# Theoretical uncertainties in

## b to s leptonic decays





Based on work with David M. Straub, Roman Zwicky (arXiv:1503.05534 [hep-ph])



## Outline

- Status of  $b \rightarrow s$  decays at LHCb
- Overview of uncertainties
- Form factors with light cone sum rules

## How the discrepancy evolved

#### Results from Moriond 2015



## More results from Moriond 2015



Aoife Bharucha aoife.bharucha@cpt.univ-mrs.fr

 $b \rightarrow s$  uncertainties

/ 22

## Summary of devations $> 1.9\sigma$

W. Altmannshofer and D. Straub, arXiv:1411.3161, arXiv:1503.06199v2

| Decay                                       | obs.                    | $q^2$ bin | SM pred.                          | measurement                       |       | pull |
|---------------------------------------------|-------------------------|-----------|-----------------------------------|-----------------------------------|-------|------|
| $ar{B}^0  ightarrow ar{K}^{*0} \mu^+ \mu^-$ | FL                      | [2, 4.3]  | $0.81\pm0.02$                     | $\textbf{0.26} \pm \textbf{0.19}$ | ATLAS | +2.9 |
| $ar{B}^0  ightarrow ar{K}^{*0} \mu^+ \mu^-$ | $F_L$                   | [4,6]     | $\textbf{0.74} \pm \textbf{0.04}$ | $\textbf{0.61} \pm \textbf{0.06}$ | LHCb  | +1.9 |
| $ar{B}^0  ightarrow ar{K}^{*0} \mu^+ \mu^-$ | $S_5$                   | [4,6]     | $-0.33\pm0.03$                    | $-0.15\pm0.08$                    | LHCb  | -2.2 |
| $ar{B}^0 	o ar{K}^{*0} \mu^+ \mu^-$         | $P_5'$                  | [1.1, 6]  | $-0.44\pm0.08$                    | $-0.05\pm0.11$                    | LHCb  | -2.9 |
| $ar{B}^0  ightarrow ar{K}^{*0} \mu^+ \mu^-$ | $P_5'$                  | [4,6]     | $-0.77\pm0.06$                    | $-0.30\pm0.16$                    | LHCb  | -2.8 |
| $B^-  ightarrow K^{*-} \mu^+ \mu^-$         | $10^7 \frac{dBR}{dq^2}$ | [4,6]     | $0.54 \pm 0.08$                   | $0.26\pm0.10$                     | LHCb  | +2.1 |
| $ar{B}^0  ightarrow ar{K}^0 \mu^+ \mu^-$    | $10^8 \frac{dBR}{dq^2}$ | [0.1, 2]  | $2.71\pm0.50$                     | $1.26\pm0.56$                     | LHCb  | +1.9 |
| $ar{B}^0  ightarrow ar{K}^0 \mu^+ \mu^-$    | $10^8 \frac{dBR}{dq^2}$ | [16, 23]  | $0.93 \pm 0.12$                   | $0.37 \pm 0.22$                   | CDF   | +2.2 |
| $B_s 	o \phi \mu^+ \mu^-$                   | $10^7 \frac{dBR}{dq^2}$ | [1,6]     | $\textbf{0.48} \pm \textbf{0.06}$ | $0.23\pm0.05$                     | LHCb  | +3.1 |

## Interpretation in term of NP

W. Altmannshofer and D. Straub, arXiv:1411.3161 [hep-ph]



/22

## Dependence of Observables on Wilson coefficients

| Observable                   | mostly affected by                      |
|------------------------------|-----------------------------------------|
| $S_1^s, S_1^c, S_2^s, S_2^c$ | $C_7, C'_7, C_9, C'_9, C_{10}, C'_{10}$ |
| $S_3$                        | $C'_7, C'_9, C'_{10}$                   |
| $S_4$                        | $C_7, C_7', C_{10}, C_{10}'$            |
| $S_5$                        | $C_7, C_7', C_9, C_{10}'$               |
| $S_6^s$                      | $C_7, C_9$                              |
| $A_7$                        | $C_7, C_7', C_{10}, C_{10}'$            |
| $A_8$                        | $C_7, C_7', C_9, C_9', C_{10}'$         |
| $A_9$                        | $C'_7, C'_9, C'_{10}$                   |
| $S_6^c$                      | $C_S - C'_S$                            |

