΨΨ/Λ2
UV. This way of viewing them reminds us of conformal technicolour theories; in the following,

we will dub these terms UV, independently on their physical origin.

These operators have a small impact on the Higgs potential: they do not play a significant role for

what concerns naturalness. Indeed the largest contribution to the Higgs square mass is

− 3
y2
b

16π2
Λ2
HC � (30 GeV)2 . (2.9)

Finally we stress that λu,d are 3×3 generic matrices in generation space with rank 3. This additional

mass term of order O(1 GeV) in the up sector causes a misalignment between the physical top and the

top defined as the partially composite quark.

2.2 The structure of the model

The fermionic field content defined above can be split into up and down sectors as

ξ↑ =
�
u c t T X2/3 T̃

�T

, ξ↓ =
�
d s b B

�T

. (2.10)

Their Yukawa-mass Lagrangian is given by

−Lyuk−mass =ξ̄↑L [Mup + Yuph+ · · · ] ξ↑R + ξ̄↓L [Mdown + Ydownh+ · · · ] ξ↓R + h.c. (2.11)

with the matrices Mup and Mdown extracted from Eq.(2.5) and Eq.(2.8) and given in Appendix A. The

first task is to define a proper change of basis in the up and down sector to recover the mass eigenstates.

Since this cannot be done exactly we use s2� as an expansion parameter for perturbation theory: this

implies that in the elementary quark sector a general 3× 3 matrix is a perturbation to the null matrix.

In other words, the unitary matrices that we shall find in this expansion do not completely diagonalize

the 6× 6 (or 4× 4) matrix, but actually only block diagonalizes it. Nevertheless, this is enough since in

this new basis the heavy eigenstates are diagonal and they can be safely integrated out at tree level.

For the up-quark sector we get, up to O(s32�),

U †

uL
MupUuR �

�
mU 0

0 DM

�
, (2.12)

with

mU � s2�
2

mu
UV +mtΠ , Π =




0 0 0

0 0 0

0 0 1



 , DM � diag (MT ,M4,MT̃ ) , (2.13)

3A simpler choice could be to have composite operators in the 5 and embed right-handed quarks in SO(5) singlets: as a

result we would have a different Higgs dependence in the effective Lagrangian, namely a single Σ would appear. This choice

would not significantly affect our analysis.
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A Model details and perturbative expansion

A.1 Model details

In this appendix we present some more details on the model discussed in Section 2. The 3rd family

part of this model (including the mass matrix, its diagonalization, and charged and neutral currents in

the mass eigenbasis) has been discussed in Ref. [85] which we extend, here, by adding the light quark

flavours. The up sector mass matrix, in the field basis in which the Lagrangian Eq.(2.5) is written, is

Mup =





m̃[�]11 m̃[�]12 m̃[�]13 0 0 0

m̃[�]21 m̃[�]22 m̃[�]23 0 0 0

m̃[�]31 m̃[�]32 m̃[�]33 fyL4 cos
2 �
2

fyL4 sin
2 �
2

−f
yL1√
2
sin �

0 0 f
y∗

R4√
2
sin � M4 0 0

0 0 −f
y∗

R4√
2
sin � 0 M4 0

0 0 fy∗

R1 cos � 0 0 M1





, (A.1)

with m̃[�]αβ ≡ s2�
2
mu

UVαβ
and s2� = sin 2�. The up-type Yukawa couplings have two distinct contributions.

One arises form the mixing Lagrangian Lmix given in Eq.(2.5) and can be extracted by differentiating

Lmix with respect to h and then setting h = 0, which yields

Y mix
up =





ỹ[�]11 ỹ[�]12 ỹ[�]13 0 0 0

ỹ[�]21 ỹ[�]22 ỹ[�]23 0 0 0

ỹ[�]31 ỹ[�]32 ỹ[�]33 −yL4

2
sin �

yL4

2
sin � −yL1√

2
cos �

0 0
y∗

R4√
2
cos � 0 0 0

0 0 −y∗

R4√
2
cos � 0 0 0

0 0 −y∗

R1 sin � 0 0 0





, (A.2)

where ỹ[�]αβ ≡ c2�
mu

UVαβ

f
. The second contribution comes from the dµ-term of Lcomp and the fact that

d4µ ∝ ∂µh. Integrating by parts and using the equations of motion we obtain

Y comp
up =





0 0 0 0 0 0

0 0 0 0 0 0

0 0 0
c∗RyL1√

2
sin � − c∗RyL1√

2
sin � cRyL4 cos �

0 0 −cLy
∗

R1 cos � 0 0 − cLM1 − cRM4

f

0 0 cLy
∗

R1 cos � 0 0 − cRM4 − cLM1

f

0 0
√
2c∗Ly

∗

R4 sin � −−c∗LM4 + c∗RM1

f
− c∗LM4 − c∗RM1

f
0





. (A.3)

For the down sector we have

Mdown =





m̃[�]11 m̃[�]12 m̃[�]13 0

m̃[�]21 m̃[�]22 m̃[�]23 0

m̃[�]31 m̃[�]32 m̃[�]33 fyL4

0 0 0 M4




, Ydown =





ỹ[�]11 ỹ[�]12 ỹ[�]13 0

ỹ[�]21 ỹ[�]22 ỹ[�]23 0

ỹ[�]31 ỹ[�]32 ỹ[�]33 0

0 0 0 0




. (A.4)

The neutral currents mediated by the Z boson yield the interaction Lagrangian

L ⊃ Zµξ↑L,Rγ
µAtL,R

NC
ξ↑L,R + Zµξ↓L,Rγ

µAbL,R

NC
ξ↓L,R , (A.5)

29

and the decay constant f depends on the detail of the UV theory. Following naive arguments, we fix

4πf � ΛHC . The pion matrix U transforms non-linearly under g ∈ SO(5): U → gUh
†(g, h), where

h ∈ SO(4). It is convenient to define Σ = U · (0 0 0 0 1)t, transforming linearly as a 5 under SO(5). We

also define

� = �h�/f , (2.3)

s� = sin � and c� = cos �. The EW scale is set by v = s�f � 246 GeV, and we focus on values s2� ∼ 0.1

which implies f � 800 GeV, as set by electroweak precision bounds [47].

The composite sector typically contains many spin-1/2 fermionic resonances. We choose here to use

the minimal set apt to generate a mass for the top via linear mixing, i.e. a four-plet Q and a singlet T̃

of SO(4), originating from a 5 of SO(5):

ψ =

�
Q

T̃

�
=

1√
2





i B − i X5/3

B +X5/3

i T + i X2/3

−T +X2/3√
2 T̃




. (2.4)

The most general Lagrangian we can write is then

Lcomp =iQL,R (D/+ E/)QL,R + iT̃L,RD/T̃L,R −M4
�
QLQR +QRQL

�

−M1

�
T̃LT̃R + T̃RT̃L

�
+ icLQ

i

Lγ
µdiµT̃L + icRQ

i

Rγ
µdiµT̃R + h.c.

