

Constraints on Wilson Coefficients from $b \rightarrow s$ transitions

Siavash Neshatpour

Institute for research in Fundamental Sciences (IPM)

In collaboration with T. Hurth and N. Mahmoudi

LIO international conference on Flavour, Composite models and Dark matter 23-27 November 2015

Rare *B* decays

$\mathbf{b} \rightarrow \mathbf{s}$ transitions

loop suppressed in the SM

- \Rightarrow Very sensitive to New Physics
- $b \rightarrow s$ transitions are multi-scale processes (M_W , m_b , Λ_{QCD})

Low and high energies separated with **O**perator **P**roduct **E**xpansion

$$
H_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{1,10,S,P} (C_i O_i + C'_i O'_i)
$$

- Long distance: represented by local operators O_i
- Short distance: Wilson coefficients C_i

contain all the high energy physics effects

New physics in the effective framework:

- Modified Wilson coefficients: $C_i = C_i^{SM} + C_i^{NP}$
- Additional New Physics operators: $\Sigma_i C_i^{\text{NP}} O_i^{\text{NP}}$

Rare *B* decays

$\mathbf{b} \rightarrow \mathbf{s}$ transitions

loop suppressed in the SM

- \Rightarrow Very sensitive to New Physics
- $b \rightarrow s$ transitions are multi-scale processes $(M_W, m_b, \Lambda_{\text{QCD}})$

Low and high energies separated with **O**perator **P**roduct **E**xpansion

$$
H_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{1,10,S,P} (C_i O_i + C'_i O'_i)
$$

• Electromagnetic dipole $\mathit{O}_{7}^{(\prime)} \propto m_b$ $\bar{s} \sigma_{\mu\nu} P_{R(L)} b$ $F^{\mu\nu}$

Semileptonic $O_9^{(\prime)} \propto \bar{s} \gamma^{\mu} P_{L(R)} \bar{\ell} \gamma_{\mu} \ell$ $O_{10}^{(\prime)} \propto \bar{s} \gamma^{\mu} P_{L(R)} \bar{\ell} \gamma_{\mu} \gamma_5 \ell$ W **WWW**

Many experimental data available, each sensitive to one or more Wilson coefficient **Inclusive decays**

- $B \to X_s \gamma(BR)$ \longrightarrow $C_7^{(7)}$
- $B \to X_s \ell^+ \ell^- (BR) \longrightarrow$ fixed combination of $C_7^{(1)}$, $C_9^{(1)}$, $C_{10}^{(1)}$ Large experimental uncertainties, improvement expected from Belle II

Exclusive decays

• $B \to K^* \gamma(BR)$ \longrightarrow C_7° $C_7^{(7)}$ • $B_s \rightarrow \mu^+ \mu$ \rightarrow fixed combination of $C_{10}^{(1)}$, $C_{S}^{(1)}$, $C_{P}^{(2)}$ • $B \to K \ell^+ \ell^-$ (*BR*, angular obs.) • $\boxed{B \rightarrow K^* \ell^+ \ell^- (BR, angular obs.)}$ various combinations of $C_7^{(r)}$, $C_9^{(r)}$, $C_{10}^{(r)}$ • $B_s \to \phi \ell^+ \ell^-$ (*BR*, angular obs.)

Theoretical framework of $B \to K^* \ell^+ \ell^-$

Observed in experiment: $B \to K^*$ ($\to K^+\pi^-$) $\ell^+ \ell^-$

Angular behavior of K^+ and $\pi^- \longrightarrow$ additional information on the helicity of K^* Diff. decay distribution described by dilepton invariant mass q^2 and three angles $\theta_{K^*}, \theta_{\ell}, \phi$ d^4 Γ $\frac{1}{dq^2dcos\theta_{K^*}dcos\theta_{\ell}dcos\phi} =$ 9 $\frac{\partial}{\partial 2\pi} J(q^2, \theta_{K^*}, \theta_{\ell}, \phi)$

 $J(q^2, \theta_{K^*}, \theta_{\ell}, \phi) = \sum_i J_i(q^2) f_i(\theta_{K^*}, \theta_{\ell}, \phi)$:

Angular coefficients J_{1-9} \longrightarrow transversity amplitudes $A^{L,R}_{\perp}, A^{L,R}_{\parallel}, A^{L,R}_{0}, A^{L,R}_{t}, A^{L,R}_{S}$

- Wilson coefficients $C_{1-6, 8}^{(\prime)}$, $C_7^{(\prime)}$, $C_9^{(\prime)}$, $C_{10}^{(\prime)}$
- 7 independent form factors : $V, A_{0,1,2}, T_{1,2,3}$

Standard observables:

Differential decay distribution: $\frac{d\Gamma}{dq^2} = \frac{3}{4}$ $\frac{3}{4}(J_1-\frac{J_2}{3})$ $\frac{12}{3}$ Forward backward asymmetry: $A_{FB}(q^2) \equiv \big[\int_0^1 - \int_0^1\big] \, dcos\theta_\ell \frac{d^2\Gamma}{d q^2 d c \sigma^2}$ $dq^2dcos\theta_\ell$ $\frac{d\Gamma}{dq^2} = \frac{3}{8}$ $\frac{3}{8}$ J₆/ $\frac{d\Gamma}{dq^2}$ dq^2 Forward backward asymmetry zero crossing : $q_0^2 \simeq -2m_b m_B \frac{c_9^{eff}(q_0^2)}{C_7}$ $\frac{(q_0)}{C_7} + O(\alpha_s, \Lambda/m_b)$ Longitudinal polarization fraction: $F_L = \frac{|A_0|^2}{|A_0|^2}$ $\frac{|A_0^2|}{|A_{\perp}|^2 + |A_{\parallel}|^2 + |A_0|^2} = -2J_2^c/\frac{d\Gamma}{dq^2}$ dq^2 Besides zero crossing, at leading order dependent on Form Factors

$B \to K^* \ell^+ \ell^-$ observables

Many other angular observables…

- minimize form factor uncertainties
- sensitive to specific Wilson coefficients

Optimized obervables:

$$
\langle P_1 \rangle_{\text{bin}} = \frac{1}{2} \frac{\int_{\text{bin}} dq^2 [J_3 + \bar{J}_3]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \qquad \langle P_2 \rangle_{\text{bin}} = \frac{1}{8} \frac{\int_{\text{bin}} dq^2 [J_{6s} + \bar{J}_{6s}]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \n\langle P'_4 \rangle_{\text{bin}} = \frac{1}{\mathcal{N}_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_4 + \bar{J}_4] \qquad \langle P'_5 \rangle_{\text{bin}} = \frac{1}{2\mathcal{N}_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \n\langle P'_6 \rangle_{\text{bin}} = \frac{-1}{2\mathcal{N}_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_7 + \bar{J}_7] \qquad \langle P'_8 \rangle_{\text{bin}} = \frac{-1}{\mathcal{N}_{\text{bin}}'} \int_{\text{bin}} dq^2 [J_8 + \bar{J}_8]
$$

with $\mathcal{N}_{\text{bin}}' = \sqrt{-\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}] \int_{\text{bin}} dq^2 [J_{2c} + \bar{J}_{2c}]}$ + CP violating observables and other combinations

[U. Egede et al., JHEP 0811 \(2008\) 032](http://arxiv.org/abs/0807.2589) [U. Egede et al.,JHEP 1010 \(2010\) 056](http://arxiv.org/abs/1005.0571) [J. Matias et al., JHEP 1204 \(2012\) 104](http://arxiv.org/abs/1202.4266) S. Descotes-Genon [et al., JHEP 1305 \(2013\) 137](http://arxiv.org/abs/1303.5794)

 $dq^{2}[J_{8}+\bar{J}_{8}]$

Or alternatively :

$$
S_i = \frac{J_i^{(s,c)} + \overline{J_i}^{(s,c)}}{\frac{d\Gamma}{dq^2} + \frac{d\overline{\Gamma}}{dq^2}}
$$

[W. Altmannshofer et al., JHEP 0901 \(2009\) 019](http://arxiv.org/abs/0811.1214)