## Resonances gone topsy turvy

J. Lyon and R. Zwicky, arXiv:1406.0566 [hep-ph]



- Fit (C) using BES II data on  $e^+e^-$  to hadrons
- Defining  $R(s) = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$
- Can relate  $R_c(s) = \frac{3}{2\pi i} \text{Disc}(h_c(s))$  where  $h_c(s)$  parametrizes the charm loop contribution to  $B \to K \ell^+ \ell^-$

### Resonances gone topsy turvy

J. Lyon and R. Zwicky, arXiv:1406.0566 [hep-ph]



 $6.4e^{-i53.3^{\circ}} \ 2.0e^{-i92^{\circ}} \ 1.3e^{-i111^{\circ}} \ 4.3e^{-i135^{\circ}} \ 5.1e^{i153^{\circ}}$ 

## Additional QCD corrections



<sup>9</sup>/<sub>22</sub>

## Resonances gone topsy turvy

#### J. Lyon and R. Zwicky, arXiv:1406.0566 [hep-ph]

| Observable                   | $q^2$                       | LHCb                           | SM     | $\eta_c = -1.25(1,1)$ | -2.5(0,1) | -2.5(1,0) |
|------------------------------|-----------------------------|--------------------------------|--------|-----------------------|-----------|-----------|
| $\langle P_2 \rangle$        | [1.00, 6.00]                | $0.33^{+0.11}_{-0.12}$         | 0.0085 | 0.16                  | -0.013    | 0.33      |
| $\langle P_2 \rangle$        | [2.00, 4.30]                | $0.50^{+0.00}_{-0.07}$         | 0.15   | 0.25                  | 0.067     | 0.39      |
| $\langle P_2 \rangle$        | [4.30, 8.68]                | $-0.25\substack{+0.07\\-0.08}$ | -0.44  | -0.05                 | -0.23     | 0.29      |
| $\langle P_2 \rangle$        | [14.18, 16.00]              | $-0.50^{+0.03}_{-0.00}$        | -0.42  | -0.39                 | -0.36     | -0.36     |
| $\langle P_2 \rangle$        | $\left[16.00, 19.00\right]$ | $-0.32\substack{+0.08\\-0.08}$ | -0.34  | -0.31                 | -0.25     | -0.25     |
| $\langle P'_4 \rangle$       | [1.00, 6.00]                | $0.58^{+0.32}_{-0.36}$         | 0.57   | 0.66                  | 0.8       | 0.64      |
| $\langle P_4' \rangle$       | [2.00, 4.30]                | $0.74^{+0.54}_{-0.60}$         | 0.61   | 0.69                  | 0.82      | 0.67      |
| $\langle P_4' \rangle$       | [4.30, 8.68]                | $1.18^{+0.26}_{-0.32}$         | 1.0    | 1.0                   | 1.2       | 0.98      |
| $\langle P'_4 \rangle$       | [14.18, 16.00]              | $-0.18^{+0.54}_{-0.70}$        | 1.2    | 1.2                   | 1.2       | 1.2       |
| $\langle P'_4 \rangle$       | [16.00, 19.00]              | $0.70^{+0.44}_{-0.52}$         | 1.3    | 1.3                   | 1.3       | 1.3       |
| $\langle P_5' \rangle$       | [1.00, 6.00]                | $0.21^{+0.20}_{-0.21}$         | -0.44  | -0.15                 | -0.33     | 0.17      |
| $\langle P_5' \rangle$       | [2.00, 4.30]                | $0.29^{+0.40}_{-0.39}$         | -0.47  | -0.17                 | -0.36     | 0.13      |
| $\langle P_5' \rangle$       | [4.30, 8.68]                | $-0.19\substack{+0.16\\-0.16}$ | -0.88  | -0.31                 | -0.44     | 0.26      |
| $\langle P_5' \rangle$       | [14.18, 16.00]              | $-0.79^{+0.27}_{-0.22}$        | -0.7   | -0.66                 | -0.59     | -0.61     |
| $\langle P_5' \rangle$       | [16.00, 19.00]              | $-0.60\substack{+0.21\\-0.18}$ | -0.53  | -0.49                 | -0.39     | -0.38     |
| $\langle A_{\rm FB} \rangle$ | [1.00, 6.00]                | $0.17^{+0.06}_{-0.06}$         | 0.0026 | 0.054                 | -0.0033   | 0.14      |
| $\langle A_{\rm FB} \rangle$ | [2.00, 4.30]                | $0.20^{+0.08}_{-0.08}$         | 0.034  | 0.069                 | 0.014     | 0.15      |
| $\langle A_{\rm FB} \rangle$ | [4.30, 8.68]                | $-0.16\substack{+0.05\\-0.06}$ | -0.21  | -0.025                | -0.098    | 0.19      |
| $\langle A_{\rm FB} \rangle$ | [14.18, 16.00]              | $-0.51^{+0.05}_{-0.07}$        | -0.43  | -0.40                 | -0.36     | -0.37     |
| $\langle A_{\rm FB} \rangle$ | [16.00, 19.00]              | $-0.30^{+0.08}_{-0.08}$        | -0.35  | -0.33                 | -0.26     | -0.26     |