−Lmix =yL4,1fq
5
3LUψR + yR4,1ft

5
RUψL + h.c.

=yL4f
�
bLBR + c2

θ/2tLTR + s2
θ/2tLX2/3R

�
− yL1f√

2
sθtLT̃R

+ yR4f

�
sθ√
2
tRTL − sθ√

2
tRX2/3L

�
+ yR1fcθtRT̃L + h.c. ,

(2.5)

where Eµ and dµ denote the CCWZ Cartan-Maurer one-forms (c.f., e.g., Ref.[48] for the explicit expres-

sions). Masses and couplings deriving from this Lagrangian are detailed in Appendix A. The terms in

Lmix are responsible for the partial compositeness of the top quark. Top partial compositeness and the

gauging of SU(2)
L
×U(1)

X
lift the Higgs and radiatively induce EWSB. The detailed study of the Higgs

potential is out of the scope of this work, it has been extensively investigated in [21, 22, 23], and we shall

just rely on those results concerning the Higgs vacuum expectation value and mass. They suggest us,

in agreement with conclusions obtained in 5D models as in [26], to fix the masses of the heavy coloured

fermions appearing in Eq.(2.5) to be around 1 TeV, and above the currents experimental bounds, roughly

650− 800 GeV depending on the quantum numbers and on the branching ratios [49, 50, 51]. The naive

expectation, being these fermions composite objects, would be g∗f with g∗ a coupling of the strong sector

and therefore in the multi-TeV range; nevertheless we voluntarily choose lighter masses since they are

preferred by the observed value of the Higgs mass: increasing these masses, and asking for the correct

value of the top mass, requires larger mixing angles which result in a larger Higgs mass, or in a higher

level of fine tuning at fixed Higgs mass. The details of this behaviour are model dependent and this

expectation may be not realistic in general but it holds for the present case. Note that Eq.(2.5) naturally
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dependence obtained for the top from partial compositeness3. If the composite sector is fundamentally

a gauge theory of strongly interacting fermions Ψi one can secretly imagine the operators Ou,d as ΨiΨj

bilinears. If Ψ transform in the 5 of SO(5) at low energy we find the dependence expressed in Eq.(2.8). In

this case in the UV the interactions, written in terms of microscopical degrees of freedom, are of the form

q̄uΨΨ/Λ2
UV. This way of viewing them reminds us of conformal technicolour theories; in the following,

we will dub these terms UV, independently on their physical origin.

These operators have a small impact on the Higgs potential: they do not play a significant role for

what concerns naturalness. Indeed the largest contribution to the Higgs square mass is

− 3
y2
b

16π2
Λ2
HC � (30 GeV)2 . (2.9)

Finally we stress that λu,d are 3×3 generic matrices in generation space with rank 3. This additional

mass term of order O(1 GeV) in the up sector causes a misalignment between the physical top and the

top defined as the partially composite quark.

2.2 The structure of the model

The fermionic field content defined above can be split into up and down sectors as

ξ↑ =
�
u c t T X2/3 T̃

�T

, ξ↓ =
�
d s b B

�T

. (2.10)

Their Yukawa-mass Lagrangian is given by

−Lyuk−mass =ξ̄↑L [Mup + Yuph+ · · · ] ξ↑R + ξ̄↓L [Mdown + Ydownh+ · · · ] ξ↓R + h.c. (2.11)

with the matrices Mup and Mdown extracted from Eq.(2.5) and Eq.(2.8) and given in Appendix A. The

first task is to define a proper change of basis in the up and down sector to recover the mass eigenstates.

Since this cannot be done exactly we use s2� as an expansion parameter for perturbation theory: this

implies that in the elementary quark sector a general 3× 3 matrix is a perturbation to the null matrix.

In other words, the unitary matrices that we shall find in this expansion do not completely diagonalize

the 6× 6 (or 4× 4) matrix, but actually only block diagonalizes it. Nevertheless, this is enough since in

this new basis the heavy eigenstates are diagonal and they can be safely integrated out at tree level.

For the up-quark sector we get, up to O(s32�),

U †

uL
MupUuR �

�
mU 0

0 DM

�
, (2.12)

with

mU � s2�
2

mu
UV +mtΠ , Π =




0 0 0

0 0 0

0 0 1



 , DM � diag (MT ,M4,MT̃ ) , (2.13)

3A simpler choice could be to have composite operators in the 5 and embed right-handed quarks in SO(5) singlets: as a

result we would have a different Higgs dependence in the effective Lagrangian, namely a single Σ would appear. This choice

would not significantly affect our analysis.
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• deviations in the charged currents

�
δAL

CC

�
�− g√

2

Σu

M2
∗

,
�
δAR

CC

�
� − g√

2M2
∗

mb




mc mc mc

mc mc mc

mt mt mt .



 . (2.23)

In order to go form this basis to the “true” mass eigenbasis we just need to perform unitary transforma-

tions acting on the light sector only. The light mass matrices in Eq.(2.13) and Eq.(2.18) are diagonalized

through unitary transformations as follow:

mU = VuLMUV
†

uR
, mD = VdLMDV

†

dR
(2.24)

where MU = diag(mu,mc,mt) and MD = diag(md,ms,mb) are the masses of the six quarks. Given the

fact that O(s2�mUV) ∼ O(mc), the matrix mU given in Eq.(2.13) contains a strong hierarchy due to the

{3, 3} entry which receives a contribution from partial compositeness of order mt � mc. Therefore it can

be diagonalized through VuL,R of the form

VuL,R ∼




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)

O(1) O(1) O(mc
mt
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) O(mc
mt
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

 . (2.25)

From this hierarchy and Eq.(2.17) we have

V †

uL
ΣuVuR ∼ Σu . (2.26)

Therefore deviations in the gauge couplings of up currents can be directly read from Eq.(2.22).

In the down sector there is no a priori hierarchy between the mass matrix entries, except from the

fact that is has to accommodate the down quark spectrum.

3 Confronting the model with data

In this section we confront our model with the present constraints coming from flavour conserving/violating

processes and also comment on precision data, non linearities and neutron EDM. All these effects may

have three distinct origins:

(1) induced solely by the mixing effects due to top partial compositeness and direct Yukawa couplings,

thus appearing as flavour-violating couplings of the Z, W and Higgs;

(2) induced by heavy resonances, appearing at the compositeness scale;

(3) induced by the dynamics that generates elementary Yukawa couplings at the scale ΛUV .

The third type of effects will play no role in our framework, as we will show in Sec. 3.3.

We can now proceed to evaluate the impact of the above results on SM measurements: we first discuss

flavour-conserving couplings, leaving flavour-violating effects for the following subsection.
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2.    Up Sector Couplings

where mt is the contribution to the top mass from partial compositeness (so that s2� mUV ∼ mc � mt).

