LFV in B decays

Diego Guadagnoli LAPTh Annecy (France)

Main line of argument based on Glashow, DG, Lane, PRL 2015

Renewed interest in B-decay LFV is motivated by the following pieces of exp info (LHCb):

$$
R_K = \frac{BR(B^+ \to K^+ \mu \mu)_{[1,6]}}{BR(B^+ \to K^+ e e)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)
$$

$$
R_K = \frac{BR(B^+\rightarrow K^+\mu\mu)_{[1,6]}}{BR(B^+\rightarrow K^+ee)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)
$$
 In the SM $R_{\kappa} = 1 + O(0.01)$
from radiative QED effects [Isidori et al.]

 $\overline{}$

BR(*B*

Renewed interest in B-decay LFV is motivated by the following pieces of exp info (LHCb):

$$
R_K = \frac{BR(B^+\rightarrow K^+\mu\mu)_{[1,6]}}{BR(B^+\rightarrow K^+ee)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)
$$
 In the SM $R_{\kappa} = 1 + O(0.01)$
from radiative QED effects [Isidori et al.]

 $\overline{}$

$$
BR(B^+\rightarrow K^+\mu\mu)_{[1,6]} = (1.19 \pm 0.07) \cdot 10^{-7}
$$

vs.

$$
BR(B^+ \to K^+ \mu \mu)_{[1,6]}^{\text{SM}} = 1.75^{+0.60}_{-0.29} \times 10^{-7}
$$

[Bobeth, Hiller, van Dick (2012)]

BR(*B*

Renewed interest in B-decay LFV is motivated by the following pieces of exp info (LHCb):

$$
R_K = \frac{BR(B^+\rightarrow K^+\mu\mu)_{[1,6]}}{BR(B^+\rightarrow K^+ee)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)
$$
 In the SM $R_{\kappa} = 1 + O(0.01)$
from radiative QED effects [Isidori et al.]

 $\overline{}$

$$
BR(B^+\to K^+\mu\mu)_{[1,6]} = (1.19\pm 0.07)\cdot 10^{-7}
$$

vs.

$$
BR(B^+ \to K^+ \mu \mu)_{[1,6]}^{\text{SM}} = 1.75^{+0.60}_{-0.29} \times 10^{-7}
$$

[Bobeth, Hiller, van Dick (2012)]

8 $BR(B^+ \to K^+ e e)_{[1,6]}$

agrees with the SM (within large errors)

Renewed interest in B-decay LFV is motivated by the following pieces of exp info (LHCb):

$$
R_K = \frac{BR(B^+\rightarrow K^+\mu\mu)_{[1,6]}}{BR(B^+\rightarrow K^+ee)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)
$$
 In the SM $R_{\kappa} = 1 + O(0.01)$
from radiative QED effects [Isidori et al.]

$$
BR(B+ → K+µµ)_{[1,6]} = (1.19 ± 0.07) · 10-7
$$

\n*vs.*
\n
$$
BR(B+ → K+µµ)_{[1,6]}^{SM} = 1.75+0.60-0.29 × 10-7
$$

\n[Bobeth, Hiller, van Dick (2012)]

8 $BR(B^+ \to K^+ e e)_{[1,6]}$

agrees with the SM (within large errors)

nte

- *muons are among the most reliable objects within LHCb*
- *the electron channel would be an obvious culprit (brems + low stats). But there is no disagreement*

Renewed interest in B-decay LFV is motivated by the following pieces of exp info (LHCb):

6

\n
$$
R_{K} = \frac{BR(B^{+} \rightarrow K^{+} \mu \mu)_{[1,6]}}{BR(B^{+} \rightarrow K^{+} \mu \mu)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)
$$
\n**6**

\n
$$
BR(B^{+} \rightarrow K^{+} \mu \mu)_{[1,6]} = (1.19 \pm 0.07) \cdot 10^{-7}
$$
\nvs.

