

DESI: Dark Energy Spectroscopic Instrument

Robert Cahn Lawrence Berkeley National Lab

How We Know there is Dark Energy

2

GR & Cosmology in One Slide

$$\begin{array}{l}
\overrightarrow{a} = \bigwedge_{3} - \frac{4\pi G_{N}}{3}(\rho + 3p) \\
\overrightarrow{a} = \frac{8\pi G_{N}\rho}{3} - \frac{k}{a^{2}} + \bigwedge_{3}
\end{array}$$
Alexander Friedmann
$$\begin{array}{l}
a \text{ is the size-scale of the universe} \\
relative to size today
\end{array}$$

$$\begin{array}{l}
\operatorname{Monseigneur Georges Henri Joseph Édouard Lemaître}
\end{array}$$

$$\begin{array}{l}
\operatorname{Monseigneur Georges Henri Joseph Édouard Lemaître}
\end{array}$$

enough to stop expansion.

4

I I I I I

Energy Budget of the Universe

• Re-write Friedmann-Lemaitre equation:

 $\boldsymbol{\Omega}_m + \boldsymbol{\Omega}_{rad} + \boldsymbol{\Omega}_{\Lambda} + \boldsymbol{\Omega}_k = 1$

$$\Omega_{m} = \frac{\rho_{m}}{\rho_{crit}} \qquad \Omega_{rad} = \frac{\rho_{rad}}{\rho_{crit}} \qquad \Omega_{\Lambda} = \frac{\rho_{\Lambda}}{\rho_{crit}} \qquad \Omega_{k} = -\frac{k}{H_{0}^{2}}$$

$$H(a) = \frac{\dot{a}}{a} = H_{0}\sqrt{a^{-4}\Omega_{rad} + a^{-3}\Omega_{m} + a^{-2}\Omega_{k} + a^{-\varepsilon}\Omega_{DE}}$$

$$D(a) = \int_{a}^{1} \frac{da'}{a'^{2}H(a')} = \int_{0}^{z} \frac{dz'}{H(z')}$$

distance

Dark Energy Equation of State

$$w(a) = p / \rho$$

From Friedmann-Lemaitre Equations
$$\frac{d\rho}{dt} = -3(1+w(a))\rho \frac{da}{dt} \qquad \rho(a) = \rho(a=1)e^{3\int_{a}^{1} \frac{da}{a}(1+w(a))}$$

Matter: w=0 Radiation: w=1/3 Cosmological constant: w=-1

Accelerating Universe means w < -1/3 or General Relativity fails.

Dark Matter vs Dark Energy

LPNHE

8

Energy Budget of Universe

- Combining three kinds of measurements we learn that
 - The Universe is flat.
 - 32% of energy is matter.
 - 68% of energy is "dark".
- Distribution of elements tells us only 5% of energy is ordinary matter.
 - 27% of energy is due to "dark matter"

How Hard is it to Rule out Cosmological Constant?

Tiny Ripples in Early Universe

Cosmic Microwave Background

Ripples in early universe imprint standard ruler in cosmic microwave background

COBE, WMAP, Planck

BAO gives Ruler

That pattern is preserved in the distribution of the galaxies.

By measuring the pattern looking back billions of years we can deduce the expansion history of the universe.

BAO at z=0.57 Anderson et al (2012)

CMB is 2-d BAO is 3-d

LPNHE

How BAO Works

Best BAO so Far: BOSS Now extended: eBOSS

Measure Two-Point Galaxy-Galaxy Correlation

Anderson et al. MNRAS 427, 3435A (2012)

Lyman-alpha forest: First dark energy results z>2

Forest of absorption lines maps location of neutral hydrogen along line-of-sight from quasar.

BOSS Lyman-alpha Sees Deceleration!

LPNHE

From BOSS to DESI

- Scale up BOSS to a massively parallel fiber-fed spectrometer
- Broad range of target classes: LRG's, ELG's, QSO's
- Broad redshift range: 0.5 < z < 1.6, 2.2 < z < 3.5 {region between 0.7 1.6 new}
- Sky area: 14,000 square degrees
- Number of redshifts: 24 million
- Medium resolution spectroscopy, R ~ 4000
- Spectroscopy from blue to NIR: 360 nm < z < 980 nm
- Automated fiber system, $N_{fiber} \sim 5000$
- Up to 5 year DE survey

DESI Hardware & Software Elements

mi

Fiber Positioners in Focal Plane

Spectrograph Complex

Extracting the Spectrum

Saclay cryostat prototype

Spectra are extracted from twodimensional pattern because individual spectra overlap.

