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Information on electroweak-scale physics in the b → sγ transition
is encoded in an effective low-energy local interaction:

γ

−→
b s

C7︸ ︷︷ ︸
⇒ MH± > ∼ 500 GeV

in the 2HDM-II b ∈ B̄ ≡ (B̄0 or B−)

The inclusive B̄ → Xs γ decay rate for Eγ > E0 is well approximated

by the corresponding perturbative decay rate of the b-quark:

Γ(B̄ → Xs γ) = Γ(b → X
p
s γ) +

(
non-perturbative effects

(3±5)%

)

[G. Buchalla, G. Isidori and S.-J. Rey, Nucl. Phys. B511 (1998) 594]
[M. Benzke, S.J. Lee, M. Neubert and G. Paz, JHEP 1008 (2010) 099]

provided E0 is large (E0 ∼ mb/2)

but not too close to the endpoint (mb − 2E0 ≫ ΛQCD).

Conventionally, E0 = 1.6 GeV ≃ mb/3 is chosen.



Resummation of
(
αs lnM

2
W/m

2
b

)n
is most conveniently performed in the framework of an effective

theory that arises from the SM after decoupling of the heavy electroweak bosons and the top quark.

The Lagrangian of such a theory reads:

Leff = LQCD×QED(u, d, s, c, b) +
4GF√

2
V ∗
tsVtb Σ

8

i=1
Ci(µ)Qi +




EW-suppressed,
higher-dimensional,

on-shell vanishing,
evanescent


.

Q1,2 = b s
c c

= (s̄Γic)(c̄Γ
′
ib), from b W s

c c

, |Ci(mb)| ∼ 1

Q3,4,5,6 = b s
q q

= (s̄Γib)Σq(q̄Γ
′
iq), |Ci(mb)| < 0.07

Q7 = b s

γ

=
emb
16π2

s̄Lσ
µνbRFµν, C7(mb) ≃ −0.3

Q8 = b s

g

=
gmb
16π2

s̄Lσ
µνT abRG

a
µν, C8(mb) ≃ −0.15

Three steps of the calculation:

Matching: Evaluating Ci(µ0) at µ0 ∼MW by requiring equality

of the SM and the effective theory Green functions.

Mixing: Deriving the effective theory Renormalization Group Equations (Cbare
j = CiZij)

and evolving Ci(µ) from µ0 to µb ∼ mb.

Matrix elements: Evaluating the on-shell amplitudes at µb ∼ mb.



Examples of SM diagrams for the matching of C7(µ0)

LO:
[Inami, Lim, 1981]

γ γ

u, c, t u, c, t W± W±

b W± s b u, c, t s

NLO:
[Adel, Yao, 1993]

γ

u, c, t
b s

W±

NNLO:
[Steinhauser, MM, 2004]

s

u, c, t

b

W±
γNNLO method:

• Taylor expansion in the off-shell external momenta is applied before integration.

• The UV and spurious IR divergences are regulated dimensionally.

• ⇒ In the effective theory, only tree-level diagrams survive (tree vertices and UV counterterms).
The UV renormalization constants are known from former anomalous-dimension calculations.

• All the 1/ǫ poles cancel in the matching equation, i.e. in the difference between the effective theory
and the full SM Green functions.

• At the 3-loop level, the difference mt −MW is taken into account with the help of expansions in yn

and (1− y2)n up to n = 8, where y = MW/mt.



Resummation of large logarithms
(
αs ln

M2
W

m2
b

)n
in the b→ sγ amplitude.

RGE for the Wilson coefficients: µ
d

dµ
Cj(µ) = Ci(µ)γij(µ)

The anomalous dimension matrix γij is found from the effective theory renormalization constants, e.g.:

Z22 Z27 Z87

LO

[Gaillard, Lee, 1974] [Grinstein et al., 1990] [Shifman et al., 1978]
[Altarelli, Maiani, 1974] [Grigjanis et al., 1988]

NLO

[Altarelli et al., 1981] [Chetyrkin, MM, Münz, 1997] [MM, Münz, 1995]
[Buras, Weisz, 1990]

NNLO

[Gorbahn, Haisch, 2004] [Czakon, Haisch, MM, 2006] [Gorbahn, Haisch, MM, 2005]

∼ 2× 104 diagrams,
−4% effect in the BR

All the Wilson coefficients
C1(µb), . . . , C8(µb)
are known at the NNLO
in the SM.



NNLO QCD corrections to B̄ → Xs γ

The relevant perturbative quantity P (E0):

Γ[b → Xsγ]Eγ>E0

Γ[b → Xueν̄]
=

∣∣∣∣
V ∗
tsVtb

Vub

∣∣∣∣
2 6αem

π

∑

i,j

Ci(µb)Cj(µb)Kij

︸ ︷︷ ︸
P (E0)

Expansions of the Wilson coefficients and Kij in α̃s ≡ αs(µb)
4π

:

Ci(µb) = C
(0)
i + α̃sC

(1)
i + α̃2

s C
(2)
i + . . .

