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. Summary



Information on electroweak-scale physics in the b — s+ transition
is encoded in an effective low-energy local interaction:
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The inclusive B — X« decay rate for E., > Ej is well approximated
by the corresponding perturbative decay rate of the b-quark:

F(B — XS ﬂ)/) — F(b — Xg ,.y) _I_ (non—perturbative effects)

(3£5)%

[G. Buchalla, G. Isidori and S.-J. Rey, Nucl. Phys. B511 (1998) 594]
[M. Benzke, S.J. Lee, M. Neubert and G. Paz, JHEP 1008 (2010) 099]

provided E, is large (Eo ~ my/2)
but not too close to the endpoint (m, — 2E¢ > Aqcp).

Conventionally, Fy = 1.6 GeV ~ m;/3 is chosen.



n
Resummation of (Oé s In M I%V / m%) is most conveniently performed in the framework of an effective
theory that arises from the SM after decoupling of the heavy electroweak bosons and the top quark.
The Lagrangian of such a theory reads:
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Three steps of the calculation:

Matching: Evaluating OZ<,MQ> at Lo ~ MW by requiring equality
of the SM and the effective theory Green functions.

Mixing: Deriving the effective theory Renormalization Group Equations (O})are — OLZU)
and evolving CZ(ILL) from g to Uy ~ 1.
Matrix elements: Evaluating the on-shell amplitudes at Uy ~ T17.



Examples of SM diagrams for the matching of C7(ug)

LO:

[Inami, Lim, 1981]

NLO:
[Adel, Yao, 1993]

NNLO:
[Steinhauser, MM, 2004]

NNLO method:

e Taylor expansion in the off-shell external momenta is applied before integration.
e The UV and spurious IR divergences are regulated dimensionally.

e = In the effective theory, only tree-level diagrams survive (tree vertices and UV counterterms).
The UV renormalization constants are known from former anomalous-dimension calculations.

e All the 1/¢ poles cancel in the matching equation, i.e. in the difference between the effective theory
and the full SM Green functions.

e At the 3-loop level, the difference m; — My, is taken into account with the help of expansions in y"
and (1 —y?)" up to n =8, where y = My /m;.
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Resummation of large logarithms (ozs In - ) in the b — sy amplitude.

b

d
RGE for the Wilson coefficients: ILLd—C] (IM) — Oz'(,u)'%'j (,u)

[

The anomalous dimension matrix 7;; is found from the effective theory renormalization constants, e.g.:

0 i e

[Gaillard, Lee, 1974] [Grinstein et al., 1990] [Shifman et al., 1978|
Altarelh Maiani, 1974 Grlgjanls et al 1988

e o T

[Altarelli et al., 1981]  [Chetyrkin, MM, Miinz, 1997] [MM, Miinz, 1995] . .
Buras, Weisz, 1990] ' All the Wilson coefficients

C(pp); - - - Cs( 1)
are known at the NNLO
NNLO in the SM.

[Gorbahn, Haisch, 2004] [Czakon, Ha1sch MM, 2006] [Gorbahn, Haisch, MM, 2005]

~ 2 X 10 diagrams,
—4% effect in the BR



NNLO QCD corrections to B — X5~

The relevant perturbative quantity P(FE)):

F[b — XS’Y]E’Y>EO V-tﬂ,;v;tb 2 6aem
I‘[b — Xueﬂ] Vo - ,%: z(“b) g(:ub) 1]
Pon)
— os(pp) .

Expansions of the Wilson coefficients and K;; in o, = ot

i) = 09 + 5,0 4 a20® 4
Kij=K) +a; K} + 2K +...

