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Supersymmetry 

Motivation: unifying matter (fermions) and interactions 
(mediated by bosons) 
Symmetry that relates fermions and bosons 

Prediction: new particles supersymmetric partners of all 
known fermions and bosons : differ spin 1/2 
Not discovered yet 

Hierarchy problem 
SUSY particles (~TeV) to stabilize Higgs mass against 

radiative corrections àshould be within reach of LHC 
R-parity and dark matter 

 



Supersymmetry 
Supersymmetry transformation 
 
 
Symmetry of the Lagrangian which mixes fermions and bosons 
 
 
 
 
Most general renormalizable Lagrangian with chiral superfields 

(scalar, fermion) and vector superfields (vector, fermion) 
 
 
If SUSY exact  

sparticles and particles : same mass  
Interactions dictated by SUSY 

 



MSSM particles 
SUPERSYMMETRY?

Virtual particles, including matter-antimatter pairs, allow what would have been infinite “bare”
charges and masses to be renormalized and replaced with measured masses. However, a mass
problem still remains since the correct masses have to be inserted “by hand.”  Fundamental
considerations indicate that masses should still be many orders of magnitude larger than
observed. A solution that has worked before might work again, so it was suggested to double
the number of particles by having the distinction between bosons and fermions be a broken
symmetry. Then all fermions should have boson counterparts, and vice versa. However, these
“superpartners” have never been observed, although they almost certainly should have shown
up at energy levels already probed. Now that the LHC is about to go back on-line at double the
previous center-of-momentum energy, many physicists think that this is the last chance to
confirm supersymmetry. If no superpartners are seen in the next couple of years, it will
probably be necessary to abandon this idea or modify it beyond recognition.

Supersymmetry https://web2.ph.utexas.edu/~coker2/index.files/supersymmetry.htm
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Additional Higgs doublet 
Only one additional field: Higgs doublet 

H (scalar), A (pseudoscalar) H+, H- 

 
Give masses to all fermions, Y(h2)=1/2,  Y(h1)=-1/2 
 
 
 
In SM use φ and φ* but using h2* gives a Lagrangian which is not 

supersymmetric 
 



Minimal Supersymmetric Standard 
Model 

Minimal field content: partner to 
SM particles (also need two 
Higgs doublets) 

 
 
Neutralinos: neutral spin ½ 

partners of gauge bosons 
(bino, wino) and Higgs 
scalars (Higgsinos) 

 



Hierarchy problem 
 
Higgs mass (~100GeV) is not stable against 

radiative corrections 
One solution: introduce new particles 
If supersymmetry is exact each SM fermion 

contribution is cancelled by that of two 
scalar partners (λS= λF

2) 
 
Supersymmetry is broken (SUSY partners 

of SM particles not observed) 
      Quadratic divergences still cancelled if 

only soft susy breaking terms 
Corrections to Higgs mass ~MSoft

2 , the 
SUSY scale. 

 

Each increase quadratically 
with energy 

“We are, I think, in the right Road of Improvement, for we are making Experiments.”
–Benjamin Franklin

1 Introduction

The Standard Model of high-energy physics, augmented by neutrino masses, provides a remarkably
successful description of presently known phenomena. The experimental frontier has advanced into the
TeV range with no unambiguous hints of additional structure. Still, it seems clear that the Standard
Model is a work in progress and will have to be extended to describe physics at higher energies.
Certainly, a new framework will be required at the reduced Planck scale MP = (8πGNewton)−1/2 =
2.4 × 1018 GeV, where quantum gravitational effects become important. Based only on a proper
respect for the power of Nature to surprise us, it seems nearly as obvious that new physics exists in the
16 orders of magnitude in energy between the presently explored territory near the electroweak scale,
MW , and the Planck scale.

The mere fact that the ratio MP/MW is so huge is already a powerful clue to the character of
physics beyond the Standard Model, because of the infamous “hierarchy problem” [1]. This is not
really a difficulty with the Standard Model itself, but rather a disturbing sensitivity of the Higgs
potential to new physics in almost any imaginable extension of the Standard Model. The electrically
neutral part of the Standard Model Higgs field is a complex scalar H with a classical potential

V = m2
H |H|2 + λ|H|4 . (1.1)

The Standard Model requires a non-vanishing vacuum expectation value (VEV) for H at the minimum

of the potential. This will occur if λ > 0 and m2
H < 0, resulting in ⟨H⟩ =

√
−m2

H/2λ. Since we

know experimentally that ⟨H⟩ is approximately 174 GeV, from measurements of the properties of the
weak interactions, it must be that m2

H is very roughly of order −(100 GeV)2. The problem is that m2
H

receives enormous quantum corrections from the virtual effects of every particle that couples, directly
or indirectly, to the Higgs field.