## Form factors for exclusive $B \rightarrow V$

- Largest uncertainty in calculation is from form factors: non-perturbative quantities
- LCSR<sup>1</sup> at low  $q^2$ , Lattice<sup>2</sup> at high  $q^2$
- Best coverage in q<sup>2</sup>: fit to LCSR and Lattice using e.g. series expansion, coefficients satisfy dispersive bounds.<sup>3</sup>
- Many people resorting to using soft form factors with corrections in order to include correlations<sup>4</sup>
- Our Aim: resolve this by making correlations available!

<sup>1</sup>see e.g. P. Ball and R. Zwicky, Phys. Rev. D **71** (2005) 014015 [arXiv:hep-ph/0406232] and Phys. Rev. D **71** (2005) 014029 [arXiv:hep-ph/0412079]

<sup>2</sup>see e.g. A. Al-Haydari *et al.* [QCDSF Collaboration], Eur. Phys. J. A **43**, 107 (2010) [arXiv:0903.1664 [hep-lat]]

<sup>3</sup>AB, T. Feldmann, M. Wick, JHEP **1009** (2010) 090 [arXiv:1004.3249 [hep-ph]]

<sup>4</sup>e.g. S. Descotes-Genon, T. Hurth, J. Matias and J. Virto, JHEP **1305** (2013) 137 [arXiv:1303.5794 [hep-ph]], S. Jaeger and J. Martin Camalich, JHEP **1305** (2013) 043 [arXiv:1212.2263 [hep-ph]].

## Form Factor Definitions

### Express hadronic matrix elements via:

 $\langle K^*(p) | \bar{s} \gamma^{\mu} (1 \mp \gamma_5) b | \bar{B}(p_B) \rangle = P_1^{\mu} \mathcal{V}_1(q^2) \pm P_{2,3}^{\mu} \mathcal{V}_{2,3}(q^2) \pm P_P^{\mu} \mathcal{V}_P(q^2)$  $\langle K^*(p) | \bar{s} i q_{\nu} \sigma^{\mu\nu} (1 \pm \gamma_5) b | \bar{B}(p_B) \rangle = P_1^{\mu} T_1(q^2) \pm P_{2,3}^{\mu} T_{2,3}(q^2)$ 

where the Lorentz structures  $P_i^{\mu}$  are

$$\begin{split} P_{P}^{\mu} &= i(\eta^{*} \cdot q)q^{\mu} , \\ P_{1}^{\mu} &= 2\epsilon^{\mu}_{\ \alpha\beta\gamma}\eta^{*\alpha}p^{\beta}q^{\gamma} , \\ P_{2}^{\mu} &= i\{(m_{B}^{2} - m_{K^{*}}^{2})\eta^{*\mu} - (\eta^{*} \cdot q)(p + p_{B})^{\mu}\} , \\ P_{3}^{\mu} &= i(\eta^{*} \cdot q)\{q^{\mu} - \frac{q^{2}}{m_{B}^{2} - m_{K^{*}}^{2}}(p + p_{B})^{\mu}\} \end{split}$$

- Bjorken & Drell convention for the Levi-Civita tensor  $\epsilon_{0123} = +1$
- $\eta$  is the polarization of  $K^*$
- Only 7 independent FFs