Most important at the NNLO: Kﬁ), Kéi) and K ﬁ)

Hb _ 2Eq _ m;
They depend on e 0=1-— "y and z = E%'



Evaluation of Kg) and Kﬁ) for m., =0 and 0 = 1:

[M. Czakon, P. Fiedler, T. Huber, MM, T. Schutzmeier, M. Steinhauser, JHEP 1504 (2015) 168]




Master integrals and differential equations:

NI

P;.E

np Nos MNeff TNmassless Im(x)
2-particle cuts | 292 92 143 9
3-particle cuts || 267 54 110 11
4-particle cuts || 292 17 37 7
total 851 163 290 27
Li@) = T Ry@)e), =1
dz? J AN m% -

Boundary conditions in the vicinity of z = 0:

(b)
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Massless integrals for the boundary conditions:
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Results for the NNLO corrections:

K3(2,0) = Ay + Fy(2,0) — Zfe(2,0) + fu(2) + fo(2) + 5657 (2,0) Inz
quark loops on the gluon line; & BLM approximation
-+ [terms ~ (ln 51—1;), 1n2 #1—1;), In %) or vanishing when MMy —> mlgOle} ,
(2) _ (2) Bb 2 pp
7 (z,0) = 7(2,0) + Ay + Fi(z,0) + |[terms ~ (In oy In® 7R

F;(0,1) =0, A; ~ 22.605, A, ~ 75.603 from the present calculation.

Next, we interpolate in z = m?/mj by assuming that Fj(z,1) are linear

combinations of f,(z,1), K(l)(z, 1), z (1)(z, 1) and a constant term.

The known large-z behaviour of F; [hep-ph /0609241] and the condition
F;(0,1) = 0 fix these linear combinations in a unique manner.



Effect of the interpolated contribution on the branching ratio

o2(uy)  CL (1) Fi(2,0)+(C8 (1p) =301 (116) ) Fa(2,9)
5 S (yup)

ABg
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Interferences not involving the photonic dipole operator are treated
as follows:

Koo: ¢ ¢
(and an2a%ogous _|_ ) & m

Kll & K12

Kggt

(and analogous Kig)

Kggt

Two-particle cuts Three- and four-particle cuts are known in the BLM
are known (just [NLO|?). approximation only. The NLO+(NNLO BLM)
corrections are not big (+3.8%).



Incorporating other perturbative contributions evaluated
after the previous phenomenological analysis in hep-ph/0609232:

1. Four-loop mixing (current-current) — (gluonic dipole)
M. Czakon, U. Haisch, MM, JHEP 0703 (2007) 008 [hep-ph/0612329]

2. Diagrams with massive quark loops on the gluon lines
R. Boughezal, M. Czakon and T. Schutzmeier, JHEP 0709 (2007) 072 [arXiv:0707.3090]
H. M. Asatrian, T. Ewerth, H. Gabrielyan and C. Greub, Phys. Lett. B 647 (2007) 173 [hep-ph/0611123]
T. Ewerth, Phys. Lett. B 669 (2008) 167 [arXiv:0805.3911]

3. Complete interference (photonic dipole)—(gluonic dipole)
H. M. Asatrian, T. Ewerth, A. Ferroglia, C. Greub and G. Ossola,
Phys. Rev. D 82 (2010) 074006 [arXiv:1005.5587]

4. New BLM corrections to contributions from 3-body and 4-body final states
for interferences not involving the photonic dipole

A. Ferroglia and U. Haisch, Phys. Rev. D 82 (2010) 094012 [arXiv:1009.2144]
MM and M. Poradzinski, Phys. Rev. D 83 (2011) 014024 [arXiv:1009.5685]

5. LO contributions from b — syqq, (¢ = u,d, s) from 4-quark operators (“penguin” or CKM-suppressed)
M. Kaminski, MM and M. Poradziniski, Phys. Rev. D 86 (2012) 094004 [arXiv:1209.0965]

6. NLO contributions from b — svqq, (¢ = u,d, s) from interferences of the above operators with Q273
T. Huber, M. Poradzinski, J. Virto, JHEP 1501 (2015) 115 [arXiv:1411.7677]

Taking into account new non-perturbative analyses:
M. Benzke, S. J. Lee, M. Neubert and G. Paz, JHEP 1008 (2010) 099 [arXiv:1003.5012]

T. Ewerth, P. Gambino and S. Nandi, Nucl. Phys. B 830 (2010) 278 [arXiv:0911.2175]
Updating the parameters (Parametric uncertainties go down to 2.0%)

