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Goal of this talk

This talk will try to answer the following questions:

What does the global fit on b → s`` tell us about Wilson coefficients?
Which Wilson coefficients/scenarios receive a dominant NP contribution?
What does other approaches using different observables and methodology obtain?

Are the alternative explanations (factorizable power corrections and charm)
raised to explain (some) anomaly on the fit really robust?

Where those ””explanations”” fail in front of a possible New Physics explanation?

What can we expect in the near future?
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Motivation

Since long time ago...

⇒ b → sγ and b → s`` Flavour Changing Neutral Currents have been used as our portal to
explore the fundamental theory beyond SM.

Analysis in a model-independent approach effective Hamiltonian:

b → sγ(∗) : HSM
∆F=1 ∝

10∑
i=1

V ∗tsVtbCiOi+. . .

O7 = e
g2 mb s̄σµν(1 + γ5)Fµν b

O9 = e2

g2 s̄γµ(1− γ5)b ¯̀γµ`

O10 = e2

g2 s̄γµ(1− γ5)b ¯̀γµγ5`

• SM Wilson coefficients up to NNLO + e.m. corrections at µref = 4.8 GeV [Misiak et al.]:

CSM
7 = −0.29, CSM

9 = 4.1, CSM
10 = −4.3

• NP changes short distance Ci − CSM
i = CNP

i and induce new operators, like O′7,9,10 = O7,9,10(γ5 ↔ −γ5)

Our Aim: To disentangle hadronic effects from New Physics effects.

Our Tool: A global analysis of b→ s``, b→ sγ will allow to test these Wilson coefficients with an
unprecedented precision.
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THE OBSERVABLES
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Rare b → s processes

Inclusive

B → Xsγ (BR) .......................................................... C(′)
7

B → Xs`
+`− (dBR/dq2) ............................................ C(′)

7 , C(′)
9 , C(′)

10

Exclusive leptonic

Bs → `+`− (BR) ........................................................ C(′)
10

Exclusive radiative/semileptonic

B → K ∗γ (BR, S, AI) ................................................ C(′)
7

B → K `+`− (dBR/dq2) .............................................. C(′)
7 , C(′)

9 , C(′)
10

B→ K∗`+`− (dBR/dq2, Optimized Angular Obs.) .. C(′)
7 , C(′)

9 , C(′)
10

Bs → φ`+`− (dBR/dq2, Angular Observables) .............. C(′)
7 , C(′)

9 , C(′)
10

Λb → Λ`+`− (None so far)

etc.
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The optimized observables P(′)
i come from the angular distribution B̄d → K̄∗0(→ K−π+)l+l− with the K ∗0 on the

mass shell. It is described by s = q2 and three angles θ`, θK and φ

d4Γ(B̄d )

dq2 d cos θ` d cos θK dφ
=

9
32π

J(q2, θ`, θK , φ) =
∑

i

Ji (q2)fi (θ`, θK , φ}

 −
φ

lθ θKB0

π

K

+

 −

µ+

µ
θ`: Angle of emission between K̄ ∗0

and µ− in di-lepton rest frame.
θK: Angle of emission between K̄ ∗0

and K− in di-meson rest frame.
φ: Angle between the two planes.

q2: dilepton invariant mass square.

Ji (q2) are function of transversity amplitudes of K∗: AL,R
⊥,‖,0 and they depend on FF and Wilson coefficients.

Notice LHCb uses θLHCb
` = π − θus

` .
Ongoing discussion on φLHCb versus φtheory irrelevant for the fit (checked explicitly) (sign of S7,8 or P ′6,8). (Zwicky)
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Four regions in q2

Four regions in q2:

very large K ∗-recoil (4m2
` < q2 < 1 GeV2): γ almost real.

large K ∗-recoil/low-q2: EK∗ � ΛQCD or 4m2
` ≤ q2 < 9 GeV2: LCSR-FF

charmonium region (q2 = m2
J/Ψ, ...) betwen 9 < q2 < 14 GeV2.

low K ∗-recoil/large-q2: EK∗ ∼ ΛQCD or 14 < q2 ≤ (mB −mK∗)
2: LQCD-FF
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The distribution (massless case) including the S-wave and normalized to Γ′full :

1
Γ′full

d4Γ

dq2 dcos θK dcos θl dφ
=

9
32π

[
3
4

FT sin2 θK + FL cos2 θK

+(
1
4

FT sin2 θK − FL cos2 θK ) cos 2θl +
1
2

P1FT sin2 θK sin2 θl cos 2φ

+
√

FTFL

(
1
2

P′4 sin 2θK sin 2θl cosφ+ P′5 sin 2θK sin θl cosφ
)

−
√

FTFL

(
P′6 sin 2θK sin θl sinφ− 1

2
P′8 sin 2θK sin 2θl sinφ

)
+2P2FT sin2 θK cos θl − P3FT sin2 θK sin2 θl sin 2φ

]
(1− FS) +

1
Γ′full

WS

in blue the set of relevant observables P1,2, P′4,5.
the S-wave terms are (see discussion [HM’15]) not all free observables:

WS

Γ′full
=

3
16π

[
FS sin2 θ` + AS sin2 θ` cos θK + A4

S sin θK sin 2θ` cosφ

+A5
S sin θK sin θ` cosφ+ A7

S sin θK sin θ` sinφ+ A8
S sin θK sin 2θ` sinφ

]
Basis (massless):

{Γ′K∗ ,AFB or FL, P1, P2, P3, P ′4, P ′5, P ′6} and only 4 of {FS, AS, A4
S, A5

S, A7
S, A8

S} are independent.
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Theoretical description of B → K ∗`+`−: low-q2

There are basically two theory approaches:

1. Improved-QCDF approach: QCDF+exploit symmetry relations at large-recoil (limit) among FF:
mB

mB+mK∗
V (q2) = mB+mK∗

2E A1(q2) = T1(q2) = mB
2E T2(q2) = ξ⊥(E)

mK∗
E A0(q2) = mB+mK∗

2E A1(q2)− mB−mK∗
mB

A2(q2) = mB
2E T2(q2)− T3(q2) = ξ‖(E)

⇒ Transparent, valid for ANY FF parametrization (BZ, KMPW,...) and easy to reproduce.

⇒ Dominant correlations automatically implemented in a transparent way via SYMMETRIES.

⇒ Construction of FFI observables P(′)
i : at LO in 1/mb, αs and large-recoil limit (E∗K large):

AL,R
⊥ ∝ ξ⊥ AL,R

‖ ∝ ξ⊥ AL,R
0 ∝ ξ‖

We add all Symmetry Breaking corrections in our computation to relations above:

known αs factorizable and non-factorizable corrections from QCDF.
factorizable power corrections (using a systematic procedure for each FFp, see later)
non-factorizable power corrections including charm-quark loops.

Minor drawback: You should use the freedom to define ξ⊥,‖ to identify an optimal scheme that
minimizes your sensitivity to factorizable power corrections. A blind choice like in (J.C.’12 & 14) enlarges
artificially their impact.
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Joaquim Matias Universitat Autònoma de Barcelona Global analysis of b → s`` anomalies



Theoretical description of B → K ∗`+`−: low-q2

There are basically two theory approaches:

1. Improved-QCDF approach: QCDF+exploit symmetry relations at large-recoil (limit) among FF:
mB

mB+mK∗
V (q2) = mB+mK∗

2E A1(q2) = T1(q2) = mB
2E T2(q2) = ξ⊥(E)

mK∗
E A0(q2) = mB+mK∗

2E A1(q2)− mB−mK∗
mB

A2(q2) = mB
2E T2(q2)− T3(q2) = ξ‖(E)

⇒ Transparent, valid for ANY FF parametrization (BZ, KMPW,...) and easy to reproduce.
⇒ Dominant correlations automatically implemented in a transparent way via SYMMETRIES.

⇒ Construction of FFI observables P(′)
i : at LO in 1/mb, αs and large-recoil limit (E∗K large):

AL,R
⊥ ∝ ξ⊥ AL,R

‖ ∝ ξ⊥ AL,R
0 ∝ ξ‖

We add all Symmetry Breaking corrections in our computation to relations above:

known αs factorizable and non-factorizable corrections from QCDF.
factorizable power corrections (using a systematic procedure for each FFp, see later)
non-factorizable power corrections including charm-quark loops.