## The equation of motion

#### Starting from

 $i\partial^{\nu}(\bar{s}i\sigma_{\mu\nu}(\gamma_5)b) = -(m_s\pm m_b)\bar{s}\gamma_{\mu}(\gamma_5)b + i\partial_{\mu}(\bar{s}(\gamma_5)b) - 2\bar{s}i\overleftarrow{D}_{\mu}(\gamma_5)b,$ 

We obtain the four equation of motion relations:

$$egin{aligned} &T_1(q^2) + (m_b + m_s)\mathcal{V}_1(q^2) + \mathcal{D}_1(q^2) = 0 \ , \ &T_2(q^2) + (m_b - m_s)\mathcal{V}_2(q^2) + \mathcal{D}_2(q^2) = 0 \ , \ &T_3(q^2) + (m_b - m_s)\mathcal{V}_3(q^2) + \mathcal{D}_3(q^2) = 0 \ , \ &(m_b - m_s)\mathcal{V}_P(q^2) + \left(\mathcal{D}_P(q^2) - rac{q^2}{m_b + m_s}\mathcal{V}_P(q^2)
ight) = 0 \ . \end{aligned}$$

where the  $\mathcal{D}_{\iota}s$  are defined via

 $\langle \mathcal{K}^*(p,\eta)|\bar{\mathfrak{s}}(2i\overleftarrow{D})^{\mu}(1\pm\gamma_5)b|\bar{B}(p_B)\rangle = P_1^{\mu}\mathcal{D}_1(q^2)\pm P_{2,3}^{\mu}\mathcal{D}_{2,3}(q^2)\pm P_P^{\mu}\mathcal{D}_P(q^2)$ 

- Isgur-Wise relations at low recoil follow from  $\mathcal{D}_{\iota}/(\mathcal{V}_{\iota} \text{ or } T_{\iota}) \sim \mathcal{O}(\Lambda_{QCD}/m_b)$
- Are certain combinations of D<sub>ι</sub>'s small at large recoil?
- $\iota = 1, 2$  are direct candidates, but  $\iota = 3, P$  more tricky

## Quantifying the EOM

Combine  $\iota = 3, P$  to obtain potentially small ratio of  $\mathcal{D}/T$ 



The deviation from unity (shown for  $B \rightarrow K^*$ ) is a measure of the relative size of the derivative form factor with respect to the tensor and vector form factors.

## Parameters and uncertainties

Choosing  $s_0$  and M2

We carefully choose the sum rules parameters using the following:

- SR depends little on, but is clear extremum as fn of  $s_0$ ,  $M^2$ , SR for  $m_B$  fulfilled,  $(m_B^2 = \int_{m_b^2}^{s_0} ds \, s \, \rho^{\text{tot}}(s) / \int_{m_b^2}^{s_0} ds \, \rho^{\text{tot}}(s))$ ;
- the continuum and higher twist contributions should be under control  $\lesssim$  30%, 10% respectively;
- Correlate  $s_0$  for EOM related FFs, and  $M^2$  for  $FF \times f_B$  and  $f_B$  50%.

Dominant uncertainties arise due to varying the following:

- the continuum threshold  $s_0$  by  $\pm 2 \,\text{GeV}^2$  and the Borel parameter  $M_2$  by  $\pm 1 \,\text{GeV}^2$ ;
- the condensates  $\langle \bar{q}q \rangle = (-0.24 \pm 0.01)^3 \text{GeV}^3$ ,  $\frac{\langle \bar{q}\sigma g Gq \rangle}{\langle \bar{q}q \rangle} = (0.8 \pm 0.2)$
- the twist-3 parameter  $\eta_3$  by  $\pm 50\%$ ;
- the factorisation scale in the range  $\mu/2$  to  $2\mu$ .