\n
$$
BR(B^{+} \rightarrow K^{+} \mu \mu)_{[1,6]}^{SM} = 1.75^{+0.60}_{-0.29} \times 10^{-7}
$$
\n**6**

\n**6**

\n**7**

\n**8**

\n**8**

\n
$$
BR(B^{+} \rightarrow K^{+} \mu \mu)_{[1,6]}^{SM} = 1.75^{+0.60}_{-0.29} \times 10^{-7}
$$
\n**8**

\n**8**

\n**8**

\n**8**

\n
$$
BR(B^{+} \rightarrow K^{+} e e)_{[1,6]}
$$
\n**9**

\n**10**

\n**11**

\n**13**

\n**14**

\n**15**

\n**16**

\n**17**

\n**18**

\n**19**

\n**10**

\n**10**

\n**11**

\n**13**

\n**14**

\n**15**

\n**16**

\n**17**

\n**18**

\n**19**

\n**10**

\n**10**

\n**11**

\n**13**

\n**15**

\n**16**

\n**17**

\n**18**

\n**19**

\n

 $\mathbf{0} + \mathbf{\Theta} + \mathbf{\Theta}$ \implies There seems to be BSM LFNU *and the effect is in µµ, not ee*

D. Guadagnoli, LFV in B decays

Basic observation:

In the presence of LFNU at a non-SM level, one expects also LFV at a non-SM level.

 \mathbf{T}

 Concerning Q2: most immediate signatures to expect

Basic observation:

In the presence of LFNU at a non-SM level, one expects also LFV at a non-SM level. \bullet

In fact:

Consider a new, LFNU interaction above the EWSB scale, e.g. with

new vector bosons: $\overline{\ell}$ $\mathsf{Z}'\ell$ *or leptoquarks:* $\overline{\ell}$ φ q

In what basis are quarks and leptons in the above interaction?

Generically, it's not the mass eigenbasis. (This basis doesn't yet even exist. We are above the EWSB scale.) **Concerning Q2:** most immediate signatures to expect

Basic observation:

In the presence of LFNU at a non-SM level, one expects also LFV at a non-SM level. **O**

In fact:

Consider a new, LFNU interaction above the EWSB scale, e.g. with

new vector bosons: $\overline{\ell}$ *Z'* ℓ *or leptoquarks:* $\overline{\ell}$ φ *q*

In what basis are quarks and leptons in the above interaction?

Generically, it's not the mass eigenbasis. (This basis doesn't yet even exist. We are above the EWSB scale.)

Rotating q and t to the mass eigenbasis generates LFV interactions.

Take the SM with zero ^ν *masses.*

 Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Take the SM with zero ^ν *masses.*

 Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Or more generally, take the SM plus a minimal mechanism for ^ν *masses.*

• Physical LFV will appear in W couplings, but it's suppressed by powers of (m_{ν} / m_{ν})²

Take the SM with zero ^ν *masses.*

 Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Or more generally, take the SM plus a minimal mechanism for ^ν *masses.*

• Physical LFV will appear in W couplings, but it's suppressed by powers of (m_{ν} / m_{ν})²

*Bottom line: in the SM+*ν *there is LFNU, but LFV is nowhere to be seen (in decays)*

Take the SM with zero ^ν *masses.*

 Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Or more generally, take the SM plus a minimal mechanism for ^ν *masses.*

• Physical LFV will appear in W couplings, but it's suppressed by powers of (m_{ν} / m_{ν})²

*Bottom line: in the SM+*ν *there is LFNU, but LFV is nowhere to be seen (in decays)*

But nobody ordered that the reason (=tiny m_v) behind the above conclusion be at work also beyond the SM \bullet

Take the SM with zero ^ν *masses.*

 Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Or more generally, take the SM plus a minimal mechanism for ^ν *masses.*

• Physical LFV will appear in W couplings, but it's suppressed by powers of (m_{ν} / m_{ν})²