Kij = K
(0)
ij + α̃sK

(1)
ij + α̃2

s K
(2)
ij + . . .

Most important at the NNLO: K
(2)
77 , K

(2)
27 and K

(2)
17 .

They depend on µb
mb

, δ = 1 − 2E0
mb

and z =
m2

c
m2

b

.



Evaluation of K
(2)
27 and K

(2)
17 for mc = 0 and δ = 1:

[M. Czakon, P. Fiedler, T. Huber, MM, T. Schutzmeier, M. Steinhauser, JHEP 1504 (2015) 168]
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Master integrals and differential equations:

nD nOS neff nmassless

2-particle cuts 292 92 143 9

3-particle cuts 267 54 110 11
4-particle cuts 292 17 37 7

total 851 163 290 27

d
dxIi(x) =

∑
j Rij(x)Ij(x), x = p2

m2
b

.

Boundary conditions in the vicinity of x = 0:

(a)

(b)

+



Massless integrals for the boundary conditions:

4PCuts2PCuts 3PCuts

1L2C1

2L2C1 2L3C1

3L2C1 3L3C1

4L2C1 4L2C2 4L3C1 4L3C2 4L3C3

4L2C3 4L2C4 4L3C4 4L3C5 4L3C6

4L2C5 4L2C6 4L3C7 4L3C8 4L3C9

4L4C1 4L4C2

4L4C3 4L4C4

4L4C5 4L4C6

4L4C7 4L4C8



Results for the NNLO corrections:

K
(2)
27 (z, δ) = A2 + F2(z, δ) − 27

2
fq(z, δ) + fb(z) + fc(z) + 4

3
φ

(1)
27 (z, δ) ln z

+
[
terms ∼

(
ln µb

mb
, ln2 µb

mb
, ln µc

mc

)
or vanishing when mb → mpole

b

]
,

K
(2)
17 (z, δ) = −1

6
K

(2)
27 (z, δ) + A1 + F1(z, δ) +

[
terms ∼

(
ln µb

mb
, ln2 µb

mb

)]
.

︸ ︷︷ ︸
quark loops on the gluon lines & BLM approximation

Fi(0, 1) ≡ 0, A1 ≃ 22.605, A2 ≃ 75.603 from the present calculation.

Next, we interpolate in z = m2
c/m

2
b by assuming that Fi(z, 1) are linear

combinations of fq(z, 1), K
(1)
27 (z, 1), z d

dz
K

(1)
27 (z, 1) and a constant term.

The known large-z behaviour of Fi [hep-ph/0609241] and the condition

Fi(0, 1) ≡ 0 fix these linear combinations in a unique manner.



Effect of the interpolated contribution on the branching ratio

∆Bsγ

Bsγ
≃ U(z, δ) ≡ α2

s(µb)

8π2

C
(0)
1 (µb)F1(z,δ)+

(
C

(0)
2 (µb)−1

6C
(0)
1 (µb)

)
F2(z,δ)

C
(0)eff
7 (µb)

0.2 0.4 0.6 0.8 1

0.025

0.05

0.075

0.1

0.125

0.15

0.175

Uasymp

Uinterp

m m/c b



Interferences not involving the photonic dipole operator are treated
as follows:

K22:
(and analogous

K11 & K12) 2 2

+
2 2

+
2 2

+ . . .
c c c c c c

K28:
(and analogous K18)

2

8 +
2 8

+
2 8

+ . . .
c c c

K88:
8 8 + 8 8 +

8 8

+ . . .

Two-particle cuts Three- and four-particle cuts are known in the BLM
are known (just |NLO|2). approximation only. The NLO+(NNLO BLM)

corrections are not big (+3.8%).



Incorporating other perturbative contributions evaluated
after the previous phenomenological analysis in hep-ph/0609232:
1. Four-loop mixing (current-current) → (gluonic dipole)

M. Czakon, U. Haisch, MM, JHEP 0703 (2007) 008 [hep-ph/0612329]

2. Diagrams with massive quark loops on the gluon lines
R. Boughezal, M. Czakon and T. Schutzmeier, JHEP 0709 (2007) 072 [arXiv:0707.3090]
H. M. Asatrian, T. Ewerth, H. Gabrielyan and C. Greub, Phys. Lett. B 647 (2007) 173 [hep-ph/0611123]
T. Ewerth, Phys. Lett. B 669 (2008) 167 [arXiv:0805.3911]

3. Complete interference (photonic dipole)–(gluonic dipole)
H. M. Asatrian, T. Ewerth, A. Ferroglia, C. Greub and G. Ossola,

Phys. Rev. D 82 (2010) 074006 [arXiv:1005.5587]