The masses are defined as

mt = s2�
f2|yL1yR1M4 − yL4yR4M1|

2
√
2MTMT̃

, MT =
�
M2

4 + f2y2
L4 , M

T̃
=

�
M2

1 + f2y2
R1 . (2.14)

We also define

sφL =
yL4f

MT

, sφR =
yR1f

M
T̃

. (2.15)

The Yukawa couplings are brought, by these transformations, to a non block-diagonal form. The Yukawa

matrix for the light quark sector is now given by

yu � mU

fs2�/2

�
1− 1

2
s22�

�
+Bu , where Bu ∼ Σu

M2
∗

. (2.16)

We loosely identify M∗ ∼ M4 ∼ M1 ∼ |M1 − M4| ∼ f , following our assumption of light top partners.

We also define

Σu ∼




m2

c m2
c mcmt

m2
c m2

c mcmt

mcmt mcmt m2
t



 . (2.17)

Exact expressions are lengthy and are not reported here. They are obtained as outlined in Appendix A.2.

Here, we prefer to show approximate results capturing the size of the corrections. Hence these equations

should not be considered as true equalities because we are neglecting numerical coefficients of order one.

For the down sector we obtain

U †

dL
MdownUdR �

�
mD

MT

�
, mD � s2�

2
md

UV . (2.18)

The Yukawa coupling in the down sector is decomposed in aligned and non aligned part as

yd � mD

fs2�/2

�
1− s22�

2

�
+Bd , (2.19)

where in analogy with Eq.(2.17) we have

Bd ∼ mbΣd

�M3
∗

, where Σd ∼ �2(md

UV)
2
. (2.20)

The interaction Lagrangian of the EW gauge currents is

Lgauge = Zµξ̄↑L,Rγ
µAtL,R

NC
ξ↑L,R + Zµξ̄↓L,Rγ

µAbL,R

NC
ξ↓L,R +W+

µ ξ̄↑L,Rγ
µAL,R

CC
ξ↓L,R + h.c. (2.21)

where AtL,R

NC
, AbL,R

NC
and AL,R

CC
are reported in Eq.(A.6), Eq.(A.7) and Eq.(A.8). Applying the unitary

transformations UuL,uR and UdL,dR to the EW gauge currents we obtain:

• deviations in the neutral currents

δAtL

NC

��
3×3

� g

cW

Σu

M2
∗

, δAtR

NC

��
3×3

� − g

cW

Σu

M2
∗

,

δAbL

NC

���
3×3

=0 ,

�
δAbR

NC

���
3×3

�

ij

� − g

2cW

Σd

M2
∗

;
(2.22)
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2.    Flavor Preserving

3.1 Flavour preserving processes

3.1.1 Constraints from top partial compositeness

We start with the tree level coupling of the top to Z and W boson, mainly affected by the partial

compositeness mixings. The expressions we found for δgZtL , δgWtLbL and δgZtR at λu = λd = 0 agree

with Eq.(6.6) and Eq.(6.7) of [52]; we also checked that the following relation holds true:

δgZtL

g/cW
=

δgWtLbL

g/
√
2

, (3.1)

as expected [57, 58, 59]. In the limit yL1 = yL4, yR1 = yR4 and cL = cR = 1/
√
2, we obtain simple

formulae that can be considered as an example of more general complicated expressions

δgZtL � − g

cW

�
mt

M∗

�2 (1− s2
φR

)
2

2s2
φR

, δgZtR � − g

cW

�
mt

M∗

�2 (2− s2
φL

)

2
. (3.2)

In the general case, corrections of the same order are obtained4.

The corrections to the Z couplings to the top can be large, but no experimental bound on them is

available. Such deviation, however, also enters the coupling to charged currents: besides threatening the

unitarity of the CKM matrix in the light flavours, as we will discuss in the next section, it affects the

value of the coupling of the W to third generation quarks. The latter needs to be compatible with the

direct measurement of |Vtb| = 1.021± 0.032 [60]. To satisfy the bounds, it is enough to have

|δAL

CC |1/2 ∼
�����
mt

M∗

(1− s2
φR

)
√
2sφR

����� � 10−1 . (3.3)

At fixed mt this implies that sφR < 1/2 is disfavoured, unless we take M1 to be much larger than 1 TeV.

For what concerns right-handed couplings, t̄R /WbR, the expression in Eq.(2.23) gives us a coefficient

∼ g
√
2
mtmb
M

2
4
: the same result holds in models with partially composite top and bottoms [61] and from the

analysis presented there of b → sγ processes we read M4 � 1 TeV5.

For the couplings of the bottom quark we obtain

δgZbL = 0 , δgZbR = − gs22�
8cW

�
yL4fmd

UV33

M2
4 + y24Lf

2

�2

� − g

2cW
s2
φL

c2
φL

�
mb

M∗

�2

; (3.4)

deviations to the left-handed couplings vanish, as expected, because of the custodial symmetry [26], while

corrections to the right-handed ones are small enough suppressed by the bottom mass.

3.1.2 Constraints from heavy resonances

We now proceed inspecting subleading corrections along the line of recent works [52, 55]: those are

especially important in the down sector, where the contribution of the compositeness is under control.

4Notice that δgZtL → 0 if yL4,L1 → 0 and δgZtR → 0 if yR4,R1 → 0, a fact that might be obscured in Eq.(3.2).
5We thank N. Vignaroli for a comment on this point.
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We start with the tree level coupling of the top to Z and W boson, mainly affected by the partial

compositeness mixings. The expressions we found for δgZtL , δgWtLbL and δgZtR at λu = λd = 0 agree

with Eq.(6.6) and Eq.(6.7) of [52]; we also checked that the following relation holds true:

δgZtL

g/cW
=

δgWtLbL

g/
√
2

, (3.1)

as expected [57, 58, 59]. In the limit yL1 = yL4, yR1 = yR4 and cL = cR = 1/
√
2, we obtain simple

formulae that can be considered as an example of more general complicated expressions

δgZtL � − g

cW

�
mt

M∗

�2 (1− s2
φR

)
2

2s2
φR

, δgZtR � − g

cW

�
mt

M∗

�2 (2− s2
φL

)

2
. (3.2)

In the general case, corrections of the same order are obtained4.

The corrections to the Z couplings to the top can be large, but no experimental bound on them is

available. Such deviation, however, also enters the coupling to charged currents: besides threatening the

unitarity of the CKM matrix in the light flavours, as we will discuss in the next section, it affects the

value of the coupling of the W to third generation quarks. The latter needs to be compatible with the

direct measurement of |Vtb| = 1.021± 0.032 [60]. To satisfy the bounds, it is enough to have

|δAL

CC |1/2 ∼
�����
mt

M∗

(1− s2
φR

)
√
2sφR

����� � 10−1 . (3.3)

At fixed mt this implies that sφR < 1/2 is disfavoured, unless we take M1 to be much larger than 1 TeV.