## The $V_{ub}$ test



## Results for the form factors



22

## **Resulting Observables**

| $B^0 	o K^{st 0} \mu^+ \mu^-$ |           |                                       |  |  |  |
|-------------------------------|-----------|---------------------------------------|--|--|--|
| Observable                    | $q^2$ bin | SM prediction                         |  |  |  |
|                               | [0.1, 1]  | $1.083 \pm 0.064 \pm 0.147 \pm 0.058$ |  |  |  |
|                               | [1, 2]    | $0.511 \pm 0.025 \pm 0.069 \pm 0.020$ |  |  |  |
| 107 <u>dBR</u>                | [2, 3]    | $0.459 \pm 0.022 \pm 0.064 \pm 0.018$ |  |  |  |
| $\frac{10}{dq^2}$             | [3, 4]    | $0.467 \pm 0.023 \pm 0.062 \pm 0.021$ |  |  |  |
|                               | [4, 5]    | $0.494 \pm 0.026 \pm 0.062 \pm 0.026$ |  |  |  |
|                               | [5, 6]    | $0.530 \pm 0.031 \pm 0.062 \pm 0.032$ |  |  |  |
|                               | [0.1, 1]  | $-0.088\pm0.001\pm0.009\pm0.001$      |  |  |  |
|                               | [1, 2]    | $-0.140\pm0.004\pm0.028\pm0.010$      |  |  |  |
| 4                             | [2, 3]    | $-0.078\pm0.005\pm0.018\pm0.019$      |  |  |  |
| AFB                           | [3, 4]    | $0.002\pm 0.005\pm 0.008\pm 0.025$    |  |  |  |
|                               | [4, 5]    | $0.077 \pm 0.004 \pm 0.016 \pm 0.029$ |  |  |  |
|                               | [5, 6]    | $0.144 \pm 0.004 \pm 0.025 \pm 0.030$ |  |  |  |
|                               | [0.1, 1]  | $0.308 \pm 0.012 \pm 0.052 \pm 0.017$ |  |  |  |
|                               | [1, 2]    | $0.738 \pm 0.009 \pm 0.044 \pm 0.021$ |  |  |  |
| E.                            | [2, 3]    | $0.831 \pm 0.002 \pm 0.031 \pm 0.012$ |  |  |  |
| ΓL                            | [3, 4]    | $0.820 \pm 0.002 \pm 0.033 \pm 0.007$ |  |  |  |
|                               | [4, 5]    | $0.776 \pm 0.004 \pm 0.039 \pm 0.013$ |  |  |  |
|                               | [5, 6]    | $0.723 \pm 0.004 \pm 0.045 \pm 0.019$ |  |  |  |

## Resulting Observables

| $B^0 	o K^{*0} \mu^+ \mu^-$ |          |                                       |  |  |  |
|-----------------------------|----------|---------------------------------------|--|--|--|
| Observable $q^2$ bin        |          | SM prediction                         |  |  |  |
|                             | [0.1, 1] | $0.097 \pm 0.001 \pm 0.004 \pm 0.003$ |  |  |  |
|                             | [1, 2]   | $0.023 \pm 0.005 \pm 0.007 \pm 0.010$ |  |  |  |
| ç                           | [2, 3]   | $-0.081\pm0.005\pm0.012\pm0.013$      |  |  |  |
| 34                          | [3, 4]   | $-0.151\pm0.003\pm0.016\pm0.014$      |  |  |  |
|                             | [4,5]    | $-0.198\pm0.002\pm0.017\pm0.013$      |  |  |  |
|                             | [5, 6]   | $-0.228\pm0.001\pm0.016\pm0.011$      |  |  |  |
|                             | [0.1, 1] | $0.247 \pm 0.002 \pm 0.008 \pm 0.005$ |  |  |  |
|                             | [1, 2]   | $0.119 \pm 0.008 \pm 0.016 \pm 0.021$ |  |  |  |
| <b>C</b> _                  | [2, 3]   | $-0.077\pm0.007\pm0.015\pm0.028$      |  |  |  |
| 55                          | [3, 4]   | $-0.212\pm0.005\pm0.019\pm0.028$      |  |  |  |
|                             | [4,5]    | $-0.300\pm0.005\pm0.021\pm0.026$      |  |  |  |
|                             | [5, 6]   | $-0.356\pm0.004\pm0.019\pm0.022$      |  |  |  |