4. New BLM corrections to contributions from 3-body and 4-body final states
for interferences not involving the photonic dipole

A. Ferroglia and U. Haisch, Phys. Rev. D 82 (2010) 094012 [arXiv:1009.2144]
MM and M. Poradziński, Phys. Rev. D 83 (2011) 014024 [arXiv:1009.5685]

5. LO contributions from b→ sγqq̄, (q = u, d, s) from 4-quark operators (“penguin” or CKM-suppressed)
M. Kamiński, MM and M. Poradziński, Phys. Rev. D 86 (2012) 094004 [arXiv:1209.0965]

6. NLO contributions from b→ sγqq̄, (q = u, d, s) from interferences of the above operators with Q1,2,7,8

T. Huber, M. Poradziński, J. Virto, JHEP 1501 (2015) 115 [arXiv:1411.7677]

Taking into account new non-perturbative analyses:
M. Benzke, S. J. Lee, M. Neubert and G. Paz, JHEP 1008 (2010) 099 [arXiv:1003.5012]
T. Ewerth, P. Gambino and S. Nandi, Nucl. Phys. B 830 (2010) 278 [arXiv:0911.2175]

Updating the parameters (Parametric uncertainties go down to 2.0%)
P. Gambino, C. Schwanda, Phys. Rev. D 89 (2014) 014022

A. Alberti, P. Gambino, K. J. Healey, S. Nandi, Phys. Rev. Lett. 114 (2015) 061802



Updated SM estimate for the CP- and isospin-averaged

branching ratio of B̄ → Xsγ [arXiv:1503.01789, arXiv:1503.01791]:

BSM
sγ = (3.36 ± 0.23) × 10−4

︸ ︷︷ ︸
±6.9%

Contributions to the total TH uncertainty (summed in quadrature):

5% non-perturbative, 3% from the interpolation in mc

3% higher order O(α3
s), 2% parametric

It is very close the the experimental world average(s):

(a) Bexp
sγ = (3.43 ± 0.21 ± 0.07) × 10−4

[HFAG, arXiv:1412.7515]
︸ ︷︷ ︸

±6.5%

(b) Bexp
sγ = (3.41 ± 0.15 ± 0.04) × 10−4

[Karim Trabelsi, talk at EPS 2015]
︸ ︷︷ ︸

±4.6%

Experiment agrees with the SM to much better than ∼ 1σ level.

⇒ Strong bounds on the H± mass in the Two-Higgs-Doublet-Model II:

(a) MH± > 480 GeV at 95%C.L.

(b) MH± > 540 GeV at 95%C.L.



Current flavour-physics bounds in the MH±−tanβ plane of the 2HDM-II
[from T. Enomoto and R. Watanabe, corrected w.r.t. arXiv:1511.05066v1]

Bd → µ+µ−
︸ ︷︷ ︸ τ → (K,π)ν︸ ︷︷ ︸ (K,π) → µν︸ ︷︷ ︸

↓ ↓ ↓

tanβ tanβ↑ ↑
︷ ︸︸ ︷
Bs → µ+µ− ︷ ︸︸ ︷

B → τν

B̄ → Xsγ
∆Ms︸ ︷︷ ︸ L
↓ E

∆Mdւ P

տ
ǫK

MH±

MH±



B(Bs → µ+µ−) in the Two-Higgs-Doublet Model II

[×10−9]

250 500 750 1000 1250 1500 1750 2000

1

2
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6

tan =90β705030

current exp 95% CL range [1.6,4.3]

SM prediction from C. Bobeth et al, PRL 112 (2014) 101801

B → Xsγ,−→
MH± [GeV]

Blue lines — still allowed for MH± =
√
M 2

A + M 2
W after taking

into account the LHC searches for pp → A0 → τ+τ−

[CMS arXiv:1408.3316, ATLAS arXiv:1409.6064].

b
A0

τ+

τ−



The direct CP asymmetry in B̄ → Xsγ

AXsγ =
Γ(B̄→Xsγ) − Γ(B→Xs̄γ)
Γ(B̄→Xsγ) + Γ(B→Xs̄γ)

Semi inclusive measurements ⇒ Aexp
Xsγ

= +(1.5 ± 2.0)% (HFAG 2014 average)

SM estimate [Benzke, Lee, Neubert, Paz, arXiv:1012.3167]:

ASM
Xsγ

≃ Im
(
V ∗
usVub

V ∗
tsVtb

)
π
∣∣∣C

their
1
C7

∣∣∣
[

Λ̃u
17−Λ̃c

17
mb

+ 40αs
9π

m2
c

m2
b

(
1 − 2

5
ln mb

mc
+ 4

5
ln2 mb

mc
− π2

15

)]

≃
(
1.15

Λ̃u
17−Λ̃c

17
300 MeV

+ 0.71
)