For what concerns right-handed couplings, t̄R /WbR, the expression in Eq.(2.23) gives us a coefficient

∼ g
√
2
mtmb
M

2
4
: the same result holds in models with partially composite top and bottoms [61] and from the

analysis presented there of b → sγ processes we read M4 � 1 TeV5.

For the couplings of the bottom quark we obtain

δgZbL = 0 , δgZbR = − gs22�
8cW

�
yL4fmd

UV33

M2
4 + y24Lf

2

�2

� − g

2cW
s2
φL

c2
φL

�
mb

M∗

�2

; (3.4)

deviations to the left-handed couplings vanish, as expected, because of the custodial symmetry [26], while

corrections to the right-handed ones are small enough suppressed by the bottom mass.

3.1.2 Constraints from heavy resonances

We now proceed inspecting subleading corrections along the line of recent works [52, 55]: those are

especially important in the down sector, where the contribution of the compositeness is under control.

4Notice that δgZtL → 0 if yL4,L1 → 0 and δgZtR → 0 if yR4,R1 → 0, a fact that might be obscured in Eq.(3.2).
5We thank N. Vignaroli for a comment on this point.
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2.    Flavor Violating

3.2.1 Constraints from top partial compositeness

The first type of contributions will apply, mostly, to operators relevant to the D0 − D
0
system, due to

the absence of bottom composite partners. Higgs flavour violating couplings are present in the theory

and they are given by

V †

u,L
BuVuR , (3.8)

with Bu given in Eq.(2.16). The contribution of a Higgs exchange to the operator Quc

4 can be estimated

to be of the order of
1

m2
H

�
mc

M∗

�4

� 10−12

TeV2

�
1 TeV

M∗

�4

, (3.9)

where M∗ is a generic top-partner mass. For what concerns the down sector we have negligible effects

because |Bd| ∼ �(mb/M∗)3 ∼ 10−7(1TeV/M∗)3. Flavour violating Z interactions are controlled by

V †

uL
δAtL

NCVuL , V †

dL
δAbL

NCVdL . (3.10)

where δAt,bL

NC
are given in Eq.(2.22). In this case the exchange of a Z boson contributes to Quc

1 with a

coefficient proportional to

�
V †

uL
δAtL

NCVuL

�

12,21
and given by

g2

16c2
W
m2

Z

�
mc

M∗

�4

� 10−11

TeV2

�
1 TeV

M∗

�4

. (3.11)

Therefore, flavour violation in the up sector is well under control.

In the down sector, the situation is different, since at tree level in our effective description δAbL

NC
= 0.

Therefore, we use here the contribution from higher order operators we discussed in Section 3.1 for the

Zbb coupling; this results in effective operators of the form

1

m2
Z

�
sφL

mZ

mV

�4 �
(V ∗

dL33VdL31)
2Qdb

1 + (V ∗

dL33VdL32)
2Qsb

1 + (V ∗

dL32VdL31)
2Qds

1

�

� 10−4

TeV2

�
(V ∗

dL33VdL31)
2Qdb

1 + (V ∗

dL33VdL32)
2Qsb

1 + (V ∗

dL32VdL31)
2Qds

1

�
, (3.12)

for mV with a mass at 3 TeV. These coefficients are too large, therefore one need to rely either on the fact

that the higher order operators are suppressed more than what naively expected, or the mixing angles in

the down sector have a hierarchy. Comparing with Ref.[64], we find that

|V ∗

dL33VdL31| < 10−1 , |V ∗

dL33VdL32| < 10−1/2 , |V ∗

dL32VdL31| < 10−5/2 . (3.13)

These constraints are in mild tension with our assumption of anarchic masses, requiring some kind of

alignment.

Flavour violating couplings of the Z boson can also be constrained from Bs → µ+µ− decay branching

ratios [65, 66]: from Eq.(2.22) we easily read a suppression of the form m2
b
/M2

∗ whereas deviations up to

order 10−3 are allowed.

Flavour violating neutral currents can also mediate flavour violating top decays, such as t → ch, uh

and t → Zq, which are being probed at the LHC [67, 68]. In our framework we only have partial

compositeness for the top quark, and therefore no flavour violation can arise from this sector alone. All
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2.    Flavor Violating:  Top Couplings
flavour violation has to be linked with the flavour structure from the direct Yukawa couplings. As it can

be see from Eq.(2.16) and Eq.(3.8), the leading contributions to misaligned Yukawas are of the form

ytc,L � ytc,R ∼ mcmt

fM∗

� 10−4 , (3.14)

Third generation flavour violating Z couplings are given in Eq.(2.22) and Eq.(3.10) and they read

(δAtL,R

NC
)32 �

g

cW

mtmc

M2
∗

� 10−4 . (3.15)

On the other hand we have [69]

B(t → ch) � 0.25 (|ytc,L|2 + |ytc,R|2) , B(t → Zc) � 3.5 (δAtL,R

NC
)
2

32 . (3.16)

Therefore, the effects expected in our scenario are many orders of magnitude too small to be detected at

the LHC. In fact, after Run I, B(t → ch) < 6÷ 8× 10−3 at 95 % CL [70, 71] and B(t → Zc) < 5× 10−4

at 95 % CL, a limit set by CMS with 19.7 fb−1 at
√
s = 8 TeV [68]. During Run II, the LHC is expected

to set limits up to B(t → Zq) ∼ O(10−4÷5) with 300 and 3000 fb−1 [72], and similarly an improvement

of order one on the bound on the Yukawa flavour violating couplings is expected with 300 fb−1 data [67].

The results on Eq. (3.14) are in contrast with the usual case of partially composite light quarks, where

the light effective Yukawa couplings are aligned with the mass matrix, resulting in the absence of flavour

violation at O(yLyR/M2) [73]. It is then common to consider higher order contributions in the kinetic

terms of the elementary quarks in order to estimate the dominant effects in Higgs FCNCs processes.

In [69] the authors estimated these contributions through the help of holographic techniques and found,

for the anarchic scenario, at O(y2
L
y2
R
/M4

∗ )

ytc,L ∼ mtmc

fM∗Vcb

, ytc,R ∼ m2
tVcb

fM∗

(3.17)

in the quark mass eigenbasis. This type of flavour misalignment has been also estimated in [73] through

the use of naive dimensional analysis, and in [74] in a specific 5D implementation using the mass insertion

approximation in KK language.