## Alternative Observables

| $B^0 	o K^{st 0} \mu^+ \mu^-$ |          |                                        |  |  |  |
|-------------------------------|----------|----------------------------------------|--|--|--|
| Observable $q^2$ bin          |          | SM prediction                          |  |  |  |
|                               | [0.1, 1] | $0.252\pm0.004\pm0.005\pm0.008$        |  |  |  |
|                               | [1, 2]   | $0.058 \pm 0.013 \pm 0.018 \pm 0.023$  |  |  |  |
| <b>D</b> ′                    | [2, 3]   | $-0.232\pm0.015\pm0.026\pm0.043$       |  |  |  |
| <b>1</b> 4                    | [3, 4]   | $-0.413 \pm 0.007 \pm 0.020 \pm 0.036$ |  |  |  |
|                               | [4, 5]   | $-0.487 \pm 0.003 \pm 0.016 \pm 0.023$ |  |  |  |
|                               | [5, 6]   | $-0.518\pm0.002\pm0.013\pm0.016$       |  |  |  |
|                               | [0.1, 1] | $0.643 \pm 0.002 \pm 0.009 \pm 0.016$  |  |  |  |
|                               | [1, 2]   | $0.297 \pm 0.017 \pm 0.027 \pm 0.042$  |  |  |  |
| D/                            | [2, 3]   | $-0.223 \pm 0.023 \pm 0.044 \pm 0.086$ |  |  |  |
| 1 5                           | [3, 4]   | $-0.579 \pm 0.013 \pm 0.039 \pm 0.078$ |  |  |  |
|                               | [4, 5]   | $-0.738 \pm 0.014 \pm 0.033 \pm 0.056$ |  |  |  |
|                               | [5,6]    | $-0.809 \pm 0.011 \pm 0.031 \pm 0.040$ |  |  |  |

22

## Interpretation in term of NP

W. Altmannshofer and D. Straub, arXiv:1411.3161 [hep-ph]



Figure 4: Allowed regions in the  $\operatorname{Re}(C_9^{\operatorname{NP}})$ - $\operatorname{Re}(C_9')$  plane (left) and the  $\operatorname{Re}(C_9^{\operatorname{NP}})$ - $\operatorname{Re}(C_{10}^{\operatorname{NP}})$  plane (right). The blue contours correspond to the 1 and  $2\sigma$  best fit regions. The green and red short-dashed contours correspond to the  $2\sigma$  regions in scenarios with doubled form factor uncertainties and doubled uncertainties from sub-leading non-factorizable corrections, respectively.

#### Anomalies in $b \rightarrow s$ transitions

- Anomalies in  $B \to K^* \ell \ell$  angular observables
- NP in  $C_{9/10}^{(\prime)}$  or large charm contribution?

<sup>5</sup> and to David Straub and Roman Zwicky; and Flip Tanedo for letting me use his beamer theme

### Anomalies in $b \rightarrow s$ transitions

- Anomalies in  $B \to K^* \ell \ell$  angular observables
- NP in  $C_{9/10}^{(\prime)}$  or large charm contribution?

### Updated LCSR calculation:

- Prevent community from resorting to soft form factors
- Full correlated errors and fit with Lattice using various parameterizations
- Latest input parameters and use of equation of mation

<sup>5</sup> and to David Straub and Roman Zwicky; and Flip Tanedo for letting me use his beamer theme

### Anomalies in $b \rightarrow s$ transitions

- Anomalies in  $B \to K^* \ell \ell$  angular observables
- NP in  $C_{9/10}^{(\prime)}$  or large charm contribution?

### Updated LCSR calculation:

- Prevent community from resorting to soft form factors
- Full correlated errors and fit with Lattice using various parameterizations
- Latest input parameters and use of equation of mation

### Things for the future:

- Wait and see how experimental results unfold
- Improve understanding of non-perturbative charm contribution

### Thanks for listening!<sup>5</sup>

<sup>5</sup>and to David Straub and Roman Zwicky; and Flip Tanedo for letting me use his beamer theme

### Anomalies in $b \rightarrow s$ transitions

- Anomalies in  $B \to K^* \ell \ell$  angular observables
- NP in  $C_{9/10}^{(\prime)}$  or large charm contribution?

### Updated LCSR calculation:

- Prevent community from resorting to soft form factors
- Full correlated errors and fit with Lattice using various parameterizations
- Latest input parameters and use of equation of mation

### Things for the future:

- Wait and see how experimental results unfold
- Improve understanding of non-perturbative charm contribution

### Thanks for listening!<sup>5</sup>

<sup>5</sup>and to David Straub and Roman Zwicky; and Flip Tanedo for letting me use his beamer theme