% ∈ [−0.6%,+2.8%] using

{
−330 MeV < Λ̃u

17 < +525 MeV

−9 MeV < Λ̃u
17 < +11 MeV

Despite the uncertainties, AXsγ provides constraints on models
with non-minimal flavour violation. Such models are also constrained by:

AX(s+d)γ
=

Γ(B̄→X(s+d)γ) − Γ(B→X(s̄+d̄)γ)

Γ(B̄→X(s+d)γ) + Γ(B→X(s̄+d̄)γ)
(ASM

X(s+d)γ
≃ 0)



Qu
1,2

b d
γ

u

uB̄ → Xdγ

Leff ∼ V ∗
tdVtb

[∑8
i=1 CiQi + κd

∑2
i=1 Ci(Qi − Qu

i )
]

κd = (V ∗
udVub)/(V ∗

tdVtb) =
(
0.007+0.015

−0.011

)
+ i

(
−0.404+0.012

−0.014

)

BSM
dγ =

(
1.73+0.12

−0.22

)
× 10−5

Bexp
dγ = (1.41 ± 0.57) × 10−5





for E0 = 1.6 GeV

· BSM
dγ is rough: mb/mq varied between 10 ∼ mB/mK and 50 ∼ mB/mπ ⇒ 2% to 11% of Bdγ .

· Fragmentation functions give a similar range [H. M. Asatrian and C. Greub, arXiv:1305.6464].

· Collinear logarithms and isolated photons

The ratio Rγ

RSM
γ ≡

(
BSM

sγ + BSM
dγ

)
/Bcℓν = (3.31 ± 0.22) × 10−3

Generic (but CP-conserving) beyond-SM effects:

Bsγ × 104 = (3.36 ± 0.23) − 8.22 ∆C7 − 1.99 ∆C8,

Rγ × 103 = (3.31 ± 0.22) − 8.05 ∆C7 − 1.94 ∆C8.
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The “raw” photon energy spectra in the inclusive measurements of Bsγ
(The CP- and isospin-averaged

branching ratio of B̄ → Xsγ)

CLEO BELLE
hep-ex/0108032 arXiv:0907.1384
PRL 87 (2001) 251807 PRL 103 (2009) 241801
Eγ > 2.0 GeV Eγ > 1.7 GeV

1.5 2 2.5 3 3.5

0

500

1000

1500

* (GeV)γE

E
ve

n
ts

/0
.1

 G
eV

BB
control

Continuum
control

BABAR
arXiv:1207.2690
PRL 109 (2012) 191801
Eγ > 1.8 GeV

The peaks are centred around

1
2
mb ≃ 2.35 GeV

which corresponds to a two-body b → sγ decay.

Broadening is due to (mainly):

· perturbative gluon bremsstrahlung,

· motion of the b quark inside the B̄ meson,

· motion of the B̄ meson in the Υ(4S) frame.



Experimental world averages for Bsγ:

Bexp
sγ = (3.43 ± 0.21 ± 0.07) × 10−4

[HFAG, arXiv:1412.7515]
(lowest E0 only from each exp)

︸ ︷︷ ︸
±6.5%

Bexp
sγ = (3.41 ± 0.15 ± 0.04) × 10−4

[Karim Trabelsi, talk at EPS 2015]
(E0 = 1.9 GeV only from each exp)

︸ ︷︷ ︸
±4.6%

for the photon energy Eγ > E0 = 1.6 GeV. The averaging involves an

extrapolation from the measurements performed at E0 ∈ [1.7, 2.0] GeV.

Applying the HFAG extrapolation method to the available B̄ → Xd γ
measurement [BABAR, arXiv:1005.4087], one finds [A. Crivellin, L. Mercolli, arXiv:1106.5499]:

Bexp
dγ = (1.41 ± 0.57) × 10−5.︸ ︷︷ ︸

±40%



The HFAG average includes the following measurements:

Reference Method # of BB̄ E0 [GeV] Bsγ × 104 at E0

CLEO [PRL 87 (2001) 251807] inclusive 9.70 × 106 2.0 3.06 ± 0.41 ± 0.26

BABAR [PRL 109 (2012) 191801] inclusive 3.83 × 108 1.8 3.21 ± 0.15 ± 0.29 ± 0.08

1.9 3.00 ± 0.14 ± 0.19 ± 0.06
2.0 2.80 ± 0.12 ± 0.14 ± 0.04

BELLE [PRL 103 (2009) 241801] inclusive 6.57 × 108 1.7 3.45 ± 0.15 ± 0.40
1.8 3.36 ± 0.13 ± 0.25

1.9 3.21 ± 0.11 ± 0.16
2.0 3.02 ± 0.10 ± 0.11

BABAR [PRD 77 (2008) 051103] inclusive with 2.32 × 108, 1.9 3.66 ± 0.85 ± 0.60
a hadronic tag which gives 2.0 3.39 ± 0.64 ± 0.47