P. Gambino, C. Schwanda, Phys. Rev. D 89 (2014) 014022
A. Alberti, P. Gambino, K. J. Healey, S. Nandi, Phys. Rev. Lett. 114 (2015) 061802



Updated SM estimate for the CP- and isospin-averaged
branching ratio of B — X,y [arXiv:1503.01789, arXiv:1503.01791]:

B = (3.36 £0.23) x 1074
+6.9%

Contributions to the total TH uncertainty (summed in quadrature):

5% non-perturbative, 3% from the interpolation in m,

3% higher order O (043), 2% parametric

S

It is very close the the experimental world average(s):

(a) B?;p = (3.43 4= 0.21 £ 0.07) X 10— 4 [HFAG, arXiv:1412.7515]

+6.5%

(b) Bﬁ,’;p = (3.41 +0.15 £ 0.04) X 104 [Karim Trabelsi, talk at EPS 2015

+4.6%

Experiment agrees with the SM to much better than " 1o level.

—> Strong bounds on the H* mass in the Two-Higgs-Doublet-Model II:

(a) Mg+ > 480 GeV at 95%C.L.
(b) Mg+ > 540 GeV at 95%C.L.



Current flavour-physics bounds in the M+ —tan 3 plane of the 2HDM-II
[from T. Enomoto and R. Watanabe, corrected w.r.t. arXiv:1511.05066v1]
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tan 8 _ | __..-""‘”

4 4

lOl =

107! ; 107! §

—2_ ..................... _ . i i )
1070 200 200 600 800 1000 M 1970 200 400 600 800 1000



B(Bs; — pT ) in the Two-Higgs-Doublet Model 11

6
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Blue lines — still allowed for Mg+ = \/ Mi + M‘%V after taking
into account the LHC searches for Ppp — AO — ’T+T_
[CMS arXiv:1408.3316, ATLAS arXiv:1409.6064].




The direct CP asymmetry in B — X~

A _ [(B—=Xsy) — I(B—X57)
XY I'(B—>X.y) + [(B—X357)

Semi inclusive measurements = A%" = +(1.512.0)% (HFAG 2014 average)

SM estimate [Benzke, Lee, Neubert, Paz, arXiv:1012.3167]:

their
C’1
Cy

AXs'y ~ Im (—Vt’;th T

[A"f7 <. n 40043_2 ( ln my, -l- 412 My _ 71r_52)>:|

9 mb mec

AS — e A e
~ (115 MMy 0.71) % € [—0.6%, +2.8%] using { 20 MoV < Ry < o v

Despite the uncertainties, Ax, ., provides constraints on models
with non-minimal flavour violation. Such models are also constrained by:

" _ T(B-Xqa)7) — T(B—=X(51q9)7) o
X(8+d)7 o I‘(B—)X(8+d)'7) + I‘(B—)X(E_I_J)’Y) ( X(s—l—d)’y )




B—)Xd'y

Lar ~ ViV | S5, CiQi+ ra X5, Ci(Qi — Q)] S

Ql,2

ka = (VigViw)/(VigVis) = (0.00725517) 4 (—0.4041575,5)

B = (1.737335) x 1077
ox for £y = 1.6 GeV
Byl = (1.41 £0.57) X 1077

Bcsly is rough: m;/m, varied between 10 ~ mp/mg and 50 ~ mp/m, — 2% to 11% of By,.
Fragmentation functions give a similar range [H. M. Asatrian and C. Greub, arXiv:1305.6464].

Collinear logarithms and isolated photons

The ratio R,
RSM = (BS};“ n ngd) /Besw = (3.31 & 0.22) x 1073

Generic (but CP-conserving) beyond-SM effects:

Bs, x 10* = (3.36 £ 0.23) — 8.22 AC; — 1.99 ACs,
R, x 10° = (3.31 + 0.22) — 8.05 AC7 — 1.94 ACs.



The “raw” photon energy spectra in the inclusive measurements of B,

1850801-007
T T

(The CP- and isospin-averaged
branching ratio of B — Xv)

which corresponds to a two-body b — s+ decay.

