

Lepton flavour violation searches and test of lepton flavour universality at LHCb

Francesco Dettori On behalf of the LHCb Collaboration

CERN European Organization for Nuclear Research

LIO international conference on Flavour, Composite models and Dark matter 23-27 November 2015 - IPNL

Introduction

- Lepton flavour universality and conservation are accidents of the SM
- Any evidence of LFV will point directly to new physics
- Despite countless searches in many experiments no evidence of LFV (apart from neutrinos...)
- LHCb starts to play its role in this field

- Searches for Majorana neutrinos
- Search for LFV in $B^0_{(s)} \to e^{\pm} \mu^{\mp}$ and $D^0 \to e^{\pm} \mu^{\mp}$ decays
- Search for LFV in τ decays
- Tests of lepton flavour universality

F. Dettori (CERN)

The LHCb experiment

Large Hadron Collider as flavour factory

- *pp* collisions at 7-8-13 TeV
- Large *b*-quark production in the forward region
- Full *b*-hadrons spectrum
- $\mathcal{L} = 3 4 \cdot 10^{32} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- $\int \mathcal{L} = 3.0 \text{fb}^{-1}$ in Run I $\Rightarrow \mathcal{O}(10^{12}) \ b\bar{b}$ pairs and $\mathcal{O}(10^{13}) \ c\bar{c}$ pairs

LHCb:

- Specialized B-physics experiment
- Forward single arm spectrometer
- Acceptance: $2 < \eta < 5$

The LHCb detector

Excellent vertex and IP resolution

- $\sigma(IP) \simeq 24 \mu m$ at $p_T = 2 \text{ GeV/c}$
- $\sigma_{\rm BV} \simeq 16 \mu {\rm m~in} \; x, y$

Very good momentum resolution

- $\sigma(p)/p = 0.5\% 0.8\%$ for $p \in (0, 100) \text{ GeV/c}$
- $\sigma(m_B) \sim 25 \ {\rm MeV/c^2}$ for two body decays

Muon identification

• $\varepsilon_{\mu} = 98\%, \ \varepsilon_{\pi \to \mu} = 0.6\%, \ \varepsilon_{K \to \mu} = 0.3\%, \ \varepsilon_{p \to \mu} = 0.3\%$

Trigger

• $\varepsilon_{\mu} = 90\%$

Int. J. Mod. Phys. A 30 (2015) 1530022

Search for Majorana neutrinos at LHCb: $B^- \to \pi^+ \mu^- \mu^-$

- Search for Majorana neutrinos $B^- \to \mu^- N(\to \mu \pi)$
- Prompt (no detachment) and detached topologies (up to lifetimes of 1000 ps)
- No excess in the *B* mass: $\mathcal{B}(B^- \to \pi^+ \mu^- \mu^-) < 4.0 \cdot 10^{-9} (95\% \text{CL})$

F. Dettori (CERN)

Search for Majorana neutrinos at LHCb: $B^- \to \pi^+ \mu^- \mu^-$

PRL 112, 131802 (2014)

нcb

Search for Majorana neutrinos at LHCb: $B^- \to \pi^+ \mu^- \mu^-$

 \overline{N}^{2}

 10^{-1}

10⁻²

10⁻⁴

LHCb

1000

2000

3000

Neutrino mass [MeV]

- Upper limits on a fourth generation neutrino coupling $|V_{\mu4}|$
- Model dependent limit versus m_N

 $\begin{aligned} \mathcal{B}(B^- \to \pi^+ \mu^- \mu^-) &= \frac{G_F^4 f_B^2 f_\pi^2 m_B^5}{128 \pi^2 \hbar} |V_{ub} V_{ud}|^2 \tau_B (1 - \frac{m_N^2}{m_B^2}) \frac{m_N}{\Gamma_N} |V_{\mu 4}|^4 \\ \text{Total width parametrised as:} \\ \Gamma_N &= f(m_N) \times |V_{\mu 4}|^2 \end{aligned}$

Search for Majorana neutrinos at LHCb: $D^+_{(s)} \to \pi^- \mu^+ \mu^+$

- Search for non-resonant $D^+_{(s)} \to \pi^+ \mu^+ \mu^-$ (FCNC)
- and LFV $D^+_{(s)} \to \pi^- \mu^+ \mu^+$ decays (Majorana neutrinos?)
- $\mathcal{L} = 1 \mathrm{fb}^{-1}$ at $\sqrt{s} = 7 \mathrm{~TeV}$
- Normalise to $D^+_{(s)} \to \phi(\to \mu\mu)\pi^+$
- No displacement allowed in this case