Minor drawback: You should use the freedom to define ξ⊥,‖ to identify an optimal scheme that
minimizes your sensitivity to factorizable power corrections. A blind choice like in (J.C.’12 & 14) enlarges
artificially their impact.
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Theoretical description of B → K ∗`+`−: low-q2

2. Full FF approach: Compute correlations from a specific LCSR computation.

⇒ Parametric correlations easy, but Borel parameters choice delicate. Use of EOM.
⇒ Factorizable O(αs) and factorizable p.c. included in a particular LCSR parametrization.
⇒ Less general, attached to a single FF parametrization with all inner choices included.
⇒ Extra pieces that need to be added:

known αs non-factorizable corrections from QCDF.
non-factorizable power corrections and charm-quark loop effects

Usually applied to Si = (Ji + J̄i)/(dΓ + d̄Γ) highly dependent on FF-error estimate.

Minor drawback: Do the results of the fit depend on the details of a particular
non-perturbative Form Factor computation and their small error size?

Amplitude analysis. Not a FF treatment but a different approach to data based on exploiting the
symmetries of the distribution.

They fit for the amplitudes after fixing 3 of them to zero by means of the symmetries.
The outcome is a set of parameters α, β, γ that contain the information on WC and FF.
They naturally produce unbinned results.
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Theoretical description of B → K ∗`+`−: large-q2

It corresponds to large
√

q2 ∼ O(mb) above Ψ′ mass, i.e., EK is around GeV or below.

OPE in EK/
√

q2 or ΛQCD/
√

q2 (Buchalla et al)

NLO QCD corrections to the OPE coeffs (Greub et al)

Lattice QCD form factors with correlations (Horgan et al proceeding update)

±10% on angular observables to account for possible Duality Violations.
⇒ Estimates on BR from GP (5%) and BBF (2%) using Shifman’s model.

Existence of cc̄ resonances in this region (clearly seen ψ(4160) in B− → K−µ+µ−),
⇒ require to take a long bin.
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A few properties of the relevant observables P1,2

The idea of exact cancellation of the poorly known soft form factors at LO at the zero of AFB was
incorporated in the construction of the transverse asymmetry (this is the meaning of the word “clean”)

P1 and P2 observables function of A⊥ and A‖ amplitudes

P1: Proportional to |A⊥|2 − |A‖|2
Test the LH structure of SM and/or
existence of RH currents that breaks
A⊥ ∼ −A‖

P2: Proportional to Re(AiAj)

Zero of P2 at the same position as the
zero of AFB
P2 is the clean version of AFB. Their
different normalizations offer different
sensitivities.
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P3 and P ′6,8 are proportional to ImAiAj and small if there are no large phases. All are < 0.1.

PCP
i are all negligibly small if there is no New Physics in weak phases.
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Brief Discussion on: P ′5 and P ′4
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P ′5 was proposed for the first time in DMRV, JHEP 1301(2013)048

P ′5 =
√

2
Re(AL

0AL∗
⊥ −AR

0 AR∗
⊥ )√

|A0|2(|A⊥|2 + |A‖|2)
=
√

2
Re[n0n†⊥]√

|n0|2(|n⊥|2 + |n‖|2)
.

with n0 = (AL
0,A

R∗
0 ), n⊥ = (AL

⊥,−AR∗
⊥ ) and n‖ = (AL

‖,A
R∗
‖ )

If no-RHC |n⊥| ' |n‖| (H+1 ' 0)⇒ P ′5 ∝ cos θ0,⊥(q2)

In the large-recoil limit with no RHC

AL
⊥,‖ ∝ (1,−1)

[
Ceff

9 − C10 +
2m̂b

ŝ
Ceff

7

]
ξ⊥(EK∗) AR

⊥,‖ ∝ (1,−1)

[
Ceff

9 + C10 +
2m̂b

ŝ
Ceff

7

]
ξ⊥(EK∗)

AL
0 ∝ −

[
Ceff

9 − C10 + 2m̂bCeff
7

]
ξ‖(EK∗) AR

0 ∝ −
[
Ceff

9 + C10 + 2m̂bCeff
7

]
ξ‖(EK∗)

In SM CSM
9 + CSM

10 ' 0→ |AR
⊥,‖| � |AL

⊥,‖|
In P ′5: If CNP

9 < 0 then AR
0,‖ ↑, |AR

⊥| ↑ and |AL
0,‖| ↓, AL

⊥ ↓ and due to −, |P ′5| gets strongly reduced.
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Brief Discussion on: P ′5 and P ′4
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P ′4 was proposed for the first time in DMRV, JHEP 1301(2013)048

P ′4 =
√

2
Re(AL

0AL∗
‖ +AR

0 AR∗
‖ )√

|A0|2(|A⊥|2 + |A‖|2)
=
√

2
Re[n0n†‖]√

|n0|2(|n⊥|2 + |n‖|2)
.

with n0 = (AL
0,A

R∗
0 ), n⊥ = (AL

⊥,−AR∗
⊥ ) and n‖ = (AL

‖,A
R∗
‖ )

If no-RHC |n⊥| ' |n‖| (H+1 ' 0)⇒ P ′4 ∝ cos θ0,‖(q2)

In the large-recoil limit with no RHC

AL
⊥,‖ ∝ (1,−1)

[
Ceff

9 − C10 +
2m̂b

ŝ
Ceff

7

]
ξ⊥(EK∗) AR

⊥,‖ ∝ (1,−1)

[
Ceff

9 + C10 +
2m̂b

ŝ
Ceff

7

]
ξ⊥(EK∗)

AL
0 ∝ −

[
Ceff

9 − C10 + 2m̂bCeff
7

]
ξ‖(EK∗) AR

0 ∝ −
[
Ceff

9 + C10 + 2m̂bCeff
7

]
ξ‖(EK∗)

In SM CSM
9 + CSM

10 ' 0→ |AR
⊥,‖| � |AL

⊥,‖|
In P ′4 :If CNP

9 < 0 then AR
0,‖ ↑, |AR

⊥| ↑ and |AL
0,‖| ↓, AL

⊥ ↓ due to + what L loses R gains (little change).
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History of global b → s`` fits (I)

From recent Bobeth’s talk at cern

year arXiv: group/programs authors method

2010 1006.5013 EOS CB/Hiller/van Dyk ∆χ2

2011 1104.3342 DGMR Descotes-Genon/Ghosh/JM/Ramon ∆χ2

1105.0376 EOS CB/Hiller/van Dyk ∆χ2

1111.1257 APS Altmannshofer/Paradisi/Straub ∆χ2

1111.2558 EOS CB/Hiller/van Dyk/Wacker ∆χ2

2012 1205.1838 EOS Beaujean/CB/van Dyk/Wacker bayesian

1206.0273 AS Altmannshofer/Straub ∆χ2

1207.0688 SuperISO Hurth/Mahmoudi ∆χ2

1207.2753 DMRV Descotes-Genon/JM/Ramon/Virto ∆χ2

∆χ2 means frequentist.

global fits: combination of observables governed by b → s`` and b → sγ
Public software: EOS, SuperIso, HEPfit and private codes DHMV, AS,...
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History of global b → s`` fits (II)

year arXiv: group/programs authors method

2013 1307.5683 DMV Descotes-Genon/JM/Virto ∆χ2 Anomaly

1308.1501 AS Altmannshofer/Straub ∆χ2

1310.2478 EOS Beaujean/CB/van Dyk bayesian

1310.3887 HLMW Horgan/Liu/Meinel/Wingate ∆χ2

1312.5267 SuperISO Hurth/Mahmoudi ∆χ2

2014 1408.4097 GNR Ghosh/Nardecchia/Renner bayesian

1410.4545 SuperIso Hurth/Mahmoudi/Neshatpour ∆χ2

1411.3161/1503.06199 AS Altmannshofer/Straub ∆χ2

2015 1508.01526 EOS Beaujean/CB/Jahn bayesian

⇒ 1510.04239 DHMV Descotes-Genon/Hofer/Matias/Virto ∆χ2

1/fb dataset from LHCb first analysis done using optimized observables
⇒ the ”B → K ∗µ+µ− anomaly is described in 1307.5683

3/fb dataset from LHCb the anomaly is confirmed.
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Global Fits to Wilson coefficients: History and Results 2013 with 1fb−1

Situation in 2013: Descotes-Genon, Matias, Virto 1307.5683

68.3% C.L

95.5% C.L

99.7% C.L

Includes Low Recoil data

Only @1,6D bins
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Our statement in July 2013 DMV’13:
“We found that the Standard Model hypothesis CNP

7 = 0, CNP
9 = 0 has a pull of 4.5σ”.