* motion of the b quark inside the B meson,

* motion of the B meson in the Y (4S) frame.
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+ Data | -a) J
— Spectator Model | 6000 #H "
CLEO - { { BELLE ]
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o LT + PRL 109 (2012) 191801
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*2 S0 ] | H © - Broadening is due to (mainly):
E :T J ] * perturbative gluon bremsstrahlung,
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Experimental world averages for Bs~:

BsrP = (3.43 £0.21 +0.07) X 1074 [rac, axiviia12.7515

+6.5% (lowest Ejy only from each exp)

BeXp — (3 41 == 0.15 — 0.04) x 104 [Karim Trabelsi, talk at EPS 2015]

14.6% (Eo = 1.9 GeV only from each exp)

for the photon energy E, > Ey = 1.6 GeV. The averaging involves an
extrapolation from the measurements performed at E, € [1.7,2.0] GeV.

Applying the HFAG extrapolation method to the available B — X~
measurement [BABAR, arXiv:1005.4087], one finds [A. Crivellin, L. Mercolli, arXiv:1106.5499]:

Bf;‘yp = (1.41 £ 0.57) x 107°.
+40%




The HFAG average includes the following measurements:

Reference Method # of BB Ey [GeV] | By, X 10* at Ey
CLEO [PRL 87 (2001) 251807] | inclusive 9.70 x 10° | 2.0 3.06 & 0.41 + 0.26
BABAR [PRL 109 (2012) 191801] | inclusive 3.83 x 108 | 1.8 3.21 + 0.15 + 0.29 + 0.08
1.9 3.00 £ 0.14 4+ 0.19 £+ 0.06
2.0 2.80 & 0.12 4= 0.14 £+ 0.04
BELLE [PRL 103 (2009) 241801] | inclusive 6.57 x 10° | 1.7 3.45 4 0.15 % 0.40
1.8 3.36 £ 0.13 = 0.25
1.9 3.21 £ 0.11 £ 0.16
2.0 3.02 £0.10 = 0.11
BABAR [PRD 77 (2008) 051103] | inclusive with | 2.32 x 10%, | 1.9 3.66 % 0.85 & 0.60
a hadronic tag | which gives | 2.0 3.39 £+ 0.64 4+ 0.47
(hadronic 6.8 x 10° |2.1 2.78 +0.48 £+ 0.35
decay of the tagged 2.2 2.48 4+ 0.38 £ 0.27
recoiling B (B)) | events 2.3 2.07 £ 0.30 £ 0.20
BABAR [PRD 86 (2012) 052012] 4.71 x 10° | 1.9 3.29 + 0.19 + 0.48
BELLE [PLB 511 (2001) 151] 6.07 x 10° | 2.2451.6 | 3.69 & 0.58 = 0.46 & 0.60
BELLE [PRD 91 (2015) 052004] 7.72 x 10 | 1.9 3.51 4 0.17 & 0.33




Comparison of the inclusive measurements of B(B — X,v)
by CLEO, BELLE and BABAR for each E, separately

Averages for each E, extrapolated

B x 10* for each E; [GeV] to Ey = 1.6 GeV using the HFAG factors
4 BELLE, arXiv:0907.1384 1 A rac
657 MBB 2.08.2012
3.5 ? 13-5] l 1 I * | SM. arXiv:1503.01789 |
! S I B SO B
3t { *+ i 3t ]
BABAR, arXiv:1207.2690 *
383 MBB
2.5} 12.5¢
1.6 1.7 1.8 1.9 2 2.1 2.2 1.6 1.7 1.8 1.9 2 2.1 2.2
Scheme E, <17 E, <138 E, <19 E, <20 E, <2.242
Kinetic 0.986 = 0.001 0.968 £+ 0.002 0.939 £+ 0.005 0.903 £ 0.009 0.656 £+ 0.031

The HFAG factors { Neubert SF 0.982 £ 0.002 0.962 £ 0.004 0.930=£0.008 0.888+£0.014 0.665 =+ 0.035
Kagan-Neubert 0.988 +0.002 0.9704+0.005 0.940£0.009 0.892+0.014 0.643 £0.033

Average 0.985+£0.004 0.967 £ 0.006 0.936 £0.010 0.894+£0.016 0.655=+£ 0.037

- Are the HFAG factors trustworthy?