*Bottom line: in the SM+*ν *there is LFNU, but LFV is nowhere to be seen (in decays)*

But nobody ordered that the reason (=tiny m_v) behind the above conclusion be at work also beyond the SM \bullet

So, BSM LFNU \implies *BSM LFV (i.e. not suppressed by m_v)*

- *Take Minimal Flavor Violation (MFV) in the lepton sector*
	- *By def, in MFV the only sources of flavor violation are the SM ones, i.e. the SM Yukawas*
	- *Tricky to define MFV in the lepton sector: we don't know whether LH* ν *are Dirac or Majorana and whether RH* ν *exist at all. Must-read ref: Cirigliano-Grinstein-Isidori-Wise, NPB 2005*

- *By def, in MFV the only sources of flavor violation are the SM ones, i.e. the SM Yukawas*
- *Tricky to define MFV in the lepton sector: we don't know whether LH* ν *are Dirac or Majorana and whether RH* ν *exist at all. Must-read ref: Cirigliano-Grinstein-Isidori-Wise, NPB 2005*
- *Bottom line: In such scenarios, LFV couplings are related to LH* ν *masses. (Neglecting CPV in the LH* ν *mass matrix, the above statement is generic within MLFV.)*

BGL models are a proposal to solve the monstrous flavor problem of general 2HDM (tree-level FCNCs)

D. Guadagnoli, LFV in B decays

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data \bullet *to* \bullet

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data \bullet *to* \bullet

Consider the following Hamiltonian

$$
H_{\text{SM+NP}}(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4 \pi} \left[\bar{b}_L \gamma^{\lambda} s_L \cdot \left(C_9^{(\mu)} \overline{\mu} \gamma_{\lambda} \mu \right) + C_{10}^{(\mu)} \overline{\mu} \gamma_{\lambda} \gamma_5 \mu \right]
$$

purely vector lepton current

purely axial lepton current

 Let's now turn to Q1: *Can we (easily) make sense of data* \bullet to \bullet ? *It is highly non-trivial that a simple consistent BSM picture exists to describe the above data* \bullet *to* \bullet *Consider the following Hamiltonian purely vector purely axial lepton current lepton current* $4 G_F$ α_{em} $V_{tb}^* V_{ts}$ $\left| \overline{b}_L \gamma^{\lambda} s_L \cdot (C_9^{(\mu)} | \overline{\mu} \gamma_{\lambda} \mu) + C_{10}^{(\mu)} | \overline{\mu} \gamma_{\lambda} \gamma_5 \mu) \right|$ $H_{\text{SM+NP}}(\bar{b} \rightarrow \bar{s} \mu \mu) = 4\pi$ $\sqrt{2}$ • *Note:* $C_9^{\text{SM}}(m_b) \approx +4.2$ $C_{10}^{\rm SM}(m_b) \approx -4.4$ **[Bobeth, Misiak, Urban, 99]**

Let's now turn to Q1:		
Can we (easily) make sense of data ① to ⑤?		
It is highly non-trivial that a simple consistent BSM picture exists to describe the above data ① to ⑤		
Consider the following Hamiltonian	purely vector	purely vector
$H_{SM+NP}(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4G_F}{\sqrt{2}} V_{ab}^* V_{bs} \frac{\alpha_{em}}{4\pi} \left[\bar{b}_L \gamma^k s_L \cdot \left[C_9^{[u]} (\bar{u} \gamma_k \mu) + C_{10}^{[u]} (\bar{u} \gamma_k \gamma_5 \mu) \right]$		
Note: $C_9^{SM}(m_b) \approx +4.2$ $C_9^{SM}(m_b) \approx -4.4$ $C_{20}^{SM}(m_b) \approx -4.4$ $C_{20}^{SM}(m_b) \approx -C_{10}^{SM}(m_b)$ $C_9^{SM}(m_b) \approx -C_{10}^{SM}(m_b)$ $C_9^{SM}(m_b) \approx -C_{10}^{SM}(m_b)$ $C_9^{SM}(m_b) \approx -C_{10}^{SM}(m_b)$ $C_9^{SM}(m_b) \approx -C_{10}^{SM}(m_b)$ $C_{10}^{SM}(m_b) \approx -C_{10}^{SM}(m_b)$ $C_{10}^{SM}($		