Other groups later on confirmed the relevance of C9 using FFD-observables (Altmannshofer, Straub 1308.1501),
low-recoil (Horgan et al. 1310.3887), Bayesian approach (Beaujean, Bobethm Van Dyk 1310.2478).
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FIT 2015

Joaquim Matias Universitat Autònoma de Barcelona Global analysis of b → s`` anomalies



Theory and experimental updates in 2015 fit

see talk J. Virto

BR(B → Xsγ)

New theory update: BSM
sγ = (3.36± 0.23) · 10−4 (Misiak et al 2015)

+6.4% shift in central value w.r.t 2006→ excellent agreement with WA

BR(Bs → µ+µ−)

New theory update (Bobeth et al 2013), New LHCb+CMS average (2014)

BR(B → Xsµ
+µ−)

New theory update (Huber et al 2015)

BR(B → Kµ+µ−) :

LHCb 2014 + Lattice form factors at large q2 (Bouchard et al 2013, 2015)

B(s) → (K ∗, φ)µ+µ− : BRs & Angular Observables

LHCb 2015 + Lattice form factors at large q2 (Horgan et al 2013)

BR(B → Ke+e−)[1,6] (or RK ) and B → K ∗e+e− at very low q2

LHCb 2014, 2015
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Fit 2015: Statistical Approach

Frequentist approach:

χ2(Ci) = [Oexp −Oth(Ci)]j [Cov−1]jk [Oexp −Oth(Ci)]k

Cov = Covexp + Covth. We have Covexp for the first time
Calculate Cov th: correlated multigaussian scan over all nuisance parameters
Cov th depends on Ci : Must check this dependence

For the Fit:

Minimise χ2 → χ2
min = χ2(C0

i ) (Best Fit Point = C0
i )

Confidence level regions: χ2(Ci)− χ2
min < ∆χσ,n

In a model with a single free param. C9 the fit result⇒ measurement of C9 (confidence interval).
PullSM tells you how much in this model the measured value of C9 is in tension with C9 = CSM

9

Joaquim Matias Universitat Autònoma de Barcelona Global analysis of b → s`` anomalies



Message 1

NO SINGLE MEASUREMENT

HAVE A PULL LARGER THAN 3.3σ (several deviations 2-3σ)

GLOBAL ANALYSIS TELLS YOU

HOW MUCH CNP
i = 0 (SM) (i=9 for instance) IS

DISFAVOURED COMPARED TO THE BEST FIT POINT

⇓
THIS OBVIOUSLY CAN BE LARGER THAN 3σ if deviations are consistent
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SM predictions and Pulls 2015: B → Kµµ: What’s new in 2015?

]4c/2 [GeV2q
0 5 10 15 20

K
R

0

0.5

1

1.5

2

SM

LHCbLHCb

LHCb BaBar Belle

RK =
Br (B+ → K +µ+µ−)

Br (B+ → K +e+e−)
= 0.745+0.090

−0.074±0.036 (2.6σ from SM).

• It deviates 2.6σ from SM.
• Data on B+ → K +µ+µ− is below SM
in all bins at large and low-recoil.

Also neutral mode:

107 × BR(B0 → K 0µ+µ−) Standard Model Experiment Pull
[0.1,2] 0.63± 0.18 0.23± 0.11 +1.9
[2,4] 0.65± 0.21 0.37± 0.11 +1.2
[4,6] 0.64± 0.22 0.35± 0.10 +1.2
[6,8] 0.64± 0.24 0.54± 0.12 +0.4

[15,19] 0.90± 0.13 0.67± 0.12 +1.4
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Message 2

THERE ARE COMMON NEW PHYSICS

MECHANISMS ABLE TO EXPLAIN

P ′5 and RK
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SM predictions and Pulls 2015: BR(B → Vµµ)

107 × BR(B0 → K ∗0µ+µ−) Standard Model Experiment Pull
[0.1,2] 1.26± 1.03 1.14± 0.18 +0.1
[2,4.3] 0.84± 0.59 0.69± 0.12 +0.2

[4.3,8.68] 2.52± 2.09 2.15± 0.31 +0.2
[16,19] 1.66± 0.15 1.23± 0.20 +1.7

107 × BR(B+ → K ∗+µ+µ−) Standard Model Experiment Pull
[0.1,2] 1.31± 1.08 1.12± 0.27 +0.2
[2,4] 0.79± 0.55 1.12± 0.32 −0.5
[4,6] 0.94± 0.71 0.50± 0.20 +0.6
[6,8] 1.15± 0.95 0.66± 0.22 +0.5

[15,19] 2.59± 0.24 1.60± 0.32 +2.5

107 × BR(Bs → φµ+µ−) Standard Model Experiment Pull
[0.1,2.] 1.81± 0.36 1.11± 0.16 +1.8
[2.,5.] 1.88± 0.31 0.77± 0.14 +3.3
[5.,8.] 2.25± 0.41 0.96± 0.15 +3.0

[15,18.8] 2.20± 0.16 1.62± 0.20 +2.3
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SM predictions and Pulls 2015: Pi(B → K ∗µµ) and Pi(Bs → Φµµ)

New 3fb−1 dataset confirms the anomaly in P ′5 in bins [4,6] and [6,8]

P1(B → K ∗µ+µ−) Standard Model Experiment Pull
[15,19] −0.64± 0.05 −0.50± 0.11 −1.2

P2(B → K ∗µ+µ−) Standard Model Experiment Pull
[0.1,0.98] 0.12± 0.02 0.00± 0.05 +2.0

[6,8] −0.38± 0.08 −0.24± 0.07 −1.2
P ′5(B → K ∗µ+µ−) Standard Model Experiment Pull

[0.1,0.98] 0.67± 0.14 0.39± 0.14 +1.4
[2.5,4] −0.49± 0.13 −0.07± 0.34 −1.2
[4,6] −0.82± 0.08 −0.30± 0.16 −2.9
[6,8] −0.94± 0.08 −0.50± 0.13 −2.9

[15,19] −0.57± 0.05 −0.68± 0.08 +1.2

P1(Bs → φµ+µ−) Standard Model Experiment Pull

[15,18.8] −0.69± 0.03 −0.25± 0.34 −1.3

P ′4(Bs → φµ+µ−) Standard Model Experiment Pull

[15,18.8] 1.30± 0.01 0.62± 0.49 +1.4
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Result of the fit with 1D Wilson coefficient 2015

This is the first analysis: - using the basis of optimized observables (B → K ∗µµ and Bs → φµµ)
- using the full dataset of 3fb−1:

Coefficient Best fit 1σ 3σ PullSM

CNP
7 −0.02 [−0.04,−0.00] [−0.07,0.04] 1.1

CNP
9 −1.11 [−1.32,−0.89] [−1.71,−0.40] 4.5⇐

CNP
10 0.58 [0.34,0.84] [−0.11,1.41] 2.5

CNP
7′ 0.02 [−0.01,0.04] [−0.05,0.09] 0.7

CNP
9′ 0.49 [0.21,0.77] [−0.33,1.35] 1.8

CNP
10′ −0.27 [−0.46,−0.08] [−0.84,0.28] 1.4

CNP
9 = CNP

10 −0.21 [−0.40,0.00] [−0.74,0.55] 1.0

CNP
9 = −CNP

10 −0.69 [−0.88,−0.51] [−1.27,−0.18] 4.1⇐

CNP
9 = −CNP

9′ −1.09 [−1.28,−0.88] [−1.62,−0.42] 4.8⇐ (no RK )