(hadronic 6.8 × 105 2.1 2.78 ± 0.48 ± 0.35
decay of the tagged 2.2 2.48 ± 0.38 ± 0.27

recoiling B (B̄)) events 2.3 2.07 ± 0.30 ± 0.20

BABAR [PRD 86 (2012) 052012] semi-inclusive 4.71 × 108 1.9 3.29 ± 0.19 ± 0.48

BELLE [PLB 511 (2001) 151] semi-inclusive 6.07 × 106 2.24→1.6 3.69 ± 0.58 ± 0.46 ± 0.60
BELLE [PRD 91 (2015) 052004] 7.72 × 108 1.9 3.51 ± 0.17 ± 0.33



Comparison of the inclusive measurements of B(B̄ → Xsγ)

by CLEO, BELLE and BABAR for each E0 separately

Averages for each E0 extrapolated
B × 104 for each E0 [GeV] to E0 = 1.6 GeV using the HFAG factors

1.6 1.7 1.8 1.9 2 2.1 2.2

2.5

3

3.5

4

1.6 1.7 1.8 1.9 2 2.1 2.2

2.5

3

3.5

4BELLE, arXiv:0907.1384
657 MBB̄

HFAG
2.08.2012

SM, arXiv:1503.01789

BABAR, arXiv:1207.2690
383 MBB̄

CLEO, hep-ex/0108032
9.7 MBB̄

The HFAG factors






Scheme Eγ < 1.7 Eγ < 1.8 Eγ < 1.9 Eγ < 2.0 Eγ < 2.242

Kinetic 0.986± 0.001 0.968± 0.002 0.939± 0.005 0.903± 0.009 0.656± 0.031
Neubert SF 0.982± 0.002 0.962± 0.004 0.930± 0.008 0.888± 0.014 0.665± 0.035

Kagan-Neubert 0.988± 0.002 0.970± 0.005 0.940± 0.009 0.892± 0.014 0.643± 0.033

Average 0.985± 0.004 0.967± 0.006 0.936± 0.010 0.894± 0.016 0.655± 0.037

· Are the HFAG factors trustworthy?



Decoupling of W , Z, t, H0 ⇒ effective weak interaction Lagrangian:

Lweak ∼
∑

i

Ci Qi

Eight operators Qi matter for BSM
sγ when the NLO EW and/or CKM-suppressed effects are neglected:

bL sL

cL cL

b sR L

γ

b sR L

g

bL sL

q q

Q1,2 Q7 Q8 Q3,4,5,6

current-current photonic dipole gluonic dipole penguin

Γ(B̄ → Xsγ)Eγ>E0
= |C7(µb)|2 Γ77(E0) + (other) (µb ∼ mb/2)

Optical theorem: Integrating the amplitude A over Eγ:

dΓ77
dEγ

∼
γ γ

q q

B̄ B̄

7 Xs 7

Im{ } ≡ ImA

ImEγ

E0 Emax

γ ReEγ

≃ 1

2
mB

OPE on
the ring

⇒Non-perturbative corrections to Γ77(E0) form a series in
ΛQCD

mb
and αs that begins with

µ2
π

m2
b

,
µ2
G

m2
b

,
ρ3
D

m3
b

,
ρ3
LS
m3

b

,. . . ;
αsµ

2
π

(mb−2E0)2,
αsµ

2
G

mb(mb−2E0)
;. . . ,

where µπ, µG, ρD, ρLS = O(ΛQCD) are extracted from the semileptonic B̄ → Xceν̄ spectra

and the B–B⋆
mass difference.



The O
(

αsµ
2
π

(mb−2E0)2

)
and O

(
αsµ

2
G

mb(mb−2E0)

)
corrections

[T. Ewerth, P. Gambino and S. Nandi, arXiv:0911.2175]

Γ77(E0) = Γtree
77

{
1 + (pert. corrections) − µ2

π

2m2
b

[
1 + αs

π

(
f1(E0) − 4

3
ln µ

mb

)]

−3µ2
G(µ)

2m2
b

[
1 + αs

π

(
f2(E0) + 1

6
ln µ

mb

)]}
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When (mb − 2E0) ∼ Λ ≡ ΛQCD, no OPE can be applied.

Local operators −→ Non-local operators

Non-perturbative parameters −→ Non-perturbative functions

d
dEγ

Γ77 = N H(Eγ)

MB−2Eγ

0

dk P (MB−2Eγ−k) F (k)+O
(

Λ
mb

)

pert. pert. non-pert.

Photon spectra from models of F (k) [Ligeti, Stewart, Tackmann, arXiv:0807.1926]
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The function F (k) is:

· perturbatively related to the standard
shape function S(ω),

· exponentially suppressed for k ≫ Λ,

· positive definite,

· constrained by measured moments

of the B̄ → Xceν̄ spectrum (local OPE),

· constrained by measured properties

of the B̄ → Xueν̄ and B̄ → Xsγ spectra

(not imposed in the plot).