D. Guadagnoli, LFV in B decays

$$
k_{\rm SM} C_9^{(\mu)} = k_{\rm SM} C_{9, \rm SM} + \frac{G}{2} (U_L^d)_{33}^* (U_L^d)_{32} | (U_L^{\ell})_{32} |^2
$$

Explaining b
$$
\rightarrow
$$
 s data

\n**Recalling our full Hamiltonian**

\n
$$
H_{\text{SM+NP}}(\overline{b} \rightarrow \overline{s} \mu \mu) = \left(\frac{4 \, G_F}{\sqrt{2}} \, V_{tb}^* V_{ts} \, \frac{\alpha_{em}}{4 \pi} \middle| \overline{b}_L \, \chi^{\lambda} s_L \cdot \left(C_9^{(\mu)} \, \overline{\mu} \, \chi_{\lambda} \mu + C_{10}^{(\mu)} \, \overline{\mu} \, \chi_{\lambda} \chi_{5} \mu \right) \right]
$$

$$
k_{\rm SM} C_9^{(\mu)} = k_{\rm SM} C_{9, \rm SM} + \frac{G}{2} (U_L^d)_{33}^* (U_L^d)_{32} | (U_L^t)_{32} |^2
$$

= $\beta_{\rm SM}$

Explaining b → s data	
Recalling our full Hamiltonian	$k_{\text{SM}} \text{ (SM norm. factor)}$
$H_{\text{SM+NP}}(\overline{b} \rightarrow \overline{s} \mu \mu) = \left(\frac{4 \, G_F}{\sqrt{2}} \, V_{tb}^* V_{ts} \frac{\alpha_{em}}{4 \pi} \right) \left[\overline{b}_L \gamma^{\lambda} s_L \cdot \left(C_9^{(\mu)} \, \overline{\mu} \, \gamma_{\lambda} \mu + C_{10}^{(\mu)} \, \overline{\mu} \, \gamma_{\lambda} \gamma_5 \mu \right) \right]$	

$$
k_{\rm SM} C_9^{(\mu)} = k_{\rm SM} C_{9, \rm SM} + \left[\frac{G}{2} \left(U_L^d \right)_{33}^* \left(U_L^d \right)_{32} \left| (U_L^e)_{32} \right|^2 \right]
$$

= $\beta_{\rm SM} + \beta_{\rm NP}$

The NP contribution has opposite sign than the SM one if

$$
G\left(U_L^d\right)_{32} < 0
$$

Explaining b → s data

\nRecalling our full Hamiltonian

\n
$$
H_{\text{SM+NP}}(\bar{b} \rightarrow \bar{s} \mu \mu) = \left(\frac{4 \, G_F}{\sqrt{2}} \, V_{tb}^* V_{ts} \, \frac{\alpha_{em}}{4 \pi} \bigg| \bar{b}_L \gamma^{\lambda} s_L \cdot \left(C_9^{(\mu)} \, \bar{\mu} \, \gamma_{\lambda} \mu + C_{10}^{(\mu)} \, \bar{\mu} \, \gamma_{\lambda} \gamma_5 \mu \right) \right)
$$

$$
k_{\rm SM} C_9^{(\mu)} = k_{\rm SM} C_{9, \rm SM} + \frac{G}{2} (U_L^d)_{33}^* (U_L^d)_{32} | (U_L^{\ell})_{32}|^2
$$