F. Dettori (CERN)

Lepton violation in τ decays: search for $\tau^- \to \mu^- \mu^+ \mu^-$

- Large inclusive τ production ($\sigma \sim 80 \mu b$) at LHCb
- Clear signature of three muons in the final state

Normalisation

$$\begin{split} \mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) &= \mathcal{B}(D_s^- \to \phi(\to \mu\mu)\pi) \times \\ \frac{f_{\tau}^{D_s}}{\mathcal{B}(D_s^- \to \tau\bar{\nu}_{\tau})} \times \frac{\varepsilon_{cal}}{\varepsilon_{sig}} \times \frac{N_{sig}}{N_{cal}} \end{split}$$

Background discrimination

Three likelihoods

- \mathcal{M}_{3body} : multivariate topological variable to reject multi-body decays and combinatorial
- \mathcal{M}_{PID} : identification likelihood to reject mis-ID
- Invariant mass

Lepton flavour violation in τ decays

- No signal observed
- Upper limit with CLs method at the 90% CL

 $\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) < 4.6 \times 10^{-8}$

- Phase space models used but efficiencies vary of 10 - 20% over the $\mu\mu$

Two most sensitive bins:

12/25

Lepton flavour violation in τ decays

- LHCb limit still not competitive with B-factories
- Combined limit improves

Search for the LFV decays $B^0_{s,d} \to e^{\pm} \mu^{\mp}$

- 1 fb⁻¹ of pp collisions at 7 TeV
- Strategy
 - Search in invariant mass distribution in bins of BDT
 - * Combined search for B_s^0 and B^0
 - * Normalization to $B \to K\pi$ decays
 - * Calibration using $J/\psi \to \ell\ell$ decays

F. Dettori (CERN)

LFV and LFU at LHCb

Search for the LFV decays $B^0_{s,d} \to e^{\pm} \mu^{\mp}$

No signal excess over background is observed

• Limit with CLs method

Upper limits on the branching fractions at 90% CL:

$$\mathcal{B}(B^0 \to e^{\pm} \mu^{\mp}) < 2.8 \times 10^{-9}$$
$$\mathcal{B}(B^0_s \to e^{\pm} \mu^{\mp}) < 1.1 \times 10^{-9}$$

An improvement of a factor 20 over previous experiments

(CERN)

F. Dettori

Search for the LFV decays $B_{s,d}^0 \to e^{\pm} \mu^{\mp}$

• Limits interpreted within the Pati-Salam model:

$$\mathcal{B}(B^0_{(s)} \to e^{\pm} \mu^{\mp}) = \pi \frac{\alpha_S^2(M_{LQ})}{M_{LQ}^4} F^2_{B_{(s)}} m^3_{B_{(s)}} R^2 \frac{\tau_{B_{(s)}}}{\hbar}$$

Limits on different generation-connecting Lepto-quarks

$$\begin{split} M_{LQ|B_s^0 \rightarrow e^{\pm}\mu^{\mp}} &> 107 \text{ TeV/c}^2 \\ M_{LQ|B^0 \rightarrow e^{\pm}\mu^{\mp}} &> 135 \text{ TeV/c}^2 \end{split}$$

Full Run I $(3fb^{-1})$ analysis on the pipeline...

F. Dettori

(CERN)

Phys. Rev.

Lett. 108, 231801 (2012)

F. Dettori

LHCB-PAPER-2015-048 Preliminary

(CERN)

Search for LFV $D^0 \to e^{\pm} \mu^{\mp}$ decays

- Search for tagged $D^{*+} \to D^0 (\to e^{\pm} \mu^{\mp}) \pi^+$ decays
- Full Run I statistics of 3fb⁻¹
- Normalized to $D^{*+} \to D^0 (\to K^- \pi^+) \pi^+$ decays
- Most dangerous background misID $D^0 \rightarrow \pi^+ \pi^-$

No signal observed, set world best limit of:

 $\mathcal{B}(D^0 \to e^\pm \mu^\mp) < 1.5 \times 10^{-8}$ at 90% CL

improving by an order of magnitude on previous limits.

F. Dettori

(CERN)

JHCB-PAPER-2015-048

Preliminary

Phys.

Rev.

Lett.