Full for factor vs. soft form factor

Both methods receive contributions from non-local 4-quark operators O_{1-6} & O_8 non-fact. corrections \longrightarrow calculated in QCD factorization at LO in $\left(\frac{\Lambda}{m}\right)$ m_b $\frac{\Lambda}{\Gamma}$ E_{K^*} higher powers of $\left(\frac{\Lambda}{m}\right)$ m_b $\frac{\Lambda}{\Gamma}$ E_{K^*} : unknown *incometable power corrections*

BSZ form factors vs. KMPW form factors

BSZ form factors, smaller th. uncertainty compared to KMPW:

- Different choice of wave function
- Interpolation with lattice results

correlations of the uncertainties included

Form factors from lattice results

At high q^2 lattice results from Horgan et al. [1501.00367](http://arxiv.org/abs/1501.00367)

"Lattice + LCSR" fit of BSZ applicable for whole q^2 region

SM predictions in soft FF and full FF using KMPW and BSZ form factor results

- Soft FF and full FF approaches give very similar SM predictions (difference < 10%)
- SM predictions more sensitive to choice of form factor (KMPW or BSZ)

Experimental measurements

Experimental Results

Most but not all, good agreement between SM prediction and measurement

Three main anomalies from LHCb:

 q^2 [GeV²/ c^4]

Tensions depend on SM predictions, not the same for different groups

- Different SM Wilson coefficient
- Hadronic input parameters: decay constants, inverse moments, …
- Different choices for form factors
- Soft FF or Full FF approach
- …

Possible explanations for the LHCb anomalies

- Statistical fluctuations
- Theoretical issues
- New Physics!

NP manifest itself in term of modified Wilson coefficients: $\mathbf{\mathit{C}_{i}}=\mathbf{\mathit{C}_{i}^{SM}}+\delta\mathbf{\mathit{C}_{i}}$

• $R_K \longrightarrow$ lepton non-universality $C_i^{\mu} \neq C_i^e$

Effect of benchmark contributions to Wilson coefficients

• $BR(B_s \rightarrow \phi \mu^+ \mu^-$

Various observables are interdependent through Wilson coefficients

 δC_i effect on some of the other observables (F_L , S_3)

Sensitivity to C_i different for various obs. and bins

a specific δC_i while reducing tension for one observable can increase tension in other observables \Rightarrow global analysis required

Global analysis of the latest LHCb data

Relevant Wilson coefficients:

 $\mathcal{C}_7^{(\prime)}, \mathcal{C}_9^{(\prime)}, \mathcal{C}_{10}^{(\prime)}$

With **[SuperIso](http://superiso.in2p3.fr/)**

- Scan over the values of δC_i
- Calculation of flavour observables
- Comparison with experimental results
- Constraints on the Wilson coefficients C_i

Global fits

Evaluations of uncertainties and correlations:

- Experimental errors and correlations 3 fb⁻¹ LHCb data for $B \to K^* \mu^+ \mu^-$: provided in LHCb-CONF-2015-002
- Theoretical uncertainties and correlations
	- study of more than 100 observables

(at a later stage, selection of the relevant operators for each fit)

- Monte Carlo analysis
- variation of the "standard" input parameters: masses, scales, CKM, ...
- for $B_s \to \phi \mu^+ \mu^-$ mixing effects taken into account from <u>1502.05509</u>
- decay constants taken from the latest lattice results
- using the $B_{(s)} \to V$ form factors of the lattice+LCSR combinations from $\frac{1503.05534}{1503.05534}$ $\frac{1503.05534}{1503.05534}$ $\frac{1503.05534}{1503.05534}$ (BSZ) including correlations
- using the $B \to K$ form factors of the lattice+LCSR combinations from [1411.3161](http://arxiv.org/abs/1411.3161), (AS) including correlations
- for the exclusive decays, two approaches: soft form factors, full form factors
- two sets of hypotheses for the uncertainties associated to the factorisable and non-factorisable power corrections

Computation of a (theory $+ \exp$) correlation matrix

Global fits

For the exclusive semi-leptonic decays, two approaches and two evaluations of the uncertainties for each decay

At **low** q^2 :