Upgrading the HFAG factors by fitting F (k) to data:

· The SIMBA Collaboration [arXiv:1101.3310, arXiv:1303.0958] (work in progress)

F (k) = 1
λ

[∑∞
n=0 cnfn

(
k
λ

)]2
, fn – basis functions. Truncate and fit.

· Another way: F (k) = A(k)B(k) and use the SIMBA approach for B(k).
ր

perfect fit

Why do we need to upgrade the HFAG factors?

· The old models (Kagan-Neubert 1998, ...) are not generic enough
(too few parameters).

· Inclusion of O
(

Λ
mb

)
effects and and taking other operators (Qi 6= Q7)

into account is necessary [Benzke, Lee, Neubert, Paz, arXiv:1003.5012].

What about just fitting C7 without extrapolation to any particular E0?

· Fine, but measurements at low E0 (even less precise) are still going
to be crucial for constraining the parameter space.

· The fits are going to give the extrapolation factors anyway.

Publishing them is necessary for cross-checks/upgrades by other groups.



Non-perturbative contributions from the photonic dipole operator alone

(“77” term) are well controlled for E0 = 1.6 GeV:

O
(
αnsΛ
mb

)
n=0,1,2,...

vanish, O
(

Λ2

m2
b

)
[Bigi, Blok, Shifman,
Uraltsev, Vainshtein, 1992],
[Falk, Luke, Savage, 1993],

O
(

Λ3

m3
b

)
[Bauer, 1997], O

(
αsΛ

2

m2
b

)
[Ewerth, Gambino,
Nandi, 2009].

The dominant non-perturbative uncertainty originates from the “27”

interference term:

2 7

c

λ2 ≃ 0.12GeV2

from B–B∗
mass splitting

∆B
B = −6C2 − C1

54C7

[
λ2
m2
c

+
∑

n

bnO
(
Λ2

m2
c

(
mbΛ

m2
c

)n)]

The coefficients bn decrease fast with n.
[Voloshin, 1996], [Khodjamirian, Rückl, Stoll, Wyler, 1997]
[Grant, Morgan, Nussinov, Peccei, 1997]
[Ligeti, Randall, Wise, 1997], [Buchalla, Isidori, Rey, 1997]

Claims by Benzke, Lee, Neubert and Paz in arXiv:1003.5012:

One cannot really expand in mbΛ/m
2
c . All such corrections should be treated as Λ/mb ones and

estimated using models of subleading shape functions. Dominant contributions to the estimated ±5%
non-perturbative uncertainty in B are found this way, with the help of alternating-sign subleading
shape functions that undergo weaker suppression at large gluon momenta.

2 7 2 7
correction to the above phase-space suppressed

O
(
αsΛ
mb

)
Main worry in hep-ph/0609232,
and reason for the

±5% non-perturbative uncertainty.



Summary

• The dominant NNLO corrections to Bsγ are now known

not only in the large mc limit, but also at mc = 0.
However, no reduction of uncertainties with respect to the 2006
estimate is possible, except for the parametric one.

• Updated predictions:

BSM
sγ = (3.36 ± 0.23) × 10−4

BSM
dγ =

(
1.73+0.12

−0.22

)
× 10−5

RSM
γ = (3.31 ± 0.22) × 10−3

• Completing the calculation of K
(2)
17 and K

(2)
27 for arbitrary z = m2

c/m
2
b

is necessary to further reduce the perturbative uncertainties in Bsγ.

• New experimental averages of Bsγ and Rγ should be based on

an improved extrapolation in E0. It will be necessary to take full
advantage of the awaited precise measurements at BELLE-II.
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Comparison to the interpolation in hep-ph/0609241
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G22:
(and analogous

G11 & G12) 2 2

+
2 2

+
2 2

+ . . .
c c c c c c

G28:
(and analogous G18)

2

8 +
2 8

+
2 8

+ . . .
c c c

G88:
8 8 + 8 8 +

8 8

+ . . .

Two-particle cuts Three- and four-particle cuts are known in the BLM
are known (just |NLO|2). approximation only: [Ligeti, Luke, Manohar, Wise, 1999],

[Ferroglia, Haisch, arXiv:1009.2144], [Poradziński, MM, arXiv:1009.5685].

NLO+(NNLO BLM) corrections are not big (+3.8%).

Example:

Evaluation of the (n > 2)-particle cut contributions to G28 in the Brodsky-Lepage-Mackienzie (BLM)

approximation (“naive nonabelianization”, large-β0 approximation) [Poradziński, MM, arXiv:1009.5685]:

2 8

c q

b s

2 8

2 8

2 8

q – massless quark,

Nq – number of massless flavours (equals to 3 in

practice because masses of u, d, s are neglected).