CNP
9 = −CNP

10
= −CNP

9′ = −CNP
10′

−0.68 [−0.49,−0.49] [−1.36,−0.15] 3.9
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Result of the fit with 2D Wilson coefficient constrained and unconstrained

Coefficient Best Fit Point PullSM p-value (%)

(CNP
7 , CNP

9 ) (−0.00,−1.11) 4.1 60.0

(CNP
9 , CNP

10 ) (−1.16,0.35) 4.3 67.0

(CNP
9 , CNP

7′ ) (−1.16,0.02) 4.2 63.0

(CNP
9 , CNP

9′ ) (−1.15,0.77) 4.5 71.0

(CNP
9 , CNP

10′ ) (−1.23,−0.38) 4.5 72.0

(CNP
9 = −CNP

9′ , CNP
10 = CNP

10′ ) (−1.17,0.26) 4.6 73.0

(CNP
9 = −CNP

9′ , CNP
10 = −CNP

10′ ) (−1.14,0.04) 4.5 69.0

(CNP
9 = CNP

9′ , CNP
10 = CNP

10′ ) (−0.68,−0.26) 3.8 54.0

(CNP
9 = −CNP

10 , CNP
9′ = CNP

10′ ) (−0.74,0.26) 3.7 52.0

CNP
9 always play a dominant role

All 2D scenarios above 4σ are quite indistinguishable. We have done a systematic work to check
what are the most relevant Wilson Coefficients to explain all deviations, by allowing progressively
different WC to get NP contributions and compare the pulls.
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QUESTION 1: Branching Ratios versus Angular Observables Pi?

Branching Ratios

Angular Observables HPiL
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Figure: Angular observables (FFI at LO Pi ) dominates clearly over Branching ratios
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QUESTION 2: B → K ∗µµ, B → Kµµ and Bs → φµµ?

B ® KΜΜ

B ® K* ΜΜ

Bs ® ΦΜΜ

All
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Figure: The hierarchy of importance for the fit: B → K ∗µµ, Bs → φµµ and B → Kµµ
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QUESTION 3: Which information and constraints provide each region?

Only large recoil

Only bins within @1,6D region

Only low recoil

All

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

C9
NP

C
9'N

P

Figure: We show the 3 σ regions allowed by large-recoil only (dashed green), by bins in the [1-6] range
(long-dashed blue), by low recoil (dot-dashed purple) and by considering all data (red, with 1,2,3 σ contours).

Low-recoil is strongly constraining! Important implications for power corrections and charm.
Bins [1,6] are perfectly coherent with the full large-recoil.
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Impact of B → Ke+e−

under hypothesis of maximal

Lepton Flavour Universal Violation
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1D-Coefficient Best fit 1σ 3σ PullSM

CNP
9 −1.14 [−1.34,−0.93] [−1.71,−0.47] 4.5→ 4.9

CNP
9 = −CNP

10 −0.66 [−0.81,−0.50] [−1.15,−0.21] 4.1→ 4.6

CNP
9 = −CNP

9′ −1.09 [−1.28,−0.88] [−1.62,−0.43] 4.9

CNP
9 = −CNP

10 = −CNP
9′ = −CNP

10′ −0.65 [−0.83,−0.49] [−0.19,−0.19] 4.4

2D-Coefficient Best Fit Point PullSM

(CNP
7 ,CNP

9 ) (0.00,−1.13) 4.1→ 4.6

(CNP
9 ,CNP

10 ) (−1.11,0.32) 4.3→ 4.8

(CNP
9 ,CNP

7′ ) (−1.20,0.03) 4.2→ 4.7

(CNP
9 ,CNP

9′ ) (−1.23,0.61) 4.5→ 4.9

(CNP
9 ,CNP

10′) (−1.32,−0.34) 4.5→ 4.9

(CNP
9 = −CNP

9′ ,C
NP
10 = CNP

10′) (−1.23,0.39) 4.6→ 5.0

(CNP
9 = −CNP

9′ ,C
NP
10 = −CNP

10′) (−0.99,0.03) 4.5

(CNP
9 = CNP

9′ ,C
NP
10 = CNP

10′) (−0.70,−0.22) 3.8→ 4.3

(CNP
9 = −CNP

10 ,C
NP
9′ = CNP

10′) (−0.69,0.27) 3.7→ 4.2

The strong correlations among
form factors of B → Kµµ and
B → Kee assuming no NP in
B → Kee enhances the NP
evidence in muons.

Notice that we use all bins in
B → Kµµ while RK is only [1,6].
All theory correlations
included.

Only scenarios explaining RK get
an extra enhancement of
+0.4-0.5 σ
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Fits considering Lepton Flavour (non-) Universality
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• If NP-LFUV is assumed, NP may enter both b → see and b → sµµ decays with different values.

⇒ For each scenario, we see that there is no clear indication of a NP contribution in the electron sector,
whereas one has clearly a non-vanishing contribution for the muon sector, with a deviation from the
Lepton Flavour Universality line.
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Prediction for LFU tests observables

RK [1, 6] RK∗ [1.1, 6] Rφ[1.1, 6]

SM 1.00± 0.01 1.00± 0.01 [1.00± 0.01] 1.00± 0.01

CNP
9 = −1.11 0.79± 0.01 0.87± 0.08 [0.84± 0.02] 0.84± 0.02

CNP
9 = −CNP

9′ = −1.09 1.00± 0.01 0.79± 0.14 [0.74± 0.04] 0.74± 0.03

CNP
9 = −CNP

10 = −0.69 0.67± 0.01 0.71± 0.03 [0.69± 0.01] 0.69± 0.01

CNP
9 = −1.15, CNP

9′ = 0.77 0.91± 0.01 0.80± 0.12 [0.76± 0.03] 0.76± 0.03

CNP
9 = −1.16, CNP

10 = 0.35 0.71± 0.01 0.78± 0.07 [0.75± 0.02] 0.76± 0.01

CNP
9 = −1.23, CNP

10′ = −0.38 0.87± 0.01 0.79± 0.11 [0.75± 0.02] 0.76± 0.02

CNP
9 = −CNP

9′ = −1.17, CNP
10 = CNP

10′ = 0.26 0.88± 0.01 0.76± 0.12 [0.71± 0.04] 0.71± 0.03

Table: Predictions for RK , RK∗ , Rφ at the best fit point of different scenarios of interest, assuming that NP enters
only in the muon sector, and using the inputs of our reference fit, in particular the KMPW form factors for B → K
and B → K ∗, and BSZ for Bs → φ. In the case of B → K ∗, we also indicate in brackets the predictions using the
form factors in BSZ.
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Updated plot of 2015

68.3% C.L

95.5% C.L

99.7% C.L

Includes Low Recoil data

Only @1,6D bins
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Figure: For the scenario where NP occurs in the two Wilson coefficients C7 and C9, we compare the situation from
the analysis in Fig. 1 of Ref. DMV’13(on the left) and the current situation (on the right). On the right, we show the
3 σ regions allowed by large-recoil only (dashed green), by bins in the [1-6] range (long-dashed blue), by low recoil
(dot-dashed purple) and by considering all data (red, with 1,2,3 σ contours).
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A CRUCIAL QUESTION:

How much the fit results
depend on the details?

Two first strong tests
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TEST 1: Does the fit result depend on method IQCDF-KMPW or Full-FF-BSZ?

Two examples of Form Factor determinations (left KMPW, right BSZ):

form factor F i
BK (∗)(0) bi

1

f +
BK 0.34+0.05

−0.02 −2.1+0.9
−1.6

f 0
BK 0.34+0.05

−0.02 −4.3+0.8
−0.9

f T
BK 0.39+0.05

−0.03 −2.2+1.0
−2.00

V BK∗ 0.36+0.23
−0.12 −4.8+0.8

−0.4

ABK∗
1 0.25+0.16

−0.10 0.34+0.86
−0.80

ABK∗
2 0.23+0.19

−0.10 −0.85+2.88
−1.35

ABK∗
0 0.29+0.10

−0.07 −18.2+1.3
−3.0

T BK∗
1 0.31+0.18

−0.10 −4.6+0.81
−0.41

T BK∗
2 0.31+0.18

−0.10 −3.2+2.1
−2.2

T BK∗
3 0.22+0.17

−0.10 −10.3+2.5
−3.1

Table: The B → K (∗) form factors from
LCSR and their z-parameterization.