Test of lepton universality using $B^+ \to K^+ \ell^+ \ell^-$ decays

Ratio of branching fractions of $B^+ \to K^+ e^+ e^-$ and $B^+ \to K^+ \mu^+ \mu^-$ sensitive to lepton universality

$$R_{K} = \frac{\int_{q_{min}^{2}}^{q_{max}^{2}} \frac{d\Gamma[\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})]}{dq^{2}} dq^{2}}{\int_{q_{min}^{2}}^{q_{max}^{2}} \frac{d\Gamma[\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})]}{dq^{2}} dq^{2}} = \left(\frac{N_{K\mu\mu}}{N_{Kee}}\right) \left(\frac{N_{J/\psi(ee)K}}{N_{J/\psi(\mu\mu)K}}\right) \left(\frac{\varepsilon_{Kee}}{\varepsilon_{K\mu\mu}}\right) \left(\frac{\varepsilon_{J/\psi(ee)K}}{\varepsilon_{J/\psi(\mu\mu)K}}\right)$$

- SM prediction is $R_K = 1$ with an uncertainty of $\mathcal{O}(10^{-3})$
- Measurement relative to resonant $B^+ \to J/\psi K^+$ modes

0.5

5

10

Most precise measurement to date, compatible with SM at 2.6σ level

The branching fraction of $B^+ \to e^+ e^- K^+$ is measured as $\mathcal{B}(B^+ \to e^+ e^- K^+) = 1.56^{+0.19}_{-0.15} (\text{stat})^{+0.06}_{-0.05} (\text{syst}) \times 10^{-7}$ well compatible with SM predictions

SM

20 $q^2 \,[{\rm GeV}^2/c^4]$

[LHCb - PRL 113, 151601] [BaBar - PRD 86 (2012) 032012] [Belle - PRL 103 (2009) 171801]

F. Dettori (CERN)

Measurement of the Ratio of Branching Fractions $\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})$

- $\mathcal{R}(D^*)$ is sensitive to NP coupling asymmetrically to lepton generations: e.g. a charged Higgs
- BaBar have reported discrepancies on $\mathcal{R}(D^*)$ and $\mathcal{R}(D)$ of 2.7 σ and 2.0 σ respectively
- SM prediction is very precise 0.252 ± 0.003
- First measurement of these decays at a hadron collider
- Strategy:
 - $D^{*+} \to D^0 (\to K^- \pi^+) \pi^+$ combined with muons
 - Trigger unbiased w.r.t. muons
 - Multivariate method to separate from other tracks (to suppress $B \rightarrow D^*(n\pi)\ell$ decays)

Measurement of the Ratio of Branching Fractions $\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})$

• Simultaneous templated fits in 3 variables in the B rest-frame

*
$$q^2 = |p_B - p_D|^2$$
,
* $m_{\text{miss}}^2 = |p_B - p_D - p_\mu$
* E^*

- Fit also to background-enriched components to understand some of the components
- Large statistics: $N(\bar{B}^0 \to D^{*+}\mu^- \bar{\nu}_{\mu}) = 363000$ $\frac{N(\bar{B}^0 \to D^{*+}\tau^- \bar{\nu}_{\tau})}{N(\bar{B}^0 \to D^{*+}\mu^- \bar{\nu}_{\mu})} = (4.54 \pm 0.46) \times 10^{-2}$
- Form factor uncertainties folded into the fit
- Additional sources of systematics are sub-dominant

Measurement of the Ratio of Branching Fractions $\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})/\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})$ After efficiencies correction:

 $\mathcal{R}(D^*) = 0.336 \pm 0.034$

in agreement with previous measurements and 2.1σ away from SM prediction of 0.252 ± 0.003

(CERN)

F. Dettori

- Only a selection of the LHCb analyses presented here
- Some of the presented measurements were performed on 1/3 of the statistics and are being updated with full Run I data.
- Re-optimized analysis will increase sensitivity beyond luminosity scaling
- Many additional "typical" channels are being probed on which world best limits are expected
 - * $B \to he\mu$ and $B \to hh'e\mu$
- Some more challenging possibilities are also being developed
 - * Inclusive searches for Majorana neutrinos
 - * $B \to h\mu\tau$ and $B \to hh'\mu\tau$
- Lepton Universality:
 - * R_{K^*} and R_{ϕ} in the pipeline

- Lepton flavour conservation and universality are accidents of the SM
- Much smaller and more controlled theoretical uncertainties
- Any evidence of LFV or LFNU would point directly to new physics
- LHCb is putting tight constraints on LFV observables
- Two about 2σ indications of LFNU are seen in $B \to K\ell\ell$ and $B \to D^*\ell\nu$ decays
- These can be confirmed already with other channels in Run I
- Run II already has 0.3 fb^{-1} on tape... the best is yet to come

Additional material

LFV and LFU at LHCb

23/11/2015 26/25