Turning to W couplings, in this model the CKM matrix is not a unitary matrix due to the presence

of 3 extra tops and 1 extra bottom. It is defined by the following expression:

VCKM = V †

uL
(1 +

√
2

g
δAL

CC)VdL . (3.18)

As the matrices VuL,dL are unitary, the corrections δAL

CC
is constrained by unitarity, in particular

V †

uL
VdL = VCKM − V †

uL
δAL

CC VdL , (3.19)
�
V †

uL
VdL

�† �
V †

uL
VdL

�
= 1 ⇒ V †

dL
(δAL

CC + δAL†

CC
)VdL = V †

CKM
VCKM − 1 ,

�
V †

uL
VdL

��
V †

uL
VdL

�†

= 1 ⇒ V †

uL
(δAL

CC + δAL†

CC
)VuL = VCKMV †

CKM
− 1 .

Because of the unitarity of VuL,dL, even taking small mixing angles, the unitarity of the CKM matrix

cannot be restored, and the largest deviation appears in the coupling of the top to the bottom, which
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2.    Flavor Violating Processes: heavy resonances

can easily be set to satisfy the bounds as we have seen in the previous section. The unitarity violation

in the up sector is also under control, thanks to the hierarchy in the 3×3 mixing angles of order mc/mt.

However, in the down sector, a hierarchy in the UV masses is also required in order to satisfy the bounds:

comparing with the experimental results [60], we find

|VdL13| < 10−1 , |VdL23|2 < 10−1 . (3.20)

Once more, this indicates a mild hierarchy in the down-type sector, requiring some sort of alignment.

3.2.2 Constraints from heavy resonances

The effects induced by heavy resonances, in a way, reflect our little knowledge about the physics at the

compositeness scale. One expects other resonances (vector, scalar, etc.) to appear at this scale, whose

presence affects flavour observables. In a bottom up approach we shall parametrise scalar and vector

resonances and look at the predictions for the d = 6 operator coefficients. We will assume that the

composite resonances only couple to composite fermions, even though direct couplings to the elementary

quarks may be generated by the same mechanism coupling them to the strong sector to give them masses.

Let us consider first the interaction of a real scalar field Φ transforming as a singlet of SO(4):

L = Φ(gBQ̄Q+ gS
¯̃T T̃ ) +

1

2
m2

ΦΦ
2 . (3.21)

The mass of this additional resonance is proportional to f and to some strong coupling constant of the

theory and it is expected to lie between f and ΛHC . Due to partial compositeness, Eq.(3.21) induces

interactions between the top and this additional scalar and, after diagonalising the quark mass matrices,

this results in flavour violating couplings. Their flavour structure is

L � Φ
�

ūL c̄L t̄L
�
·




0 0 gSs2φRcφR

mc
M∗

0 0 gSs2φRcφR
mc
M∗

gBs2φLcφL
mc
M∗

gBs2φLcφL
mc
M∗

(gB − gS)
mt
M∗



 ·




uR
cR
tR



 + h.c. (3.22)

In the mass eigenstates basis for the quarks the flavour violating vertex has thus the form

L � g̃

�
mc

mt

�2 mt

M∗

Φ ūc+ h.c. , (3.23)

with g̃ ∼ gB,S . Integrating out Φ allows us to compute the coefficients of the dimension-6 operators in

Eq.(3.7). In the case at hand, we are left with:

L �
�

g̃

mΦ

�2�mc

mt

�4�mt

M∗

�2

Quc

4 �
�
1 TeV

M∗

�2� g̃

mΦ/TeV

�2

× 10−10

TeV2 Quc

4 , (3.24)

potentially larger than the effect of a misaligned Higgs Yukawa in Eq.(3.9), but still well below the

experimental bound [64]. For the down sector the induced Yukawas are only proportional to gB because

we do not have partial compositeness for the right bottom. The analogous of Eq.(3.22) is

L � gBs
2
φL

cφLΦb̄L

�
mb

M∗

dR +
mb

M∗

sR +
mb

M∗

bR

�
+ h.c. . (3.25)
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Then, after going to the mass basis and integrating out the scalar resonance we get, for the flavour

violating operator in the down sector analogous to Eq.(3.24),

L �
�
gBs2φLcφL

mΦ

�2�
mb

M∗

�2 �
zdb4 Qdb

4 + zsb4 Qsb

4 + zds4 Qds

4

�

�
�
1TeV

M∗

�2� gB
mΦ/TeV

�2

× 10−5

TeV2

�
zdb4 Qdb

4 + zsb4 Qsb

4 + zds4 Qds

4

�
(3.26)

with the dimensionless coefficients given by

z
dαdβ

4 = V ∗

dL3αVdL3β

�

γδ

VdRγβV
∗

dRδα
. (3.27)

The constraints on the Q4 operators require the dimensionless coefficients to satisfy

|zdb4 | < 10−2 , |zsb4 |2 < 10−1 , |zds4 | < 10−6 , (3.28)

The constraints above can be considered as a conservative worse case scenario, as they have been computed

by assuming mΦ/g ∼ f ∼ 1 TeV. In fact, the resonances may have a larger mass, up to the condensation

scale ΛHC ∼ 4πf and have couplings to top partners of order one. Depending on the details of the

underlying theory, therefore, the bounds may be mitigated by a factor up to (4π)2 ∼ 102.

In the case of massive vector resonances we can write the interaction in the form

L = Vµ(gBQ̄Lγ
µQL + gS

¯̃TLγ
µT̃L) + (L → R) +

1

2
m2

V VµV
µ . (3.29)

After bringing the mass matrices to their block diagonal form, the resonant vector contribution becomes

L = VµūαL,Rγ
µ(δAu

LR,res)αβuβL,R + Vµd̄αL,Rγ
µ(δAd

LR,res)αβdβL,R (3.30)

with

δAu

L,res ∼





gSs2φRc
2
φR

m
2
c

M2
∗

gSs22φRc
2
φR

m
2
c

M2
∗

−(gS − gBc2φL)cφR
mtmc
M2

∗

gSs2φRc
2
φR

m
2
c

M2
∗

gSs2φRc
2
φR

m
2
c

M2
∗

−(gS − gBc2φL)cφR
mtmc
M2

∗

−(gS − gBc2φL)cφR
mtmc
M2

∗

−(gS − gBc2φL)cφR
mtmc
M2

∗

gBs2φL + gS−gB

s
2
φR

m
2
t

M2
∗



 , (3.31)

where the right-handed couplings can be obtained from the above expression with the replacements

φL ↔ φR and gB ↔ gS , and

δAd

L,res ∼ gBs
2
φL





0 0 c3
φL

m
2
b

M2
∗

0 0 c3
φL

m
2
b

M2
∗

c3
φL

m
2
b

M2
∗

c3
φL

m
2
b

M2
∗

1 + 2c4
φL

m
2
b

M2
∗



 , δAd

R,res ∼ gBs
2
φL

c2
φL

Σd

M2
∗

. (3.32)

In the mass eigenstates basis for the quarks, the coefficients of the flavour violating effective operators
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L = VµūαL,Rγ
µ(δAu