Decoupling of W, Z, t, H’ = effective weak interaction Lagrangian:
Lweak ~ Z C’L Q’L

1
Eight operators Qz matter for ny when the NLO EW and/or CKM-suppressed effects are neglected:

Y g
Cp G q
bL S_ bR S_ bR S_ bL S_
Q1,2 Qr Qs Q3,456
current-current photonic dipole gluonic dipole penguin
. _ 2
I'(B = Xsv7)E,>Ey = |C7(1p)|” T'77(Eo) + (other)  (u~mi/2)
Optical theorem: Integrating the amplitude A over F.:
S 15 B,
dl'77 ] - ,,
T~ Im{ B 5 }=ImA
7 T X, 7 Eo____E7™ .~ ReE,
[ ~ “%?TLB
OPE on . . .. AQCD . .
the ring —> Non-perturbative corrections to F77(E0) form a series in — and (X g that begins with
2 2 3 3 2 2
Hr Ha Pp PLsS . OQsby “sHag .

m%’ m%’ m%’ m% 00 (mp—2Eg)?’ my(mp—2Eg)’ " "

where Ury UGy PDs PLS — O(AQCD) are extracted from the semileptonic B — Xceﬂ spectra
and the B—B™ mass difference.



The O ( Qshin ) and O ( sl ) corrections

(mp—2E)? my(my—2Eo)
[T. Ewerth, P. Gambino and S. Nandi, arXiv:0911.2175]

I'77(Ep) = IT'Eee {1 + (pert. corrections) — ”—’2’2 1 + <2 (fl(EO) — %ln mib)

2ZTnb ! |
—HEG 1 4 2 (£2(Bo) + 2 ) ||
12.5 |
10 |
7.5
s
25— ——————
“os 1 1s
2.5




When (my — 2Ey) ~ A = Aqcp, no OPE can be applied.

Local operators — Non-local operators

Non-perturbative parameters —> Non-perturbative functions
Mp—2E-~
d A
g T = N H(E,) [dk P(Mp—2Ey—k) F(k)+0 (Wb)

pert. pert. non-pert.

0

Photon spectra from models of F'(k) [Ligeti, Stewart, Tackmann, arXiv:0807.1926]

— e T T T T T T T T T T T
T> B c3=c4=0 e ’7._\ . The function F(k) is:
5 2 c3==10.15,¢4=0 71 \\ N * perturbatively related to the standard
— - ——-¢c3=0,c4==20.15 ) .'.‘:,/‘ . '.“-}‘ 5 shape function S(w),
E_ 1.5 = 7 c3=+0.1,c4==+0.1 P ',." " . "-\ | * exponentially suppressed for k& > A,
§: - o 7’\\ 7.9'/ \\\\ . * positive definite,
5 10 // / g "\i-:'\ - * constrained by measured moments
; - ’,’ ‘\ . of the B — X_.ev spectrum (local OPE),
§ 0.5 :— I 255" \‘\ —: . constrai_ned by measuresl properties
e - === \G of the B — X,e and B — X, spectra
= 0= e M S N N NS R D (notimposedintheplot).
1.9 2 21 2.2 23 24 2.5 2.6

E, [GeV]



Upgrading the HFAG factors by fitting F'(k) to data:

- The SIMBA Collaboration [arXiv:1101.3310, arXiv:1303.0958] (work in progress)

F(k) = % > o Cnln (;)}2, frn — basis functions. Truncate and fit.

- Another way: F'(k) = A(k)B(k) and use the SIMBA approach for B(k).

perfect fit

Why do we need to upgrade the HFAG factors?

» The old models (Kagan-Neubert 1998, ...) are not generic enough
(too few parameters).

- Inclusion of O (%) effects and and taking other operators (Q; # Q7)

b
into account is necessary [Benzke, Lee, Neubert, Paz, arXiv:1003.5012].