Interestingly in this update from BZ to BSZ, relevant FF
from BZ moved towards KMPW. For example:

V BZ (0) = 0.41→ 0.37 T BZ
1 (0) = 0.33→ 0.31

The size of uncertainty in BSZ = size of error of p.c. we
use.

B → K ∗ Bs → φ Bs → K ∗

A0(0) 0.391± 0.035 0.433± 0.035 0.336± 0.032

A1(0) 0.289± 0.027 0.315± 0.027 0.246± 0.023

A12(0) 0.281± 0.025 0.274± 0.022 0.246± 0.023

V (0) 0.366± 0.035 0.407± 0.033 0.311± 0.030

T1(0) 0.308± 0.031 0.331± 0.030 0.254± 0.027

T2(0) 0.308± 0.031 0.331± 0.030 0.254± 0.027

T23(0) 0.793± 0.064 0.763± 0.061 0.643± 0.058

Table: Values of the form factors at q2 = 0 and their uncertainties.
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TEST 1: Does the fit result depend on method IQCDF-KMPW or Full-FF-BSZ?
NO

Full-Form-Factor approach

Soft-Form-Factor approach

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

C9
NP

C
9

'
N

P

Full-Form-Factor approach

Soft-Form-Factor approach

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

C9
NP

C
1

0
N

P

Full-Form-Factor approach

Soft-Form-Factor approach

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

C9
NP

= -C9'
NP

C
1

0
N

P
=

C
1

0
'

N
P

Figure: We show the 3 σ regions allowed using form factors in BSZ’15 in the full form factor approach (long-dashed
blue) compared to our reference fit with the soft form factor approach (red, with 1,2,3 σ contours).

The results of the fit using (IQCDF-KMPW) or (Full-FF-BSZ) are perfectly consistent.
The fact that our regions are slightly larger points that our estimate of uncertainties (power
corrections, etc.) is conservative.
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TEST 2: Does the fit result depend on using Pi or Si observables? NO

Angular Observables HSiL
Angular Observables HPiL
All HPiL
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The results of the fit using Pi observables or Si observables are perfectly consistent.

The highest sensitivity to NP of the optimized observables due to the shielding on FF details
⇒ induces a small albeit systematic improvement in significance for the Pi .

Does the error predictions on individual observables depend significantly on FF choice?

anomaly [4,6] bin P ′5 error SIZE [pull] S5 error SIZE [pull]

Full-FF-BSZ 10% [2.7σ] 12% [2.0σ]

IQCDF-KMPW 10% [2.9σ] 40% [1.2σ]

Yes for Si ,
Not for Pi .
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Message 3

Only in a global fit thanks to correlations it is basically
the same to use:

Optimized observables Pi.
FF dependent observables Si.

BUT when testing individual observables with data:

Optimized observables Pi are robust.
FF dependent observables Si are largely choice dependent.
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Hadronic Uncertainties:

Power corrections and charm loop

Frequent naı̈ve statement: Uncertainties are underestimated?
It is important to understand what the uncertainties are

and how they are treated before been able to ask the question.
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Hadronic uncertainties: power corrections and charm

While in the past focusing in one single anomaly was logical...,

now it is not a good idea neither an acceptable approach
to focus all the attention on one single observable.

BECAUSE now we have several deviations so a global view is compulsory:
and the correction question is: Can I explain all (or quasi) with the same solution?
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Hadronic uncertainties: power corrections and charm

While in the past focusing in one single anomaly was logical...,

now it is not a good idea neither an acceptable approach
to focus all the attention on one single observable

BECAUSE now we have several deviations so a global view is compulsory. The correction question is:

What is more natural a solution consistent with all anomalies and tensions or
an ad-hoc (and unclear) solution different for each anomaly?
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Hadronic Uncertainties I:

Factorizable Power corrections
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Factorizable Power Corrections

General idea: : Parametrize power corrections to form factors:

F (q2) = F soft(ξ⊥,‖(q2)) + ∆Fαs (q2) + aF + bF
q2

m2
B

+ cF
q4

m4
B
... (JC′12)

⇒ aF ,bF , cF ... represent the deviation to the SFF+ known αs in the full form factor F (taken e.g. from LCSR)

V(q2) =
mB + mK∗

mB
ξ⊥(q2) + ∆Vαs (q2) + ∆V Λ(q2) ,

A1(q2) =
2E

mB + mK∗
ξ⊥(q2) + ∆Aαs

1 (q2) + ∆AΛ
1 (q2) ,

A2(q2) =
mB

mB −mK∗

[
ξ⊥(q2)− ξ‖(q2)

]
+ ∆Aαs

2 (q2) + ∆AΛ
2 (q2) ,

A0(q2) =
E

mK∗
ξ‖(q2) + ∆Aαs

0 (q2) + ∆AΛ
0 (q2) ,

T1(q2) = ξ⊥(q2) + ∆Tαs
1 (q2) + ∆T Λ

1 (q2) ...

STEP 1: Define the SFF ξ⊥,‖ to all orders by means of a factorisation scheme CHOICE.
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STEP 2: The CHOICE of scheme is fundamental
⇒ will yield accurate predictions for different observables depending on the scheme choice
⇒ if not all correlations among errors are known not all choices are appropriate.

In the scheme we use (Beneke-Feldmann’01) SFF are defined by:

ξ
(1)
⊥ (q2) ≡ mB

mB + mK∗
V(q2) ξ

(1)
‖ (q2) ≡ mB + mK∗

2E
A1(q2) − mB −mK∗

mB
A2(q2),

⇒ Power corrections ∆V Λ(q2) and a combination of ∆AΛ
1 (q2) and ∆AΛ

2 (q2) are absorbed in ξ⊥,‖.

Size of power corrections: The fit to the difference between SFF+∆Fαs and full-FF is O(Λ/mb)
and is scheme dependent.

â(1)
F b̂(1)

F ĉ(1)
F r(0 GeV2) r(4 GeV2) r(8 GeV2)

A1(KMPW) −0.013± 0.025 −0.056± 0.018 0.158± 0.021 5% 6% 5%
A1(BZ) −0.009± 0.027 0.042± 0.018 0.078± 0.017 3% 1% 3%

A2(KMPW) −0.018± 0.023 −0.105± 0.022 0.192± 0.028 8% 11% 10%
A2(BZ) −0.012± 0.024 0.037± 0.029 0.239± 0.034 5% 1% 5%

T1(KMPW) −0.006± 0.031 −0.012± 0.054 −0.034± 0.095 2% 2% 2%
T1(BZ) −0.024± 0.032 −0.019± 0.045 −0.014± 0.092 8% 7% 6%

where r = (aF + bF q2/m2
B + cF/m4

B)/FF (q2) represents the percentatge of p.c.

⇒ This confirms power corrections are typically of order . 10% (or smaller in BZ) for relevant
FF as expected from dimensional arguments.
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In the older scheme (first Beneke-Feldmann) SFF are defined by (also JC’14):

ξ
(2)
⊥ (q2) ≡ T1(q2), ξ

(2)
‖ (q2) ≡ mK∗

E
A0(q2).

⇒ Power corrections associated to ∆T Λ
1 (q2) and ∆AΛ

0 (q2) are absorbed in ξ⊥,‖.

Problems of T1 choice:

Extracting T1(0) from data on B → K ∗γ is plagued of assumptions (as done in JC’12):
1) assumption of no NP in C(′)

7
2) ignoring possible non-factorizable power corrections.

Taking T1 from LCSR and use it to define ξ⊥ is also non-optimal (as done in JC’14).

AL,R
⊥ = N⊥

[
C+

9±10[Vsff+αs(q2) + ∆V Λ] + C+
7 [Tsff+αs

1 (q2) + ∆T Λ
1 ]
]

+O(αs,Λ/mb, ...)

If one is interested in obtaining accurated predictions for observables dominated by C9 (like P ′5)
better to have a good control of p.c on V than in T1.
⇒ T1 may be a good choice for observables dominated by C7.