LR,res)αβuβL,R + Vµd̄αL,Rγ
µ(δAd

LR,res)αβdβL,R (3.30)

with

δAu

L,res ∼





gSs2φRc
2
φR

m
2
c

M2
∗

gSs22φRc
2
φR

m
2
c

M2
∗

−(gS − gBc2φL)cφR
mtmc
M2

∗

gSs2φRc
2
φR

m
2
c

M2
∗

gSs2φRc
2
φR

m
2
c

M2
∗

−(gS − gBc2φL)cφR
mtmc
M2

∗

−(gS − gBc2φL)cφR
mtmc
M2

∗

−(gS − gBc2φL)cφR
mtmc
M2

∗

gBs2φL + gS−gB

s
2
φR

m
2
t

M2
∗



 , (3.31)

where the right-handed couplings can be obtained from the above expression with the replacements

φL ↔ φR and gB ↔ gS , and

δAd

L,res ∼ gBs
2
φL





0 0 c3
φL

m
2
b

M2
∗

0 0 c3
φL

m
2
b

M2
∗

c3
φL

m
2
b

M2
∗

c3
φL

m
2
b

M2
∗

1 + 2c4
φL

m
2
b

M2
∗



 , δAd

R,res ∼ gBs
2
φL

c2
φL

Σd

M2
∗

. (3.32)

In the mass eigenstates basis for the quarks, the coefficients of the flavour violating effective operators
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2.    Summary

+     vector resonances

+     Zbb, Zcc, …

+     CP and CP

+     Higgs couplings

+     W FV couplings

+     UV four fermion operators (qq)(qq)      

with g�∗ ∼ gS,B. The coefficient C̃uc

1 can be obtained from Cuc

1 using the replacement described below

Eq.(3.31). The constraints on Cbd

1 , Cbs

1 and Csd

1 imply, respectively,

|V ∗

dL33VdL31| < 10−3 , |V ∗

dL33VdL32| < 10−2 , |V ∗

dL32VdL31| < 10−5 . (3.34)

Similarly to the case of scalar resonances, a larger mass and a smaller coupling may lift the bound by an

additional factor (4π)2 ∼ 102.

3.3 UV contribution to flavour violations

It is equally important to consider the effect of four fermion interactions generated at the UV cutoff

ΛUV and to make sure that their presence does not reintroduce the flavour problem. We can rewrite the

Lagrangian Eq.(2.6) responsible for the generation of light quark masses as

L = λu(ΛUV ) q̄u O + h.c. (3.35)

focusing on the up sector and neglecting flavour indices for brevity; quark masses are then given by

L = λu(ΛHC)Λ
[O]
HC

v

f
q̄u+ h.c. = 4πλu(ΛHC)Λ

[O]−1
HC

v q̄u+ h.c. , (3.36)

employing �O� = Λ[O]
HC

v/f and ΛHC � 4πf , [O] being the dimension of the operator O. If we assume

that the theory is an interacting CFT between ΛUV and an infrared fixed point ΛHC , where SO(5) is

broken to SO(4), [O] is nearly scale independent and the running of λu is well captured by

λu(ΛHC) = λu(ΛUV )

�
ΛHC

ΛUV

�[O]−1

. (3.37)

Moreover we can define a dimensionless coupling λ̄u(ΛUV ) = λu(ΛUV )Λ
[O]−1
UV

. Putting everything together

we find quark masses

4πλ̄u(ΛUV )

�
ΛHC

ΛUV

�2([O]−1)

v . (3.38)

Requiring that Eq.(3.38) reproduces the charm mass, or equivalently the charm Yukawa times v, and

imposing λ̄u(ΛUV ) ≤ 4π, namely perturbativity at the scale where the operator O is generated, we have
�
ΛHC

ΛUV

�
≥

� yc
16π2

� 1
2([O]−1) � 6× 10−5 (3.39)

choosing [O] = 1.5 [75] (see also [76] and references therein). Since ΛHC � 4πf � 10 TeV we get

ΛUV � 105 TeV. Therefore four fermions interactions of the form

L =
1

Λ2
UV

(q̄q)2 + h.c. (3.40)

do not reintroduce any flavour problem as large enough suppression scales are allowed. These four-

fermion interactions are a generic prediction of the physics responsible of Eq.(3.35) and from an effective

theory point of view they can be suppressed only decoupling the UV cutoff: we avoid tensions typical of

technicolour theories because we need to fix the charm – and not the top – mass. Finally notice that the

same line of reasoning is applied to the down sector and a single cutoff ΛUV is consistent since mc ∼ mb.
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2.    Summary

+     vector resonances
+     Zbb, Zcc, …
+     CP and CP
+     Higgs couplings
+     W FV couplings
+     UV four fermion operators (qq)(qq)

Up sector:                                          OK

Down sector:

EW precision parameters S and T can be computed as in composite Higgs models, with the additional

Yukawa interaction playing a very minor role. We then refer to the literature for estimates, such as

[77, 78, 79] and [52, 55]. We content ourselves noting that, generically, with our choice of f and ΛHC ,

EW tests can be satisfied.

Since a couple of years, the Higgs boson is a new player in constraining new models via the knowledge

we have of its couplings. In composite Higgs models, relative deviations in its couplings to quarks are

given by non linearities and, henceforth, they depend on the form of the interactions with the strong

sector: in the case at hand, Eq.(2.8), the correction is universal and it has the form

ySM − y

m/v
� 1− 1− 2s2��

1− s2�

� 0.15 . (3.41)

This value is still allowed for the hb̄b coupling [80]. For light quarks the Yukawa couplings are not

constrained with the same precision.

The only sector where anarchic UV mass terms are in tension with data is the down sector: here,

flavour bounds require the mixing angles to be small, so that a certain amount of alignment seems to be

necessary. A combined analysis of all the results we collected is in order:

Z boson FCNCs, Eq.(3.13) ⇒ |V ∗
dL33VdL13| < 10

−1
, |V ∗

dL33VdL23| < 10
−1/2

, |V ∗
dL13VdL23| < 10

−5/2
,

CKM unitarity, Eq.(3.19) ⇒ |VdL13| < 10
−1

, |VdL23| < 10
−1/2

,

Scalar resonance, Eq.(3.28) ⇒ |zdb4 | < 1÷ 10
−2

, |zsb4 | < 1÷ 10
−1/2

, |zds4 | < 10
−4 ÷ 10

−6
, (3.42)

Vector resonance, Eq.(3.34) ⇒ |V ∗
dL33VdL31| < 10

−1 ÷ 10
−3

, |V ∗
dL33VdL32| < 1÷ 10

−2
,

|V ∗
dL32VdL31| < 10

−3 ÷ 10
−5

.