• Soft form factor approach

uncertainties of the **factorisable** and **non-factorisable power** corrections parametrised as

$$
A_k \to A_k \left(1 + a_k \exp(i\phi_k) + \frac{q^2}{6 \text{ GeV}^2} b_k \exp(i\theta_k) \right)
$$

where A_k are the transversity amplitudes $A_{\perp}, A_{\parallel}, A_0, A_t, A_s$

- $a_k \in [-10\%, +10\%]$ or $[-20\%, +20\%]$ $\phi_k, \theta_k \in [-\pi, +\pi]$ b_k ∈ [-25%, +25%] or [-50%, +50%]
- Full form factor approach

uncertainties of the **non-factorisable power** corrections parametrised in a similar way

$$
a_k \in [-5\%, +5\%] \text{ or } [-10\%, +10\%] \qquad \phi_k, \theta_k \in [-\pi, +\pi]
$$

$$
b_k \in [-10\%, +10\%] \text{ or } [-25\%, +25\%]
$$

At **high** q^2 , uncertainties parametrised as $A_k \rightarrow A_k (1 + a_k \exp(i \phi_k))$ $a_k \in [-10\%, +10\%]$ or $[-20\%, +20\%]$ $\phi_k \in [-\pi, +\pi]$

Global fits

Global fits of observables by minimization of $\chi^2 = \left(\vec{O}^{\text{th}} - \vec{O}^{\text{exp}}\right) \cdot \left(\Sigma_{\text{th}} + \Sigma_{\text{exp}}\right)^{-1} \cdot \left(\vec{O}^{\text{th}} - \vec{O}^{\text{exp}}\right)$ $\Sigma_{\text{th}} + \Sigma_{\text{exp}}$ ⁻¹ is the inverse covariance matrix

58 observables considered for leptonic and semileptonic decays:

- BR $(B \to X_s \nu)$
- BR $(B \to X_d \gamma)$
- $\Delta_0 (B \to K^* \gamma)$
- BR^{low} $(B \to X_s \mu^+ \mu^-$
- BR^{high} $(B \to X_s \mu^+ \mu^-$
- BR^{low} $(B \to X_s e^+e^-$
- BR^{high} $(B \to X_s e^+e^-)$
- BR($B_s \rightarrow \mu^+ \mu^-$
- BR($B_d \rightarrow \mu^+ \mu^-$
- BR($B \to K^{*+} \mu^+ \mu^-$
- BR($B \to K^0 \mu^+ \mu^-$
- BR($B^+ \rightarrow K^+ \mu^+ \mu^-$
- BR($B \rightarrow K^* e^+ e^-$
- \bullet R_K
- $B \to K^{*0} \mu^+ \mu^-: F_L, A_{FB},$ S_3 , S_4 , S_5 in five low q^2 and two high q^2 bins
- $B_s \rightarrow \phi \mu^+ \mu^-$: BR, F_L in three low q^2 and two high q^2 bins

Statistical approach:

- 1. Determination of the minimum of $\chi^2 \longrightarrow$ best fit point
- 2. Computation for each point of the scan the difference between χ^2 of that point with the χ^2 of best fit point
- 3. Find the $1 2\sigma$ regions corresponding to the number of d.o.f.

Interpretation: considering the best fit point gives the "real" description, which variations of the parameters are allowed

- C_9 in more than 2σ tension with SM value, no tension in C_{10}
- Going from 10% to 20% power correction in the soft FF approach slightly decrease tension
- Going from 5% to 10% power correction in the full FF approach has no significant effect

- Having C'_9 in the fit still C_9 is in more than 2σ tension with SM value, no tension for C'_9
- Fit does not improve \longrightarrow no preference for a modified C'_9 or C_{10}

• More than 2σ tension for C_9^{μ} , non-universality improves the fit

• Universality condition $(\delta C_9^e = \delta C_9^{\mu})$ is barely allowed at 2σ level

Full form factor approach with 5% power corrections

- More than 2σ tension for C_9 , even in the four operator fit
- $\{C_9, C_{10}\} \rightarrow \chi^2 = 51, \{C_9, C_9', C_{10}, C_{10}'\} \rightarrow \chi^2 = 50$ **L** adding primed WC doesn't improve the fit