Replacement in the final result:

−2
3Nq −→ β0 = 11− 2

3(Nq + 2).
The diagrams have been evaluated using the method

of Smith and Voloshin [hep-ph/9405204].

Non-BLM contributions to Gij from quark loops on the gluon lines are quasi-completely known.

[Boughezal, Czakon, Schutzmeier, 2007], [Asatrian, Ewerth, Gabrielyan, Greub, 2007], [Ewerth, 2008].



Outlook: generalizing the K27 NNLO calculation to arbitrary z = m2
c/m

2
b.

Method: differential equations in z for the master integrals.

Results for the bare NLO contributions up to O(ǫ):

G̃
(1)2P
27 = − 92

81ǫ
+ f0(z) + ǫf1(z)

z→0−→ − 92
81ǫ

− 1942
243

+ ǫ
(
−26231

729
+ 259

243
π2
)
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f0(z) f1(z)

z z

Dots: solutions to the differential equations and/or the exact z → 0 limit.

Lines: large- and small-z asymptotic expansions

Large-z expansions of the 11 master integrals are from M. Steinhauser.

Small-z expansions of G̃
(1)2P
27 :

f0 from C. Greub, T. Hurth, D. Wyler, hep-ph/9602281, hep-ph/9603404,

A. J. Buras, A. Czarnecki, MM, J. Urban, hep-ph/0105160,

f1 from H.M. Asatrian, C. Greub, A. Hovhannisyan, T. Hurth and V. Poghosyan, hep-ph/0505068.

2 7



Analogous results for the 3-body final state contributions (δ = 1):

G̃
(1)3P
27 = g0(z) + ǫg1(z)

z→0−→ − 4
27

− 106
81

ǫ

2 7
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Dots: solutions to the differential equations and/or the exact z → 0 limit.

Lines: exact result for g0, as well as large- and small-z asymptotic expansions for g1 from A. Rehman.

g0(z) =





− 4
27

− 14
9
z + 8

3
z2 + 8

3
z(1 − 2z) s L + 16

9
z(6z2 − 4z + 1)

(
π2

4
− L2

)
, for z ≤ 1

4
,

− 4
27

− 14
9
z + 8

3
z2 + 8

3
z(1 − 2z) t A + 16

9
z(6z2 − 4z + 1)A2, for z > 1

4
,

where s =
√

1 − 4z, L = ln(1 + s) − 1
2

ln 4z, t =
√

4z − 1, and A = arctan(1/t).



CP-averaged decay rates

Γ0 = Γ(B̄0→Xsγ)+Γ(B0→Xs̄γ)
2

, Γ± = Γ(B−→Xsγ)+Γ(B+→Xs̄γ)
2

.

CP- and isospin-averaged branching ratio in an untagged measurement at Υ(4S)

Bsγ = τB0 Γ
(

1+rfrτ
1+rf

+ ∆0±
1−rfrτ
1+rf

)
.

where

Γ = (Γ0 + Γ±)/2 (isospin average)

∆0± = (Γ0 − Γ±)/(Γ0 + Γ±) (isospin asymmetry)

rτ = τB+/τB0 = 1.076 ± 0.004 (measured lifetime rate)

rf = f+−/f00 = 1.059 ± 0.027 (measured production rate at Υ(4S))

The term proportional to ∆0± contributes only at a permille level, which follows from the measured value
of ∆0± = −0.01 ± 0.06 (for Eγ > 1.9 GeV).

The final state strangeness (−1 for Xs and +1 for Xs̄) and neutral B-meson flavours have been specified
upon ignoring effects of the B0B̄0 and K0K̄0 mixing. Taking the K0K̄0 mixing into account amounts to
replacing Xs and Xs̄ by X|s| with an unspecified strangeness sign, which leaves Γ0 and Γ± invariant. Next,
taking the B0B̄0 mixing into account amounts to using in Γ0 the time-integrated decay rates of mesons
whose flavour is fixed at the production time. Such a change leaves Γ0 practically unaffected because
mass eigenstates in the B0B̄0 system are very close to being orthogonal (|p/q| = 1) and having the same
decay width.



Energetic photon production in charmless decays of the B̄-meson
(Eγ ∼> mb

3
≃ 1.6GeV) [see MM, arXiv:0911.1651]

A. Without long-distance charm loops:
1. Hard 2. Conversion 3. Collinear 4. Annihilation

s

(qq̄ 6= cc̄)
q̄ q

s s s
Dominant, well-controlled. O(αsΛ/mb), (−1.6± 1.2)%. ∼ −0.2% or (+0.8± 1.1)%. Exp. π0, η, η′, ω subtracted.