What about just fitting C; without extrapolation to any particular FE,?

- Fine, but measurements at low E, (even less precise) are still going
to be crucial for constraining the parameter space.

- The fits are going to give the extrapolation factors anyway.
Publishing them is necessary for cross-checks/upgrades by other groups.



Non-perturbative contributions from the photonic dipole operator alone
(“77” term) are well controlled for F; = 1.6 GeV:

n 2\ [Bigi, Blok, Shifman, 3 2 .
ag A A A agA
O ( ns% ) vanish, O ( ) Uraltsev, Vainshtein, 1992], @, —3 | [Bauer, 1997], O | =5 5 [Englt(;’ g}()aé)rg]bmo,
b n=0,1,2, b [Falk, Luke, Savage, 1993], my, my, ’ '

The dominant non-perturbative uncertainty originates from the “27”
interference term:

p | AB 602 — 01 A? mb/\
| _— = — b
WW@M\? 3 el m2 ; O m2 \ 2

The coefficients bn decrease fast with n.

n

2
>\2 ~ (.12 Gev [Voloshin, 1996], [Khodjamirian, Riickl, Stoll, Wyler, 1997]
% el [Grant, Morgan, Nussinov, Peccei, 1997]
from B B mass splitting [Ligeti, Randall, Wise, 1997], [Buchalla, Isidori, Rey, 1997]

Claims by Benzke, Lee, Neubert and Paz in arXiv:1003.5012:

One cannot really expand in mb/\ / mg All such corrections should be treated as /\ / My} ones and

estimated using models of subleading shape functions. Dominant contributions to the estimated +5%
non-perturbative uncertainty in 5 are found this way, with the help of alternating-sign subleading
shape functions that undergo weaker suppression at large gluon momenta.

oA\ Main worry in hep-ph/0609232,

| 1 @, 5 and reason for the

‘ ‘ my . .
2 ! 7 2 | 7

+5% non-perturbative uncertainty.

correction to the above phase-space suppressed



Summary

® The dominant NNLO corrections to B, are now known

not only in the large m. limit, but also at m. = 0.
However, no reduction of uncertainties with respect to the 2006
estimate is possible, except for the parametric one.

e Updated predictions:
B = (3.36 £ 0.23) x 10~*

Bgy (1.7375:53) X 1075
R°M = (3.31 £0.22) x 1073

)

e Completing the calculation of K§7 and Kéi) for arbitrary z = m?/m;j

is necessary to further reduce the perturbative uncertainties in B,,.

® New experimental averages of B,, and IR, should be based on

an improved extrapolation in FE . It will be necessary to take full
advantage of the awaited precise measurements at BELLE-II.
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Comparison to the interpolation in hep-ph/0609241
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GQQ:

(and analogous

Gu & Gia)

ngt

(and analogous G1g)

Gggt

Two-particle cuts Three- and four-particle cuts are known in the BLM

are known (just [NLO|?). approximation only: [Ligeti, Luke, Manohar, Wise, 1999],
[Ferroglia, Haisch, arXiv:1009.2144], [Poradzinski, MM, arXiv:1009.5685].
NLO+(NNLO BLM) corrections are not big (+3.8%).

Evaluation of the (n > 2)-particle cut contributions to ng in the Brodsky-Lepage-Mackienzie (BLM)
approximation (“naive nonabelianization”, large-ﬁo approximation) [Poradzitiski, MM, arXiv:1009.5685]:

( — massless quark,

N, ¢ — number of massless flavours (equals to 3 in

practice because masses of u, d, s are neglected).
Replacement in the final result:

2 _ 2
—sN; — fo=11—35(N, +2).
| ; A The diagrams have been evaluated using the method
> 3 > 3 of Smith and Voloshin [hep-ph/9405204].

Non-BLM contributions to Gij from quark loops on the gluon lines are quasi-completely known.
[Boughezal, Czakon, Schutzmeier, 2007], [Asatrian, Ewerth, Gabrielyan, Greub, 2007], [Ewerth, 2008].