Fit results for four operators $\{ {\cal C}_9^{\mu}$, ${\cal C}_9^{e}$, ${\cal C}_9^{\prime\mu}$, ${\cal C}_9^{\prime e}\}$

Full form factor approach with 5% power corrections

- More than 2σ tension for C_9
- In the four operator fit, it is possible to have $\delta C_9^e = \delta C_9^\mu \longrightarrow \delta C_9'^\mu \neq \delta C_9'^e$
- $\{C_9, C_9'\} \rightarrow \chi^2 = 51, \{C_9^{\mu}, C_9^e, C_9'^{\mu}, C_9'^e\} \rightarrow \chi^2 = 40$

considering lepton flavour violation improves the fit

Fit results for four operators $\{ {\cal C}_9^{\mu}$, ${\cal C}_9^e$, ${\cal C}_{10}^{\mu}$, ${\cal C}_{10}^e\}$

Full form factor approach with 5% power corrections

- More than 2σ tension for C_9
- In the four operator fit, it is possible to have $\delta C_9^e = \delta C_9^\mu \longrightarrow \delta C_{10}^\mu \neq \delta C_{10}^e$
- $\{C_9, C_{10}\} \rightarrow \chi^2 = 51, \{C_9^{\mu}, C_9^e, C_{10}^{\mu}, C_{10}^e\} \rightarrow \chi^2 = 41$ considering lepton flavour violation improves the fit

Conclusions:

- Factorisable power corrections have small effect at observable level
- The fit results do not depend very much on wheather one uses soft or full form factor approach
- In the two operator fit going from 10% to 20% power correction in the soft FF approach slightly decrease tension in C_9 , this is not case when going from 5% to10% in the full form factor approach
- In two operator fit there is a 2σ tension for $\delta C_9^e = \delta C_9^\mu$
- In four operator fit, possible to have $\delta C_9^e = \delta C_9^\mu$ but flavour violation takes place in \mathcal{C}_9' or $\mathcal{C}_{10}^{(\prime)}$
- Considering lepton flavour violation the fit is significantly improved

Thank you

Transversity amplitudes

$$
A_{\perp}^{L,R} = N\sqrt{2}\sqrt{\lambda} \Bigg[\Big[(C_9^{\text{eff}} + C_9') \mp (C_{10} + C_{10}') \Big] \frac{V}{M_B + m_{K^*}} + \frac{2m_b}{q^2} (C_7^{\text{eff}} + C_7')T_1 \Bigg]
$$

\n
$$
A_{\parallel}^{L,R} = -N\sqrt{2}(M_B^2 - m_{K^*}^2) \Bigg[\Big[(C_9^{\text{eff}} - C_9') \mp (C_{10} - C_{10}') \Big] \frac{A_1}{M_B - m_{K^*}} + \frac{4m_b}{M_B} (C_7^{\text{eff}} - C_7') \frac{E_{K^*}}{q^2} T_2 \Bigg]
$$

\n
$$
A_0^{L,R} = -\frac{N}{2m_{K^*}\sqrt{q^2}} \Bigg\{ \Big[(C_9^{\text{eff}} - C_9') \mp (C_{10} - C_{10}') \Big]
$$

\n
$$
\times \Bigg[(M_B^2 - m_{K^*}^2 - q^2)(M_B + m_{K^*})A_1 - \lambda \frac{A_2}{M_B + m_{K^*}} \Bigg]
$$

\n
$$
+ 2m_b (C_7^{\text{eff}} - C_7') \Bigg[(M_B^2 + 3m_{K^*}^2 - q^2)T_2 - \frac{\lambda}{M_B^2 - m_{K^*}^2} T_3 \Bigg] \Bigg\}
$$

\n
$$
A_t = \frac{N}{\sqrt{q^2}} \sqrt{\lambda} \Bigg[2(C_{10} - C_{10}') + \frac{q^2}{m_{\ell}m_b} (C_{Q_2} - C_{Q_2}') \Bigg] A_0
$$

\n
$$
A_S = -\frac{2N}{m_b} \sqrt{\lambda} (C_{Q_1} - C_{Q_1}') A_0
$$

To compute the transversity amplitudes we need to have control over all the form factors