[Benzke, Lee, Neubert, Paz, 2010] [Kapustin,Ligeti,Politzer, 1995] Perturbatively ∼ 0.1%.
[Benzke, Lee, Neubert, Paz, 2010]

B. With long-distance charm loops:

5. Soft 6. Boosted light cc̄ 7. Annihilation of cc̄ in a heavy (c̄s)(q̄c) state
gluons state annihilation
only (e.g. ηc, J/ψ, ψ′)

c̄
c̄ c c̄ c c̄ c

c

s s s s

O(Λ2/m2

c), ∼ +3.1%. Exp. J/ψ subtracted (< 1%). O(αs(Λ/M)2) O(αsΛ/M)
[Voloshin, 1996], [...], Perturbatively (including hard): ∼ +3.6%. M ∼ 2mc, 2Eγ, mb.
[Buchalla, Isidori, Rey, 1997] e.g. B[B− → DsJ(2457)

− D∗(2007)0 ] ≃ 1.2%,
[Benzke, Lee, Neubert, Paz, 2010]: add (+1.1± 2.9)% B[B0 → D∗(2010)+ D̄∗(2007)0K−] ≃ 1.2%.



The “hard” contribution to B̄ → Xsγ
J. Chay, H. Georgi, B. Grinstein PLB 247 (1990) 399.
A.F. Falk, M. Luke, M. Savage, PRD 49 (1994) 3367.

Goal: calculate the inclusive sum ΣXs
∣∣C7(µb)〈Xsγ|O7|B̄〉 + C2(µb)〈Xsγ|O2|B̄〉 + ...

∣∣2

γ γ
q q

B̄ B̄

7 7

Im{ } ≡ ImA

The “77” term in this sum is “hard”. It is related via the
optical theorem to the imaginary part of the elastic forward
scattering amplitude B̄(~p = 0)γ(~q) → B̄(~p = 0)γ(~q):

When the photons are soft enough, m2
Xs

= |mB(mB −2Eγ)| ≫ Λ2 ⇒ Short-distance dominance ⇒ OPE.

However, the B̄ → Xsγ photon spectrum is dominated by hard photons Eγ ∼ mb/2.

Once A(Eγ) is considered as a function of arbitrary complex Eγ,
ImA turns out to be proportional to the discontinuity of A
at the physical cut. Consequently,

ImEγ

1 Emax

γ ReEγ [GeV]

≃ 1

2
mB

∫ Emax

γ

1 GeV

dEγ ImA(Eγ) ∼
∮

circle

dEγ A(Eγ).

Since the condition |mB(mB − 2Eγ)| ≫ Λ2 is fulfilled along the circle,
the OPE coefficients can be calculated perturbatively, which gives

A(Eγ)|
circle

≃
∑

j

[
F

(j)
polynomial(2Eγ/mb)

m
nj

b (1 − 2Eγ/mb)kj

+ O (αs(µhard))

]
〈B̄(~p = 0)|Q(j)

local operator|B̄(~p = 0)〉.

Thus, contributions from higher-dimensional operators are suppressed by powers of Λ/mb.

At (Λ/mb)
0: 〈B̄(~p)|b̄γµb|B̄(~p)〉 = 2pµ ⇒ Γ(B̄ → Xsγ) = Γ(b → Xparton

s γ) + O(Λ/mb).

At (Λ/mb)
1: Nothing! All the possible operators vanish by the equations of motion.

At (Λ/mb)
2: 〈B̄(~p)|b̄vDµDµbv|B̄(~p)〉 ∼ mB µ2

π,

〈B̄(~p)|b̄vgsGµνσ
µνbv|B̄(~p)〉 ∼ mB µ2

G,

The HQET heavy-quark field bv(x) is defined by bv(x) = 1
2
(1 + v/)b(x) exp(imb v · x) with v = p/mB.



Non-perturbative effects in the presence of other operators (Qi 6= Q7)

[Benzke, Lee, Neubert, Paz, arXiv:1003.5012].

d

dEγ

Γ(B̄ → Xsγ) = (Γ77-like term) + ÑE3
γ

∑

i≤j

Re
(
C∗

i Cj

)
Fij(Eγ).

Remarks:

· The SCET approach is valid for large Eγ only. It is fine for

Eγ > E0 ∼ 1
3
mb ≃ 1.6 GeV. Lower cutoffs are academic anyway.

· For such E0, non-perturbative effects in the integrated decay rate

are estimated to remain within 5%. They scale like:

· Λ2

m2
b
, Λ2

m2
c

(known),

· Λ
mb

V ∗
usVub

V ∗
tsVtb

(negligible), 2 7

u, c
soft

b s s b

· Λ
mb

, Λ2

m2
b
, αs

Λ
mb

but suppressed by tails of subleading shape functions (“27”),

· αs
Λ
mb

to be constrained by future measurements of the isospin asymmetry (“78”),

· αs
Λ
mb

but suppressed by Q2
d = 1

9
(“88”).

· Extrapolation factors? Tails of subleading functions are less important for them.