Outlook: generalizing the Ko7 NNLO calculation to arbitrary z = mi / mg.

Method: differential equations in z for the master integrals.

Results for the bare NLO contributions up to O(e):

~(1)2P 92 z2—0 92 1942 26231 259 __2
Gy = — g1 T Jo(2) + €fi(2) > T 8le 243 —I—e(— 729 T 2437 )

10

fo(=)

5+ ; :

e zZ

| | | | ] C | | | |
10~ 7 10°° 0.001 0.1 10 10~ 7 10°° 0.001 0.1 10

Dots: solutions to the differential equations and/or the exact z — 0 limit.
Lines: large- and small-z asymptotic expansions

Large-z expansions of the 11 master integrals are from M. Steinhauser. )\% .
(1)2P, -® E

Small-z expansions of Gy, °" : 2-

fo from C. Greub, T. Hurth, D. Wyler, hep-ph/9602281, hep-ph/9603404,
A. J. Buras, A. Czarnecki, MM, J. Urban, hep-ph/0105160,
f1 from H.M. Asatrian, C. Greub, A. Hovhannisyan, T. Hurth and V. Poghosyan, hep-ph/0505068.




Analogous results for the 3-body final state contributions (6 = 1):

~ >0 !
Gg17)3P — go(z) —|— egl(z) i) _% — %6 %
B ‘ -®

|
2 | 4
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oof [ e ]

L [ )

[ i L : J
-005 7 —05F . -
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107 10> 0.001 0.1 10 10~ 7 10°° 0.001 0.1 10

Dots: solutions to the differential equations and/or the exact z — 0 limit.
Lines: exact result for gg, as well as large- and small-z asymptotic expansions for g; from A. Rehman.

(2) —i—%z—l—gz2+§z(1—2z)sL —|—%z(6z2—4z—|—1)(%2—L2), for z < 3,
gol\z) =
—= — %z—i— gzz —|—§z(1 —22)tA + %z(6z2 — 4z + 1) A?, for z > I,

where s =+/T1—4z, L=In(1+s)—3;Indz, t=+/4z—1, and A = arctan(1/t).



CP-averaged decay rates

. — I'(B?—Xv)+T(B%— X35v) . — I'(B~—Xsy)+T(BT—X357)
0= 5 ’ + = 5 .

CP- and isospin-averaged branching ratio in an untagged measurement at Y (45)

1—rfr7-
Bsy = 7gol ( T+ry + Aot T+ )

where

I' = (FO + I‘i)/2 (isospin average)
Ao+ = (FO — Fi)/(ro + Fj:) (isospin asymmetry)
T = TB+/TBO = 1.076 £ 0.004 (measured lifetime rate)

Ty = f+_/_f00 = 1.059 £+ 0.027 (measured production rate at Y(45))

The term proportional to Ay+ contributes only at a permille level, which follows from the measured value

of Agr = —0.01 £ 0.06 (for E, > 1.9 GeV).

The final state strangeness (—1 for X and 41 for Xz) and neutral B-meson flavours have been specified
upon ignoring effects of the B°B? and K°K° mixing. Taking the K°K° mixing into account amounts to
replacing X, and X3z by X, with an unspecified strangeness sign, which leaves I'y and I'1. invariant. Next,
taking the B°B° mixing into account amounts to using in I'y the time-integrated decay rates of mesons
whose flavour is fixed at the production time. Such a change leaves I'y practically unaffected because
mass eigenstates in the B°B? system are very close to being orthogonal (|p/q| = 1) and having the same

decay width.