= $\beta_{\rm SM} + \beta_{\rm NP}$

The NP contribution has opposite sign than the SM one if

$$
G\left(U_L^d\right)_{32} < 0
$$

On the other hand, in the ee-channel

$$
k_{\rm SM} C_9^{(e)} = k_{\rm SM} C_{9, \rm SM} + \frac{G}{2} (U_L^d)_{33}^* (U_L^d)_{32} | (U_L^t)_{31} |^2
$$

Explaining b
$$
\rightarrow
$$
 s data
\n**Recalling our full Hamiltonian**
\n
$$
H_{SM+NP}(\bar{b} \rightarrow \bar{s}\mu\mu) = \frac{4G_F}{\sqrt{2}} V_{ab}^* V_{bs} \frac{\alpha_{em}}{4\pi} \Big[\bar{b}_L y^k s_L \cdot (C_g^{[u]} \bar{\mu} y_k \mu + C_{10}^{[u]} \bar{\mu} y_k y_5 \mu) \Big]
$$
\nthe shift to the C_g Wilson coeff. in the $\mu\mu$ -channel becomes
\n
$$
k_{SM} C_g^{(u)} = \frac{k_{SM} C_{9,SM}}{4} + \frac{\frac{G}{2} (U_L^d)_{33}^* (U_L^d)_{32} | (U_L^f)_{32}|^2}{\beta_{NP}} \qquad \qquad \left(\begin{array}{c} \text{The NP contribution has opposite sign than the SM one if} \\ \text{opposite sign than the SM one if} \\ \text{G } (U_L^d)_{32} < 0 \end{array}\right)
$$
\n**On the other hand, in the ee-channel**
\n
$$
k_{SM} C_g^{(e)} = k_{SM} C_{9,SM} + \frac{G}{2} \frac{U_L^*}{(U_L^*)_{33}^* U_L^* s_{34}^* [U_L^f]_{31}|^2} \Big]
$$
\n
$$
\approx \beta_{SM}
$$

 \mathbf{r}^{\prime}

$$
0.77 \pm 0.20 = \frac{BR(B_s \rightarrow \mu \mu)_{\text{exp}}}{BR(B_s \rightarrow \mu \mu)_{\text{SM}}} = \frac{BR(B_s \rightarrow \mu \mu)_{\text{SM+NP}}}{BR(B_s \rightarrow \mu \mu)_{\text{SM}}} = \frac{B(R_{\text{SM}} \rightarrow B_{\text{NP}})}{B_{\text{SM}}^2}
$$

D. Guadagnoli, LFV in B decays

$$
\boxed{\text{LFV model signatures}}
$$
\n
$$
\boxed{\text{BR}(B^+ \rightarrow K^+ \mu e)} = \frac{\beta_{\text{NP}}^2}{(\beta_{\text{SM}} + \beta_{\text{NP}})^2} \cdot \frac{[(U_L^f)_{31}]^2}{[(U_L^f)_{32}]^2} \cdot 2
$$

$$
\boxed{\Box \quad \frac{BR(B^+\rightarrow K^+\mu e)}{BR(B^+\rightarrow K^+\mu \mu)}} = \boxed{\frac{\beta_{\rm NP}^2}{(\beta_{\rm SM}+\beta_{\rm NP})^2}} \begin{bmatrix} \frac{|(U_L^{\ell})_{\rm 31}|^2}{|(U_L^{\ell})_{\rm 32}|^2} \\ \frac{|(U_L^{\ell})_{\rm 31}|^2}{\mu \nu \cdot \lambda \mu \nu} \end{bmatrix}}}{\text{modes}}
$$
\n
$$
BR(B^+\rightarrow K^+\mu e) < 2.2 \times 10^{-8} \cdot \frac{|(U_L^{\ell})_{\rm 31}|^2}{|(U_L^{\ell})_{\rm 32}|^2} \qquad \left(\begin{array}{c} \text{The current BR(B^+ \rightarrow K^+ \mu e)} \\ \text{imrt yields the weak bound} \\ |(U_L^{\ell})_{\rm 31}/(U_L^{\ell})_{\rm 32}| < 3.7 \end{array}\right)}
$$