Transversity amplitudes (at LO for large recoil)

$$
A_{\perp}^{L,R} = \frac{\sqrt{2}N(M_B^2 - q^2)}{M_B} \Bigg[\Big[(C_9^{\text{eff}} + C_9') \mp (C_{10} + C_{10}') \Big] + \frac{2m_b M_B}{q^2} (C_7^{\text{eff}} + C_7') \Bigg] \xi_{\perp}(q^2)
$$

\n
$$
A_{\parallel}^{L,R} = -\frac{\sqrt{2}N(M_B^2 - q^2)}{M_B} \Big[\Big[(C_9^{\text{eff}} + C_9') \mp (C_{10} + C_{10}') \Big] + \frac{2m_b M_B}{q^2} (C_7^{\text{eff}} - C_7') \Bigg] \xi_{\perp}(q^2)
$$

\n
$$
A_0^{L,R} = -\frac{N M_B (M_B^2 - q^2)}{2m_{K^*} \sqrt{q^2}} \Bigg[\Big[(C_9^{\text{eff}} + C_9') \mp (C_{10} + C_{10}') \Big] + \frac{2m_b}{M_B} (C_7^{\text{eff}} - C_7') \Bigg] \xi_{\parallel}(q^2)
$$

\n
$$
A_t = \frac{N(M_B^2 - q^2)}{\sqrt{q^2}} \Bigg[2(C_{10} - C_{10}') + \frac{q^2}{m_{\ell} m_b} (C_{Q_2} - C_{Q_2}') \Bigg] \frac{E_{K^*}}{m_{K^*}} \xi_{\parallel}(q^2)
$$

\n
$$
A_S = -\frac{2N(M_B^2 - q^2)}{m_b} (C_{Q_1} - C_{Q_1}') \frac{E_{K^*}}{m_{K^*}} \xi_{\parallel}(q^2)
$$

finalstate spins $|\mathbf{M}|^2$ $\sum |M|^2 \longrightarrow \frac{d^4}{\sqrt{12}}$ 2 2 9 $(q^2, \theta_{\scriptscriptstyle 1}, \theta_{\scriptscriptstyle K}, \phi)$ $\cos \theta_l \ d \cos \theta_K \ d\phi \quad 32\pi$ ³ (4, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ *d J q* dq^2 *d* $\cos\theta$ _{*l*} *d* $\cos\theta$ _{*k} d*</sub> $(\theta_{\scriptscriptstyle\! L}, \theta_{\scriptscriptstyle\! K}, \phi)$ $\theta_{\rm I}$ d cos $\theta_{\rm K}$ d ϕ 32 π Γ Ξ

 $J(q^2, \theta_\ell, \theta_K, \phi) = \sum J_i(q^2) f_i(\theta_\ell, \theta_K, \phi)$

 $J(q^2, \theta_{\ell}, \theta_{K^*}, \phi) = J_1^s \sin^2 \theta_{K^*} + J_1^c \cos^2 \theta_{K^*} + (J_2^s \sin^2 \theta_{K^*} + J_2^c \cos^2 \theta_{K^*}) \cos 2\theta_{\ell}$ $+ J_3 \sin^2 \theta_{K^*} \sin^2 \theta_\ell \cos 2\phi + J_4 \sin 2\theta_{K^*} \sin 2\theta_\ell \cos \phi + J_5 \sin 2\theta_{K^*} \sin \theta_\ell \cos \phi$ $+ (J_6^s \sin^2 \theta_{K^*} + J_6^c \cos^2 \theta_{K^*}) \cos \theta_\ell + J_7 \sin 2\theta_{K^*} \sin \theta_\ell \sin \phi$ + $J_8 \sin 2\theta_{K^*} \sin 2\theta_\ell \sin \phi + J_9 \sin^2 \theta_{K^*} \sin^2 \theta_\ell \sin 2\phi$