The range in the case of resonances is due to the unknown value of the masses and couplings of the

resonances. The only constraints that derive directly from partial compositeness in the up-sector are the

ones from CKM unitarity: however, they require a quite mild hierarchy in the down-sector mixing matrix,

especially in the first generation. It should also be noted that the effect scales like M−2
∗ , so increasing

the mass of the top partners can help releasing the tension. The strongest constraints come from higher

order operators (in the case of the Z boson FCNCs) and heavy resonances, thus their presence is more

model dependent. Nevertheless, there is no way to avoid such contributions in general.

A possible simple way to contemporarily fulfill all the limits is to have VdL13 = 0 and |VdL23| < 10
−2

,

with VdL33 = O(1) and generic VdR: we would not regard to this choice as particularly fine tuned;

moreover many other possibilities are available. A very special case would be to have the down mass

matrix hierarchical as it happens in the up sector, forcing the unitary transformations to have the form

VdL,R ∼




O(1) O(1) O(

ms
mb

)

O(1) O(1) O(
ms
mb

)

O(
ms
mb

) O(
ms
mb

) 1



 . (3.43)

This in general is not completely satisfactory because the constraints on the coefficients C
bd,sd

1 of down-

type operators coming from the exchange of heavy vector resonances generate a residual tension, as they

may be one order of magnitude larger than the bounds; however an agreement with experiments can be

obtained by varying the mass and couplings of the resonances. The structure in Eq.(3.43) would be a
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2.    Summary

+     vector resonances
+     Zbb, Zcc, …
+     CP and CP
+     Higgs couplings
+     W FV couplings
+     UV four fermion operators (qq)(qq)

Up sector:                                          OK

Down sector:
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moreover many other possibilities are available. A very special case would be to have the down mass

matrix hierarchical as it happens in the up sector, forcing the unitary transformations to have the form
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This in general is not completely satisfactory because the constraints on the coefficients Cbd,sd

1 of down-

type operators coming from the exchange of heavy vector resonances generate a residual tension, as they

may be one order of magnitude larger than the bounds; however an agreement with experiments can be

obtained by varying the mass and couplings of the resonances. The structure in Eq.(3.43) would be a

consequence of λd

33 � λd

αβ
, such that mD,33 � mb while mD,αβ � ms for all the other entries. Notice that

this would change all the coefficients discussed, for instance Σd or the couplings in Eq.(3.25): we checked

that this would also satisfy all the experimental bounds. In the down sector mass terms are all originated

from the same operators and in principle no hierarchy is expected. In the following section we will show a

possible way to generate such hierarchy by further extending the model and making the bottom partially

composite, and fixing the other down masses to be of the order of the strange mass. This would make

the down sector similar to the up sector, with a clear distinction between the {3, 3} entry and the others

in the mass matrix and the form of the diagonalizing VdL,dR would be a consequence. We also point out

that the simultaneous holding of Eq.(2.25) and Eq.(3.43) for VuL and VdL respectively is in agreement

with the observed values of the third family entries of the CKM matrix.
It is instructive to revisit the limits collected in Eq.(3.42) allowing the entries of VdL to be O(1)

complex numbers, apart from |VdL13| < 10−1 and |VdL23| < 10−1/2 because of CKM unitarity: this in
turn implies |VdL31,32| � 10−1/2 because of VdL unitarity. We report here the values of the masses of
heavy resonances probed by reconsidering the processes discussed above under this viewpoint:

Z boson FCNCs, Eq.(3.13) ⇒ mV > (3 TeV)
�
100 ,−1/2 ,1/2

�1/4
= 3, 2, 4 TeV , (3.44)

Scalar resonance, Eq.(3.28) ⇒ g2B

�
1 TeV

mΦ

�2�1 TeV

M∗

�2

< 10−3/2 ,−1/2 ,−5 ⇒ mΦ = M∗ >
√
gB 2, 1, 17 TeV ,

Vector resonance, Eq.(3.34) ⇒ g2∗

�
1 TeV

M∗

�4�1 TeV

mV

�2

< 10−5 ,−3 ,−8 ⇒ mV = M∗ > g1/3∗ 7, 3, 21 TeV .

To conclude, we briefly address issues related to CP violation. So far, we neglected all phases and

treated all parameters as real: the suppressions we find are enough also for the imaginary parts. However

some flavour conserving CP violating processes such as the neutron EDMmight be enhanced. The current

experimental bound is [81]

|dn| < 2.9× 10−26 e cm (90%CL) . (3.45)
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1. Different top partners, different cosets

2. Vector-like quarks

3. Different origin of bottom mass

4. Fully composite right top

3.    Extensions
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3.    Additional top partners

5.1 Additional top partners

The discussion carried out so far can be generalised to other cases, where on top of mass terms of the

form Eq.(2.8) we have linear mixing with different partners. Allowing for larger representations of top

partners, we restrict to custodians [46] for a zero tree level correction to Zb̄LbL: the minimal options

are 10 = 4 + 6 and 14 = 1 + 4 + 9 [48], decomposed in SO(4) irreducible representations. Both 6

and 9 contain partners with Q = −1/3 and the quantum numbers of bR: they can, therefore, couple to

bL and the physical Higgs. After going to the mass basis and integrating out heavy fields we are left

with a structure similar to the minimal setup, but with additional flavour violating Higgs couplings. For

definiteness we focus on partners in the 9 with a mass M9 and mixing yL97. In this extended set-up, in

the down sector we obtain the following flavour-violating couplings of the Higgs:

L � −
s2
φ9Lc

3
φL

c2
φ9L

�2

f
h b̄L

�
md

UV31dR +md

UV32sR +md

UV33bR
�

(5.1)

∝
�

d̄L s̄L b̄L
�



0 0 0

0 0 0

md
UV31 md

UV32 md
UV33








dR
sR
bR



 ,

where sφ9L = yL9f/
�
M2

9 + y2
L9f
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3.    Bottom mass

New physics effects can be sizable, indeed the neutron EDM receives contributions from the quarks EDMs.

The effects of partial compositeness have been investigated elsewhere in the literature [32, 33, 82]. We

estimated the order of magnitude of the quarks EDMs, du,d, retaining only the fermions included in ξ↑
and ξ↓ and restricting to one loop diagrams with Z, W and Higgs bosons. Neglecting QCD running

effects, expected to be O(1), we find generic contributions to du,d in the range of 10−21 ÷ 10−24 e cm,

thus up to five orders of magnitude above the experimental bound in Eq.(3.45). Particular choices of

parameters or unitary matrices VdL,R might improve the situation for the EDM of the down quark. In

the up sector there are some fixed contributions, coming from Higgs exchange, and to properly account

for them we have to assume that additional cancellations are at work or that the relative phase between

V ∗
uL31 and VuR31 is small, less than 10−4. A full understanding of the neutron EDM constraint relies

on a complete theory of flavour and on the knowledge of the strongly interacting sector, and therefore

is outside the scope of our effective parametrization: for this reason we do not include it in our global

analysis.