Problem of A0 choice (minor):

Pi observables do not depend on A0(q2) FF.⇒ A0 choice would be a good choice for lepton-mass
suppressed observables.
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STEP 3: A correct treatment of power corrections require to respect the correlations among them:

a) kinematic correlations among QCD form factors at maximum recoil
b) from the renormalization scheme definition of the soft form factors ξ⊥ and ξ‖.

STEP 4: The error estimate in previous table

âF −∆âF ≤ aF ≤ âF + ∆âF ,

b̂F −∆b̂F ≤ bF ≤ b̂F + ∆b̂F ,

ĉF −∆ĉF ≤ cF ≤ ĉF + ∆ĉF .

comes from ∆F Λ ∼ F ×O(Λ/mb) ∼ 0.1F ⇒ error assignment larger than size of p.c. itself for ∆â.

IN SUMMARY:
Each set of observables has an optimal scheme choice, a non-optimal choice may induce artificially
large corrections.
Interestingly an independent computation using full-FF (BSZ) that has embedded the correlations of
a specific LCSR computation gives predictions in good agreement with us for the Pi .
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What does the fit tells you about IMPACT of POWER CORRECTIONS:

Only large recoil

Only bins within @1,6D region

Only low recoil

All
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We show the impact in the fit of increasing power corrections up to 40%

At a certain point p.c.-sensitive observable become subdominant and low-recoil dominates.
→ even if power corrections diverge we still get a pull from low-recoil.
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Hadronic Uncertainties II:

Non-factorizable power corrections
and long distance charm contributions
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B → K ∗`¯̀ : Corrections to QCDF at low-q2

Non-factorizable power corrections (amplitudes): subleading new unknown non-perturbative.
SCET/QCDF at leading power in 1/mb: Factorization of matrix elements into form factors,
light-cone distribution amplitudes and hard-scattering kernels.

cc̄ loops (resonant and non-resonant contributions)

⇒ Single out in the amplitude Ti in 〈K ∗γ∗|Heff |B〉 the piece
not associated to FF: T had

i = Ti |C(′)
7 →0

Multiply each amplitude i = 0,⊥, ‖ with a complex q2-dependent factor.

T had
i →

(
1 + ri(q2)

)
T had

i

where ri(s) = ra
i eiφa

i + rb
i eiφb

i (s/m2
B) + r c

i eiφc
i (s/m2

B)2 and ra,b,c
i ∈ [0,0.1] and φa,b,c

i ∈ [−π, π]
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Charm-loop contributions

General considerations on resonances:

Low-q2: q2 ≤ 7− 8 GeV2 to limit impact of J/ψ tail.
⇒ LHCb interesting test split [4.3,8.68]→ [4,6], [6,8]

Large-q2: quark-hadron duality violations
Model estimate yield 2-5% for BR(B → Kµµ) [BBF, GP]
Assumed similar size for BR and angular observables B → K ∗µµ.

⇒We enlarge it up to 10% as a correction to each amplitude.

At Large-recoil two type of contributions: ∆CBK∗
9 = δCBK (∗)

9,pert + siδC
BK (∗),i
9,non pert

- Short distance (hard-gluons)
LO included in C9 → C9 + Y (q2)
higher-order corrections via QCDF/HQET.

- Long distance (soft-gluons)
Only existing computation KMPW’10 using LCSR.
Partial computation yields ∆CBK∗

9 > 0 (si = 1)⇒ enlarges the anomaly. Our c.v. is si = 0 to be
conservative
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B → K ∗`+`− : Impact of long-distance cc̄ loops – DHMV

Inspired by Khodjamirian et al (KMPW): C9 → C9 + si δC
LD(i)
9 (q2)

Notice that KMPW implies si = 1, but we vary it independently si = 0± 1, i = 0,⊥, ‖ (Zwicky)

δCLD,(⊥,‖)
9 (q2) =

a(⊥,‖) + b(⊥,‖)q2[c(⊥,‖) − q2]

b(⊥,‖)q2[c(⊥,‖) − q2]

δCLD,0
9 (q2) =

a0 + b0[q2 + s0][c0 − q2]

b0[q2 + s0][c0 − q2]
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Obtaining from fitting the long-distance part to KMPW.
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Is reasonable to expect a huge-charm contribution??

Attempt 1 (Valli, Silvestrini et al.):

Introduce an arbritary parametrization of charm-loop hλ = h(0)
λ + h(1)

λ q2 + h(2)
λ q4 with (λ = 0,±)

So many free parameters allows to fit any shape⇒ predictivity is rather low.
This approach is in trouble if RK and other sensitive LFV observables like RK∗ are confirmed.

g̃ = ∆Cnon pert .
9 /(2C1)

They force the fit (red points) to agree on the
very low-q2 with KMPW. This has two problems:

At very low-q2 there are other problems they
forgot (lepton mass effects).
By forcing the fit to agree at very low-q2 can
induce an artificial tilt of your fit.

More interestingly the blue points where KMPW
is not imposed is perfectly compatible with

C9 − CSM
9 ' constant+KMPW similar to us!!.
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Attempt 2 (Lyon, Zwicky’14 unpublished):

An attempt more near to a prediction was presented by LZ’14 (left plot). Using e+e− → hadrons to
build a model of cc̄ resonances at low-recoil in B → Kµµ, then extrapolating it at large-recoil via
dispersion relations, and assuming that it holds in the same way for B → K ∗µµ

⇒ However a large charm contribution (q2) should be seen in bin [6,8] being above [4,6] bin.
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Different curves on left correspond to different hypothesis of the impact at low-q2 from high-q2.

Smooth behaviour of data does not favour claims on large-long distance charm q2 effects in [6,8] bin.
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Cross check: Bin by Bin analysis of C9 in three scenarios
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Figure: Determination of C9 from the reference fit restricted to
the data available in a given q2-region. We present the
scenarios where NP enters C9 and: all other coefficients remain
SM only (top), CNP

9 = −CNP
9′ (center), CNP

9 = −CNP
10 (bottom).

Result of bin-by-bin analysis of C9 in 3
scenarios.

Notice the excellent agreement
of bins [2,5], [4,6], [5,8].
Strong argument in favour of including
the [5,8] region-bin.

First bin is afflicted by lepton-mass
effects. (see Back-up slides)

We do not find indication for a
q2-dependence in C9 neither in the
plots nor in a 6D fit adding ai + bis
to Ceff

9 for i = K ∗,K , φ.
→ disfavours again charm explanation.

2nd and 3rd plot test if you allow for NP
in other WC the agreement of C9 bin by
bin improves as compared to 1st plot.
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Impact on the fit: Charm-loop dependence

ÈsiÈ < 4

ÈsiÈ < 2

ÈsiÈ < 1

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

C9
NP

C
1

0
N

P
∆CBK∗

9 = δCBK (∗)
9,pert + siδC

BK (∗),i
9,non pert

(same for Bs → φ)
Increasing the range allowed for
si makes low-recoil and B → Kµµ
dominate more and more

A comparison of our charm error estimate with other estimates (BSZ) shows a good agreement even if
systematically we take a larger error size and we have an extra non-factorizable error. Example in the
anomaly bin P ′5[4,6]:

our estimate hep-ph/1503.03328 is +0.07
−0.08

BSZ estimate in hep-ph/1503.05534 is ±0.05
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Message 4

Factorizable power corrections:

The fit to factorizable power corrections show they are of order 10% as expected from
dimensional arguments.
The freedom to define ξ⊥,‖ allows you find an optimal scheme with minimal sensitivity to
power corrections.
Our results are in excellent agreement with a different approach/methodology/FF set.

In summary a careful computation of power corrections shows they are perfectly under control.

Charm-loop contributions:

RK , nor the future RK∗ or Rφ cannot be explained with a charm contribution.
The behaviour of bin [6,8] versus [4,6] in observables like P ′5 precludes it.
A 6-D fit or a bin-by-bin analysis does not find indication for a q2-dependence in C9.

In summary three arguments against a large-charm explanation of all the anomalies.