Energetic photon production in charmless decays of the B-meson
(By 25 ~1.6GeV) [see MM, arXiv:0911.1651]

A. Without long-distance charm loops:
1. Hard

4. Annihilation

(qq # cc)

2. Conversion 3. Collinear

S S

S
Dominant, well-controlled. O(asA/my), (—1.641.2)%. ~ —0.2% or (+0.841.1)%. Exp. 7°, n, ', w subtracted.
[Benzke, Lee, Neubert, Paz, 2010] [Kapustin,Ligeti,Politzer, 1995] Perturbatively ~ 0.1%.
[Benzke, Lee, Neubert, Paz, 2010]

B. With long-distance charm loops:

E

6. Boosted light cc
state annihilation

(e-g. 7y J/1y Y)

7. Annihilation of c¢ in a heavy (¢s)(gc) state

S S
O(A%/m?), ~+3.1%. Exp. J /1) subtracted (< 1%). O(as(A/M)?) O(asA/M)
[Voloshin, 1996], |...], Perturbatively (including hard): ~ +3.6%. M ~ 2m.,2E., my,.
[Buchalla, Isidori, Rey, 1997] e.g. B[B™ — Dy;(2457)" D*(2007)° | ~1.2%,

[Benzke, Lee, Neubert, Paz, 2010]: add (+1.1 +2.9)% B[B® — D*(2010)* D*(2007)°K~] ~ 1.2%.



44 99 . : D, J. Chay, H. Georgi, B. Grinstein PLB 247 (1990) 399.
The “hard” contribution to B — X7 A.F. Falk, M. Luke, M. Savage, PRD 49 (1994) 3367.
- - 2
Cr()(X707|B) + Co(pup)(X 7105 B) + .|
The “77” term in this sum is “hard”. It is related via the

optical theorem to the imaginary part of the elastic forward
scattering amplitude B(p = 0)v(q) — B(p = 0)v(q): Im{

Goal: calculate the inclusive sum 2. X

}=ImA

When the photons are soft enough, m% = |mp(mp—2E,)| > A® = Short-distance dominance = OPE.
However, the B — X,~v photon spectrum is dominated by hard photons E, ~ my/2.

Once A(FE,) is considered as a function of arbitrary complex E,, ImE,
ImA turns out to be proportional to the discontinuity of A . \
at the physical cut. Consequently,

L pmex . ReE, [GeV]

Emax ) ‘
/ " dE,ImA(E,) ~ ¢ dE., A(E,). U Ly
1 GeV circle \

Since the condition |mp(mp — 2E,)| > A? is fulfilled along the circle,
the OPE coefficients can be calculated perturbatively, which gives

(7)
F . 1(2E, /my) _ ' B
A(E ~ pol‘ynomlal Y O , . B(s=0 (7 B(d = 0)).
( 7)|circle Ej [m?’(l _ 2E7/mb)kf + (04 (H’h d)) < (p )lQlocal 0perat0r| (p )>

Thus, contributions from higher-dimensional operators are suppressed by powers of A/my,.

At (A/my)°: (B(P)|by"b|B(p)) = 2p* = T(B — Xsv) =T(b— XPatony) + O(A/my).
At (A/my)t: Nothing! All the possible operators vanish by the equations of motion.
At (A/my)%  (B(B)b,D'DubB@E)  ~ mp i,

<B(ﬁ)|5vgsGuva'uubv|B(ﬁ)> ~ Mmp l-‘%;»

The HQET heavy-quark field b,(x) is defined by b,(x) = (1 + ¥)b(x) exp(imy v - x) with v = p/mp.



Non-perturbative effects in the presence of other operators (Q; # Q7)

[Benzke, Lee, Neubert, Paz, arXiv:1003.5012].

d _ _
—T(B = X.7) = (Trr-like term) + NE?) Re (C;C;) Fy;(E,).
g 1<J

Remarks:

- The SCET approach is valid for large E, only. It is fine for
E, > Ey ~ %mb ~ 1.6 GeV. Lower cutoffs are academic anyway.

- For such E,, non-perturbative effects in the integrated decay rate
are estimated to remain within 5%. They scale like:

AT A% (known) u, ¢
A 'u,sVub . . b = :
° s » b
my V, Vi (negligible), 2 7
- A A i 1 : D Yrel
* mb’ 2 asﬁb but suppressed by tails of subleading shape functions (“27”),
¢ asﬁb to be constrained by future measurements of the isospin asymmetry (“78”),

1

. aSmAb but suppressed by chl =9 (“88”).

. Extrapolation factors? Tails of subleading functions are less important for them.