Schlelgel and Guy

Galaxy Targets

Galaxy type	Redshift	Bands	Targets	Exposures	Good z 's	Net
	range	used	$per deg^2$	$per deg^2$	$per deg^2$	\mathbf{sample}
LRG	0.4 - 1.0	r,z,W1	350	700	300	4.2 M
ELG	0.7 - 1.6	$_{g,r,z}$	2300	2300	1400	19.6 M
QSO (tracers)	0.9 - 2.2	g,r,z,W1,W2	175	175	100	1.4 M
QSO (Ly- α)	> 2.2	$g,\!r,\!z,\!W1,\!W2$	75	200	40	0.6 M
Total			2900	3375	1840	$25.8 \mathrm{M}$

Select photometrically, measure spectroscopically.

Spectroscopy

Variable Coverage

Anticipated Quality of DESI Expansion Measurements

BAO distance scale error 2% Munumines 1% (..... BOSS eBOSS DESI 14k HETDEX 0.3% DESI 9k Euclid 50m DESI BGS 14k WFIRST-2.4 2 1 3 ()

DESI: Not just BAO Power Spectrum has More Info

Power spectrum is Fourier transform of two-point correlation function. 10^{6}

Measuring the sum of neutrino masses

 $\Delta m_{32}^2 = 2.32 \times 10^{-3} \text{eV}^2$ $\Delta m_{21}^2 = 7.50 \times 10^{-5} \text{eV}^2$

Data	$\sigma_{\Sigma m_{\nu}} [eV]$	$\sigma_{N_{\nu,\mathrm{eff}}}$
Planck	0.350	0.18
Planck+DESI BAO	0.090	0.18
$Gal \ (k_{\max} = 0.1)$	0.024	0.13
Gal $(k_{\text{max}} = 0.2)$	0.017	0.084
Ly- α forest	0.039	0.11
Ly- α forest + Gal ($k_{\text{max}} = 0.2$)	0.017	0.063

Redshift Space Distortion

- Can't measure distance directly.
- Mismeasure if there is "peculiar velocity"

Assume $\vec{v} = Hr\hat{n}$ along line of sight so peculiar velocity $\Delta \vec{v}$ leads to shift $\Delta r \hat{n} = \Delta \vec{v} \cdot \hat{n} \hat{n} / H(a)$

• Gravity will amplify all density perturbations.

$$\delta \rho(t) = D(t) \delta \rho(t=0)$$
 [now]

Galaxies vs Matter

• Assume fractional fluctuation in galaxy density is proportional to fractional fluctuation in matter:

$$\delta_{galaxy} \equiv \frac{\delta \rho_{galaxy}}{\overline{\rho}_{galaxy}} = b \frac{\delta \rho_{matter}}{\overline{\rho}_{matter}} = b \delta_{matter}$$

Because we observe in redshift space, there is a distortion of the power spectrum:

$$P(\vec{k})_{galaxy,RSD} = (b^2 + (\hat{k} \cdot \hat{n})^2 f)^2 P(k)_{matter,realspace}$$
$$f = \frac{d \ln D}{d \ln a}$$

Redshift Space Distortion at BOSS

Testing General Relativity

• The growth function D(a) is determined by the matter density and General Relativity.

In practice, we measure $f\sigma_{8}$, where σ_{8} sets the scale for P(k). There will be 2% measurements of $f\sigma_{8}$ at many values of z.

Inflation

• Look at power spectrum

$$P(k) = P(k_0)(k / k_0)^{n_s(k_0) + \frac{1}{2}\alpha_s \ln(k/k_0)}$$

Planck: $n_s=0.9614 \pm 0.0063$ $a_s=-0.015\pm 0.017$

Data	$\sigma_{n_{\mathrm{s}}}$	$\sigma_{oldsymbollpha_{\mathbf{s}}}$
Gal $(k_{\rm max} = 0.1 \ {\rm h^{-1}Mpc})$	0.0024(1.6)	0.0051 (1.1)
Gal $(k_{\rm max} = 0.2 \ {\rm h}^{-1}{\rm Mpc})$	0.0022 (1.7)	$0.0040\ (1.3)$
Ly- α forest	0.0029(1.3)	0.0027(2.0)
Ly- α forest + Gal ($k_{\text{max}} = 0.2$)	0.0019(2.0)	0.0020(2.7)

Non-Gaussianity

Primoridal fluctuations: $\Phi = \phi_G + f_{NL}(\phi_G^2 - \langle \phi_G^2 \rangle)$

Price Tag

£1.99

- DESI: best dark energy information @ 2020
- Modest experiment using existing telescope
- Based on successful BOSS experiment
- Not just dark energy, but GR, inflation, neutrinos

EXTRA SLIDES

DESI Improves Many Measurements