Even if one can try to find alternative explanations for individual deviations (with not
much success...), at the end of the day one has to rely on a different explanation for each
deviation, contrary to a shift in the Wilson Coefficients which explains all at the same
time.
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Does the alternative explanations to NP

raised in literature:

factorizable power corrections and charm

stand a serious and accurate analysis?

NO
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A glimpse into the future: Wilson coefficients versus Anomalies

RK 〈P ′5〉[4,6],[6,8] BBs→φµµ BBs→µµ best-fit-point of global fit

CNP
9

+
− X X[100%] X X

CNP
10

+ X X[36%] X X X
− X[32%]

C9′
+ X[21%] X X
− X X[36%]

C10′
+ X X[75%]

− X[75%] X X X

Table: A checkmark (X) indicates that a shift in the Wilson coefficient with this sign moves the prediction
in the right direction to solve the corresponding anomaly. BBs→µµ is not an anomaly but a very mild tension.

CNP
9 < 0 is consistent with all anomalies. This is the reason why it gives a strong pull.
CNP

10 , C′9,10 fail in some anomaly. BUT
⇒ CNP

10 is the most promising coefficient after C9.
⇒ C′9,C

′
10 seems quite inconsistent between the different anomalies and the global fit.
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Z ′ particle a possible explanation

In [DMV’13] we proposed to explain the anomaly in B → K ∗µµ with a Z ′ gauge boson contributing to

O9 = e2/(16π2) (s̄γµPLb)(¯̀γµ`) ,

with specific couplings as a possible explanation of the anomaly in P ′5.

B K∗

b s

q

Z ′

ℓ−

ℓ+

1

B(s) B̄(s)

b

s

s

b

Z ′

2

Lq =
(

s̄γνPLb∆sb
L + s̄γνPRb∆sb

R + h.c.
)

Z ′ν Llep =
(
µ̄γνPLµ∆L

µµ̄ + µ̄γνPRµ∆R
µµ̄ + ...

)
Z ′ν

The Wilson coefficients of the semileptonic operators are:

CNP
{9,10} = − 1

s2
W g2

SM

1
M2

Z ′

∆sb
L ∆µµ

{V,A}
λts

, CNP
{9′,10′} = − 1

s2
W g2

SM

1
M2

Z ′

∆sb
R ∆µµ

{V,A}
λts

,

with the vector and axial couplings to muons: ∆µµ
V,A = ∆µµ

R ±∆µµ
L .

∆sb
L with same phase as λts = VtbV ∗ts (to avoid φs) like in MFV. Main constraint from ∆MBs (∆sb

L,R).
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A Z ′ model can belong to the following categories:

no-coupling non-zero couplings PullSM

C9 no-right-handed quark & no-muon-axial coupling ∆sb
L 6= 0, ∆µµ

V 6= 0 4.9σ
(C9,C10) no-right-handed quark coupling ∆sb

L 6= 0, ∆µµ
V 6= 0, ∆µµ

A 6= 0 4.8σ
(C9,C′9) no-muon-axial coupling ∆sb

L 6= 0, ∆sb
R 6= 0,, ∆µµ

V 6= 0 4.9σ
(C10,C′10) no-muon-vector coupling ∆sb

L 6= 0, ∆sb
R 6= 0, ∆µµ

A 6= 0 -
(C′9,C

′
10) no-left-handed quark coupling ∆sb

R 6= 0, ∆µµ
V 6= 0, ∆µµ

A 6= 0 -

Example: CNP
9 = −1.1, ∆µµ

V /M ′Z = −0.6 TeV−1 and ∆bs
L /M

′
Z = 0.003 TeV−1

If NP enters all four semileptonic coefficients, the following relationships hold:

CNP
9

CNP
10

=
CNP

9′

CNP
10′

=
∆µµ

V
∆µµ

A
,

CNP
9

CNP
9′

=
CNP

10

CNP
10′

=
∆sb

L

∆sb
R
.

Many ongoing attempts to embed this kind of Z ′ inside a model [U.Haisch, W.Altmannshofer, A.Buras, D. Straub,..]
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Conclusions of this talk

The global analysis of b → s`+`− with 3 fb−1 dataset shows that the solution we proposed in 2013
to solve the anomaly with a contribution CNP

9 ' −1 is confirmed and reinforced.
→We take full dataset and optimized basis of observables.

The fit result is very robust and does not show a significant dependence nor on the method used
to compute observables neither on the observables used once correlations are correctly included.

We have shown that the treatment of uncertainties entering the observables in B → K ∗µµ is
indeed under good control and the alternative explanations to New Physics are indeed
not in very solid ground.

Near future? Maybe C10 will become significant soon. A heavy Z′ (1-2 TeV) with bs-coupling is a
viable explanation for many (not all) scenarios.
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TECHNICAL Conclusions of this talk

Robustness of the FIT:

The results of the fit using Pi (optimized-FFI) or Si (FFD) and IQCDF-KMPW or Full-FF-BSZ results are
in very good agreement. Low sensitivity to details of FF computation.
Any scenario including CNP

9 gets a large-pull. 2D scenarios still indistinguishable⇒ More data needed.

Robustness of hadronic uncertainties of OBSERVABLES:

Factorizable power corrections:
The Fit to full FF in an appropriate scheme gives ≤ 10% in agreement with dimensional arguments.
A correct FF choice + correlations among p.c. is essential not to artificially inflate errors.

cc̄ loops: We include LO and NLL perturbative contributions to Ceff
9 also long distance (following KMPW)

with both signs to be conservative.
Three reasons why a huge charm contribution cannot explain all deviations: RK cannot be explained. The
behaviour of bin [6,8] versus [4,6] in observables like P′5. A 6-D fit or a bin-by-bin analysis does not find
evidence for a new-q2 dependence.

Any set of observables is equivalent in terms of accuracy for the predictions on individual observables?
NO, Pi observables are stable under FF changes, Si depend largely on the choice.
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Back-up slides
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Bin [0.1,0.98] lepton-mass effect

LHCb naturally given the limited statistics takes the massless lepton limit. They measure:

1
d(Γ + Γ̄)/dq2

d3(Γ + Γ̄)

dΩ
=

9
32π

[ 3
4

(1− F LHCb
L ) sin2 θK + F LHCb

L cos2 θK

+
1
4

(1− F LHCb
L ) sin2 θK cos 2θl − F LHCb

L cos2 θK cos 2θl + ...
]

which is modified once lepton masses are considered

1
d(Γ + Γ̄)/dq2

d3(Γ + Γ̄)

dΩ
=

9
32π

[ 3
4

F̂T sin2 θK + F̂Lcos2 θK

+
1
4

FT sin2 θK cos 2θl − FL cos2 θK cos 2θl + ...
]

where F̂T ,L and FL,T are [JM’12]. All our observables are thus written and computed in terms of the
longitudinal and transverse polarisation fractions FL,T

FL = − J2c

d(Γ + Γ̄)/dq2
FT = 4

J2s

d(Γ + Γ̄)/dq2
⇒ F̂L =

J1c

d(Γ + Γ̄)/dq2

WHEN measured value F̂L is used instead of FL SM prediction is shifted towards the data in 1st bin

〈FL〉[0.1,0.98] = 0.21→ 0.26 , 〈P2〉[0.1,0.98] = 0.12→ 0.09 ,〈
P ′4
〉

[0.1,0.98]
= −0.49→ −0.38 ,

〈
P ′5
〉

[0.1,0.98]
= 0.68→ 0.53 .