CPV model signatures

\n
$$
\overline{BR}(B^+\rightarrow K^+ \mu e) = \frac{\beta_{\text{NP}}^2}{(\beta_{\text{SM}} + \beta_{\text{NP}})^2} = \frac{\left| (U_L^{\ell})_{31} \right|^2}{\left| (U_L^{\ell})_{32} \right|^2} = \frac{2}{2.5459}
$$
\n**BR(B⁺ \rightarrow K^+ \mu e) < 2.2×10⁻⁸**

\n
$$
\overline{BR}(B^+ \rightarrow K^+ \mu e) < 2.2 \times 10^{-8} \cdot \frac{\left| (U_L^{\ell})_{31} \right|^2}{\left| (U_L^{\ell})_{32} \right|^2}
$$
\n**BR(B⁺ \rightarrow K^+ \mu e) < 2.2×10⁻⁸**

\n
$$
\overline{BR}(B^+ \rightarrow K^+ \mu e) < 2.2 \times 10^{-8} \cdot \frac{\left| (U_L^{\ell})_{31} \right|^2}{\left| (U_L^{\ell})_{32} \right|^2}
$$
\n**BR(B⁺ \rightarrow K^+ \mu \tau)** would be even more promising, as it scales with $\left| (U_L^{\ell})_{33} / (U_L^{\ell})_{32} \right|^2$ (a potential enhancement factor, actually)

 \mathbf{r}

LFV model signatures																																							
$\overline{BR}(B^+\rightarrow K^+\mu e)$	$= \frac{\beta_{\rm NR}^2}{(\beta_{\rm SM} + \beta_{\rm NP})^2} \begin{bmatrix} (U_L^f)_{31} ^2 \\ (U_L^f)_{32} ^2 \\ \text{involors} \end{bmatrix}$	2																																					
$BR(B^+\rightarrow K^+\mu e) < 2.2 \times 10^{-8}$	$\frac{ (U_L^f)_{31} ^2}{ (U_L^f)_{32} ^2}$	T	<math display="</td>																																				

 \mathbf{r}^{\prime}

Analogous considerations hold for purely leptonic LFV decays

$$
\nabla \quad \frac{BR(B_s \to \mu e)}{BR(B_s \to \mu \mu)} = \frac{\beta_{\rm NP}^2}{(\beta_{\rm SM} + \beta_{\rm NP})^2} \cdot \frac{|(U_L^{\ell})_{31}|^2}{|(U_L^{\ell})_{32}|^2}
$$

☑ *Again, B^s → µ would be even more promising*

Analogous considerations hold for purely leptonic LFV decays

$$
\nabla \quad \frac{BR(B_s \to \mu e)}{BR(B_s \to \mu \mu)} = \frac{\beta_{\rm NP}^2}{(\beta_{\rm SM} + \beta_{\rm NP})^2} \cdot \frac{|(U_L^{\ell})_{31}|^2}{|(U_L^{\ell})_{32}|^2}
$$

☑ *Again, B^s → µ would be even more promising*

 \overline{M} An interesting signature outside B physics would be $K \rightarrow \pi \ell \ell'$

Note, instead, that the "K-physics analogue" of $R_{\scriptscriptstyle K}$ *:*

BR($K \rightarrow \pi \mu \mu$) $BR(K \rightarrow \pi e e)$ *less interesting as it is long-distance dominated [see D'Ambrosio et al., 1998]*

The 5 flavor-SU(3) rotations are not all independent. Choosing 3 to be the independent ones allows to predict one SM Yukawa in terms of the other two.

D. Guadagnoli, LFV in B decays

LFV predictions in one of the two scenarios of [DG, Lane]

All predictions are phase-space corrected.