4 Bottom mass

We have focused so far on top partial compositeness and on direct Yukawa couplings: there is the

possibility to propagate EWSB to the bottom quark if it linearly couples to composite operators as well,

as a variant of what discussed above. While we could study bottom partial compositeness as for the top

quark we instead choose a more minimal option consisting in introducing linear mixings for both left-

handed and right-handed fermions with the same composite resonance: this mechanism differs from the

usual partially composite bottom scenario which would require the addition of specific composite bottom

partners. In our proposal, the right-handed bottom develops a linear mixing with the same partner which

mixed to the left-handed bottom, with the difference that the mixing in the right-handed sector vanishes

when the EW symmetry is restored.

Indeed, given that the left-handed doublet q3L already mixes with the strong sector to give rise to the

top mass, we do not need to add any new resonance. We thus complement Eq.(2.5) and Eq.(2.8) with

the following effective operator, written in a formally SO(5) invariant way:

L = yRf ψ̄LU
td143RΣ+ h.c. =

1

2
yRfsθB̄LbR + h.c. , (4.1)

where the last equality holds in the unitary gauge, ψ is the quark partner five-plet defined in Eq.(2.4)

that contains the bottom partner B, and d143R is a spurion formally transforming as the 14 of SO(5),

whose dynamical component is only the right-handed bottom:

d143R =
bR
2
√
2





0 0 1 i 0

0 0 −i 1 0

1 −i 0 0 0

i 1 0 0 0

0 0 0 0 0




. (4.2)

With this embedding, its U(1)X charge is 2/3, matching the charge of ψ. An equivalent term could have

been written embedding bR in a different representation, as the 10 for instance, or in any other SO(5)
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With this embedding, its U(1)X charge is 2/3, matching the charge of ψ. An equivalent term could have

been written embedding bR in a different representation, as the 10 for instance, or in any other SO(5)

representation whose decomposition to SO(4) contains the 4
6 . Eq.(4.2) is the most general term that

we could add, in particular we can always go to the basis where only one out of the three right-handed

down-type quark, consequently defined as bR, couples to ψL.

6The term in Eq.(4.2) can be formally rewritten as Tr[Q̄14d
14
3R], defining Q14 = U(Q1 + Q4 + Q9)U

t, assuming that in

the effective theory Q4 mixes with the four-plet Q defined in Eq.(2.4) or directly identifying Q and Q4 and then decoupling

the unnecessary components of Q14, namely Q1 and Q9. This also suggests one way to UV complete this Lagrangian in the

fundamental theory. We do not study this particular realization in detail but in the following section we explain how to

generalize the results of our analysis to encompass cases like this.
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3.    Bottom mass

New physics effects can be sizable, indeed the neutron EDM receives contributions from the quarks EDMs.

The effects of partial compositeness have been investigated elsewhere in the literature [32, 33, 82]. We

estimated the order of magnitude of the quarks EDMs, du,d, retaining only the fermions included in ξ↑
and ξ↓ and restricting to one loop diagrams with Z, W and Higgs bosons. Neglecting QCD running

effects, expected to be O(1), we find generic contributions to du,d in the range of 10−21 ÷ 10−24 e cm,

thus up to five orders of magnitude above the experimental bound in Eq.(3.45). Particular choices of

parameters or unitary matrices VdL,R might improve the situation for the EDM of the down quark. In

the up sector there are some fixed contributions, coming from Higgs exchange, and to properly account

for them we have to assume that additional cancellations are at work or that the relative phase between

V ∗
uL31 and VuR31 is small, less than 10−4. A full understanding of the neutron EDM constraint relies

on a complete theory of flavour and on the knowledge of the strongly interacting sector, and therefore
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representation whose decomposition to SO(4) contains the 4
6 . Eq.(4.1) is the most general term that

we could add, in particular we can always go to the basis where only one out of the three right-handed

down-type quark, consequently defined as bR, couples to ψL.

Because of the partial compositeness of q3L and taking into account the already present elementary

Yukawas we obtain

L = d̄αLm
d

αβ
dβR + h.c. , md = md

UV

s2�
2

+Π
fyRsφL

2
s� . (4.3)

The second mass term in md is generated by the bottom partial compositeness. We exploit here this

mechanism to mimic what happened in the up-type sector: for this reason we require fyRsφLs�/2 � mb,

fixing yR ∼ mb/f = O(10−3), and we let the elementary Yukawa to take into account the strange (and

down) mass, |md

UV
| ∼ ms � mb. This hierarchy generates the structure presented in Eq.(3.43) for the

down sector and it introduces two small quantities: ms/mb and mb/f , which alleviate the need for the

alignment in down sector Yukawas. Notice that it is a consequence of two different origin of the masses

and it does not rely on the specific mechanism mediating EWSB to the bottom. We have checked that

this modification is safe from the point of view of the observables of Section 3, reconsidering the whole

discussion including Eq.(4.1). Remarkably contributions to Zb̄b couplings are under control because we

do not introduce additional bottom partners as well as we keep the custodial Zbb̄ symmetry [26] for

left-handed coupling as before: at tree level

δgZbL = 0 , δgZbR = − gs22�
8cW

�
yL4fmd

UV33 +M4yRf

M2
4 + y24Lf

2

�2

� −2
g

cW

c4
φL

s2
φL

�
mb

M∗

�2

. (4.4)

A quantitative change is present in the bottom Yukawa: since the dominant contribution has a new

spurionic structure we get
ySM − y

mb/v
� 1−

�
1− s2� �

1

2
s2� � 0.05 (4.5)

for the deviation in hb̄b coupling. Note that the operatorsQ
dαdβ

1 are still induced with the same coefficients

as in Eq.(3.33), and henceforth the coefficients Cbd,sd

1 suffer from the same O(10) tension, which can be

resolved by an extra suppression coming from the masses and couplings of the resonances.

5 Generalisation of the results

The results we presented in the previous sections apply to the minimal scenario, however the source of

suppression of the flavour violating effects is quite generic. In this section, we show how the results can

be generalised to cases with top partners in more complicated representations, and in the case of less

minimal cosets.
6The term in Eq.(4.1) can be formally rewritten as Tr[Q̄14d

14
3R], defining Q14 = U(Q1 + Q4 + Q9)U

t, assuming that in

the effective theory Q4 mixes with the four-plet Q defined in Eq.(2.4), or directly identifying them and then decoupling

the unnecessary components of Q14, namely Q1 and Q9: this also suggests one way to UV complete this Lagrangian in the

fundamental theory. We do not study this particular realization in detail but in the following section we explain how to

generalize the results of our analysis to encompass cases like this.
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4.    Conclusions

•      Top partial compositeness and direct Yukawas

•      Analysis of indirect bounds

•     Generalizations

(in pNGB composite Higgs models)

• Additional partners
• Bottom partial compositeness (without partners)
• vector-like quarks
• …
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