Considering the expected accuracy during the run 2, it will be important once LHCb has enough
statistics to distinguish between FL and F̂L. In the following, we will not attempt to correct for this effect,
but instead check that the largest-recoil bin has only a minor impact in our result.
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|δC7| = 0.1 |δC9| = 1 |δC10| = 1 |δC7′ | = 0.1 |δC9′ | = 1 |δC10′ | = 1

〈P1〉[0.1,.98]
+|δCi | −− −− −− −0.53 −0.05 −−
−|δCi | −− −− −− +0.52 +0.05 −−

〈P1〉[6,8]
+|δCi | −− −− −− +0.11 +0.16 −0.37
−|δCi | −− −− −− −0.12 −0.17 +0.37

〈P1〉[15,19]
+|δCi | −− −− −− +0.03 +0.15 −0.14
−|δCi | −− −− −− −0.03 −0.11 +0.19

〈P2〉[2.5,4]
+|δCi | −0.31 −0.21 +0.05 −− −− −−
−|δCi | +0.19 +0.15 −0.04 −0.03 −− −−

〈P2〉[6,8]
+|δCi | −0.07 −0.09 −0.06 −− −− −−
−|δCi | +0.11 +0.17 +0.05 −− −− −−

〈P2〉[15,19]
+|δCi | −− −− −− −− −0.05 +0.06
−|δCi | −− +0.04 −− −− +0.05 −0.06

〈P ′4〉[6,8]
+|δCi | +0.04 −− −− −0.11 −0.10 +0.17
−|δCi | −0.05 −− −− +0.09 +0.10 −0.20

〈P ′4〉[15,19]
+|δCi | −− −− −− −− −0.06 +0.05
−|δCi | −− −− −− −− +0.04 −0.08

〈P ′5〉[4,6]
+|δCi | −0.11 −0.15 −0.10 −0.11 −0.06 +0.21
−|δCi | +0.16 +0.28 +0.09 +0.15 +0.10 −0.21

〈P ′5〉[6,8]
+|δCi | −0.04 −0.07 −0.07 −0.08 −0.08 +0.19
−|δCi | +0.07 +0.19 +0.09 +0.10 +0.11 −0.18

〈P ′5〉[15,19]
+|δCi | −− −− −− −0.03 −0.11 +0.12
−|δCi | −− +0.06 +0.03 +0.03 +0.10 −0.14

Table: Impact on a given observable of the shift of a single Wilson coefficient by an amount δCi (the other Wilson
coefficients keeping their SM value). The first row corresponds to a variation of +|δCi | and the second row to
−|δCi |. The changes significantly improving the agreement with the 2015 LHCb data are highlighted in boldface.
Notice that the dependence of the observables on the Wilson coefficients may exhibit non-linearities.
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Correlations play a central role

If one wants to solve the anomalies exhibited in b → sµµ processes through power corrections, it is
important not to focus on one single observable, like P ′5, alone but on the full set.

Illustrative example. Let’s do the following exercise: Assume you take the non-optimal scheme-2 as in
(JC’14) and helicity basis

aV± =
1
2

[(
1 +

mK∗

mB

)
a1 ∓

(
1− mK∗

mB

)
aV

]
.

Notice that taking aV− in a range ±0.1 correspond to
an absurd 33% power correction in KMPW.

→ because a 10% in KMPW corresponds to 0.03 in aV−.
→ accepting values like (aV− = −0.1, aV + = 0) would

imply that BSZ computation of A1(q2) is wrong by
several sigmas.

An explanation of
〈
P ′5
〉

[4,6]
, 〈P2〉[4,6] and 〈P1〉[4,6] within

SM requires a 20% correction. Adding
〈
P ′5
〉

[6,8]
no

common solution found even beyond 20%.

• Power corrections aV− and aV + needed to obtain agreement between SM predictions and experiment
at 1 σ, considering different observables. This illustrates that aV± can indeed be used to obtain
agreement between SM prediction and experiment in one observable, but correlations hinder a similar
agreement when a larger set of observables is considered.
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Another important aspect is the error associated to SFF.

Our error comes from KMPW. Example: ξ⊥(0) = 0.31+0.20
−0.10

On the contrary in (JC’14): Error from spread of central values with different inputs and not
considering errors, ξ⊥(0) = 0.31± 0.04. Factor of 5 to 3 smaller error than us.

→ This will give a very small error (due to this error definition) for FFD observables.
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J1s =
(2 + β2

` )

4

[
|AL
⊥|2 + |AL

‖|2 + (L→ R)
]

+
4m2

`

q2 Re
(

AL
⊥AR
⊥
∗

+ AL
‖A

R
‖
∗)
,

J1c = |AL
0|2 + |AR

0 |2 +
4m2

`

q2

[
|At |2 + 2Re(AL

0AR
0
∗
)
]

+ β2
` |AS|2,

J2s =
β2
`

4

[
|AL
⊥|2 + |AL

‖|2 + (L→ R)
]
, J2c = −β2

`

[
|AL

0|2 + (L→ R)
]
,

J3 =
1
2
β2
`

[
|AL
⊥|2 − |AL

‖|2 + (L→ R)
]
, J4 =

1√
2
β2
`

[
Re(AL

0AL
‖
∗
) + (L→ R)

]
,

J5 =
√

2β`

[
Re(AL

0AL
⊥
∗
)− (L→ R)− m`√

q2
Re(AL

‖A
∗
S + AR

‖A∗S)

]
,

J6s = 2β`
[
Re(AL

‖A
L
⊥
∗
)− (L→ R)

]
, J6c = 4β`

m`√
q2

Re
[
AL

0A∗S + (L→ R)
]
,

J7 =
√

2β`

[
Im(AL

0AL
‖
∗
)− (L→ R) +

m`√
q2

Im(AL
⊥A∗S + AR

⊥A∗S)

]
,

J8 =
1√
2
β2
`

[
Im(AL

0AL
⊥
∗
) + (L→ R)

]
, J9 = β2

`

[
Im(AL

‖
∗
AL
⊥) + (L→ R)

]
In red lepton mass terms and β` =

√
1− 4m2

`/q2
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The corresponding spin amplitudes A⊥,A‖,A0 are function:

Wilson Coefficients: Ceff
7 , Ceff′

7 , Ceff
9 , C10

Form factors A1,2(s),V (s),T1,2,3(s)

A⊥L,R = N
√

2λ1/2
[

(Ceff
9 ∓ C10)

V (q2)

mB + m∗K
+

2mb

q2 (Ceff
7 + Ceff′

7 )T1(q2)

]

A‖L,R = −N
√

2(m2
B −m2

K∗)

[
(Ceff

9 ∓ C10)
A1(q2)

mB −mK∗
+

2mb

q2 (Ceff
7 − Ceff′

7 )T2(q2)

]
,

A0L,R = − N

2mK∗
√

q2
×
[

(Ceff
9 ∓ C10)

{
(m2

B −m2
K∗ − q2)(mB + mK∗)A1(q2)−

−λ A2(q2)

mB + mK∗

}
+ 2mb(Ceff

7 − Ceff′
7 )

{
(m2

B + 3m2
K∗ − q2)T2(q2)−

− λ

m2
B −m2

K∗
T3(q2)

}]
,
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Hadronic Matrix Elements:

The hadronic matrix elements are in naive factorization:

〈K ∗(pK∗)|s̄γµPL,Rb|B(p)〉 = iεµναβεν∗pαqβ
V (q2)

mB + mK∗
∓

∓1
2

{
ε∗µ(mB + mK∗)A1(q2)− (ε∗ · q)(2p − q)µ

A2(q2)

mB + mK∗
−

−2mK∗

q2 (ε∗ · q)[A3(q2)− A0(q2)]qµ

}
,

〈K ∗(pK∗)|s̄iσµνqνPR,Lb|B(p)〉 = −iεµναβεν∗pαqβT1(q2)±

±1
2

{
[ε∗µ(m2

B −m2
K∗)− (ε∗ · q)(2p − q)µ]T2(q2) +

+(ε∗ · q)

[
qµ −

q2

m2
B −m2

K∗
(2p − q)µ

]
T3(q2)

}
.

where A3(q2) = mB+mK∗
2mK∗

A1(q2)− mB−mK∗
2mK∗

A2(q2)
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K ∗ spin amplitudes

K ∗ Spin Amplitudes (A0,⊥,‖) related Helicity Amplitudes (H0,±):

A0 = H0 A⊥,‖ =
H+ ∓ H−√

2

They follow in naive factorisation a Λ/mb hierarchy:

H0 : H− : H+ = 1 :
Λ

mb
:

(
Λ

mb

)2

due to spectator quark flip, broken by electromagnetic effects.
At quark level in SM in the limit mB →∞ and E∗K →∞:

H+ = 0 ⇒ A⊥ = −A‖

At hadron level A⊥ ≈ −A‖.
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