$$
\begin{split} J_{1}^{s} &= \frac{(2+\beta_{\ell}^{2})}{4}\left[|A_{\perp}^{L}|^{2}+|A_{\parallel}^{L}|^{2}+(L\rightarrow R)\right]+\frac{4m_{\ell}^{2}}{q^{2}}\mathrm{Re}\left(A_{\perp}^{L}A_{\perp}^{R^{*}}+A_{\parallel}^{L}A_{\parallel}^{R^{*}}\right) \\ J_{1}^{c} &=|A_{0}^{L}|^{2}+|A_{0}^{R}|^{2}+\frac{4m_{\ell}^{2}}{q^{2}}\left[|A_{t}|^{2}+2\mathrm{Re}(A_{0}^{L}A_{0}^{R^{*}})\right]+\beta_{\ell}^{2}|A_{S}|^{2}\;,\\ J_{2}^{s} &= \frac{\beta_{\ell}^{2}}{4}\left[|A_{\perp}^{L}|^{2}+|A_{\parallel}^{L}|^{2}+(L\rightarrow R)\right]\;,\\ J_{3} &= \frac{1}{2}\beta_{\ell}^{2}\left[|A_{\perp}^{L}|^{2}-|A_{\parallel}^{L}|^{2}+(L\rightarrow R)\right]\;,\\ J_{4} &= \frac{1}{\sqrt{2}}\beta_{\ell}^{2}\left[\mathrm{Re}(A_{0}^{L}A_{\perp}^{L^{*}})+(L\rightarrow R)\right]\;,\\ J_{5} &= \sqrt{2}\beta_{\ell}\left[\mathrm{Re}(A_{0}^{L}A_{\perp}^{L^{*}})-(L\rightarrow R)-\frac{m_{\ell}}{\sqrt{q^{2}}}\mathrm{Re}(A_{\parallel}^{L}A_{S}^{*}+A_{\parallel}^{R}A_{S}^{*})\right]\;,\\ J_{6}^{s} &= 2\beta_{\ell}\left[\mathrm{Re}(A_{\parallel}^{L}A_{\perp}^{L^{*}})-(L\rightarrow R)\right]\;,\\ J_{6}^{s} &= 4\beta_{\ell}\frac{m_{\ell}}{\sqrt{q^{2}}}\mathrm{Re}\left[A_{0}^{L}A_{S}^{*}+(L\rightarrow R)\right]\;,\\ J_{7} &= \sqrt{2}\beta_{\ell}\left[\mathrm{Im}(A_{0}^{L}A_{\perp}^{L^{*}})+(L\rightarrow R)\right]\;,\\ J_{8} &= \frac{1}{\sqrt{2}}\beta_{\ell}^{2}\left[\mathrm{Im}(A_{0}^{L}A_{\perp}^{L^{*}})+(L\rightarrow R)\right]\;,\\ J_{9} &= \beta_{\ell}^{2}\left[\mathrm{Im}(A_{0}^{L}A_{\perp}^{
$$

V , A_1 form factors at low q^2

Khodjamirian et al

Bharucha et al.

Modified Wilson coefficient effects

Modified Wilson coefficient effects

QCD penguins

$$
\begin{array}{rcl}\n\mathcal{O}_1 &= (\bar{s}\gamma_\mu T^a P_L c) (\bar{c}\gamma^\mu T_a P_L b) \\
\mathcal{O}_2 &= (\bar{s}\gamma_\mu P_L c) (\bar{c}\gamma^\mu P_L b) \\
\mathcal{O}_3 &= (\bar{s}\gamma_\mu P_L b) \sum_q (\bar{q}\gamma^\mu q) \\
\mathcal{O}_4 &= (\bar{s}\gamma_\mu T^a P_L b) \sum_q (\bar{q}\gamma^\mu T_a q) \\
\mathcal{O}_5 &= (\bar{s}\gamma_\mu \gamma_\nu \gamma_\rho P_L b) \sum_q (\bar{q}\gamma^\mu \gamma^\nu \gamma^\rho q) \\
\mathcal{O}_6 &= (\bar{s}\gamma_\mu \gamma_\nu \gamma_\rho T^a P_L b) \sum_q (\bar{q}\gamma^\mu \gamma^\nu \gamma^\rho T_a q)\n\end{array}
$$

Scalar and pseudoscalar