For example, in Figure 1.1a we have a correction to m2
H from a loop containing a Dirac fermion

f with mass mf . If the Higgs field couples to f with a term in the Lagrangian −λfHff , then the
Feynman diagram in Figure 1.1a yields a correction

∆m2
H = − |λf |2

8π2
Λ2
UV + . . . . (1.2)

Here ΛUV is an ultraviolet momentum cutoff used to regulate the loop integral; it should be interpreted
as at least the energy scale at which new physics enters to alter the high-energy behavior of the theory.
The ellipses represent terms proportional to m2

f , which grow at most logarithmically with ΛUV (and
actually differ for the real and imaginary parts of H). Each of the leptons and quarks of the Standard
Model can play the role of f ; for quarks, eq. (1.2) should be multiplied by 3 to account for color. The

H

f

(a)

S

H

(b)

Figure 1.1: One-loop quantum corrections to the Higgs squared mass parameter m2
H , due to (a) a Dirac

fermion f , and (b) a scalar S.
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Figure 1.2: Two-loop corrections to the Higgs squared mass parameter involving a heavy fermion F
that couples only indirectly to the Standard Model Higgs through gauge interactions.

largest correction comes when f is the top quark with λf ≈ 1. The problem is that if ΛUV is of order
MP, say, then this quantum correction to m2

H is some 30 orders of magnitude larger than the required
value of m2

H ∼ −(100 GeV)2. This is only directly a problem for corrections to the Higgs scalar boson
squared mass, because quantum corrections to fermion and gauge boson masses do not have the direct
quadratic sensitivity to ΛUV found in eq. (1.2). However, the quarks and leptons and the electroweak
gauge bosons Z0, W± of the Standard Model all obtain masses from ⟨H⟩, so that the entire mass
spectrum of the Standard Model is directly or indirectly sensitive to the cutoff ΛUV.

One could imagine that the solution is to simply pick a ΛUV that is not too large. But then one
still must concoct some new physics at the scale ΛUV that not only alters the propagators in the loop,
but actually cuts off the loop integral. This is not easy to do in a theory whose Lagrangian does not
contain more than two derivatives, and higher-derivative theories generally suffer from a failure of either
unitarity or causality [2]. In string theories, loop integrals are nevertheless cut off at high Euclidean
momentum p by factors e−p2/Λ2

UV . However, then ΛUV is a string scale that is usually† thought to be
not very far below MP. Furthermore, there are contributions similar to eq. (1.2) from the virtual effects
of any arbitrarily heavy particles that might exist, and these involve the masses of the heavy particles,
not just the cutoff.

For example, suppose there exists a heavy complex scalar particle S with mass mS that couples to
the Higgs with a Lagrangian term −λS |H|2|S|2. Then the Feynman diagram in Figure 1.1b gives a
correction

∆m2
H =

λS
16π2

[
Λ2
UV − 2m2

S ln(ΛUV/mS) + . . .
]
. (1.3)

If one rejects the possibility of a physical interpretation of ΛUV and uses dimensional regularization
on the loop integral instead of a momentum cutoff, then there will be no Λ2

UV piece. However, even
then the term proportional to m2

S cannot be eliminated without the physically unjustifiable tuning of
a counter-term specifically for that purpose. So m2

H is sensitive to the masses of the heaviest particles
that H couples to; if mS is very large, its effects on the Standard Model do not decouple, but instead
make it difficult to understand why m2

H is so small.
This problem arises even if there is no direct coupling between the Standard Model Higgs boson

and the unknown heavy particles. For example, suppose there exists a heavy fermion F that, unlike
the quarks and leptons of the Standard Model, has vector-like quantum numbers and therefore gets a
large mass mF without coupling to the Higgs field. [In other words, an arbitrarily large mass term of
the form mFFF is not forbidden by any symmetry, including weak isospin SU(2)L.] In that case, no
diagram like Figure 1.1a exists for F . Nevertheless there will be a correction to m2

H as long as F shares
some gauge interactions with the Standard Model Higgs field; these may be the familiar electroweak
interactions, or some unknown gauge forces that are broken at a very high energy scale inaccessible to
experiment. In either case, the two-loop Feynman diagrams in Figure 1.2 yield a correction

∆m2
H = CHTF

(
g2

16π2

)2 [
aΛ2

UV + 24m2
F ln(ΛUV/mF ) + . . .

]
, (1.4)

†Some recent attacks on the hierarchy problem, not reviewed here, are based on the proposition that the ultimate
cutoff scale is actually close to the electroweak scale, rather than the apparent Planck scale.
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extension of the Standard Model.
The chiral and gauge supermultiplets in Tables 1.1 and 1.2 make up the particle content of the

Minimal Supersymmetric Standard Model (MSSM). The most obvious and interesting feature of this
theory is that none of the superpartners of the Standard Model particles has been discovered as of
this writing. If supersymmetry were unbroken, then there would have to be selectrons ẽL and ẽR with
masses exactly equal to me = 0.511... MeV. A similar statement applies to each of the other sleptons
and squarks, and there would also have to be a massless gluino and photino. These particles would have
been extraordinarily easy to detect long ago. Clearly, therefore, supersymmetry is a broken symmetry
in the vacuum state chosen by Nature.

An important clue as to the nature of supersymmetry breaking can be obtained by returning
to the motivation provided by the hierarchy problem. Supersymmetry forced us to introduce two
complex scalar fields for each Standard Model Dirac fermion, which is just what is needed to enable a
cancellation of the quadratically divergent (Λ2

UV) pieces of eqs. (1.2) and (1.3). This sort of cancellation
also requires that the associated dimensionless couplings should be related (for example λS = |λf |2).
The necessary relationships between couplings indeed occur in unbroken supersymmetry, as we will
see in section 3. In fact, unbroken supersymmetry guarantees that the quadratic divergences in scalar
squared masses must vanish to all orders in perturbation theory.‡ Now, if broken supersymmetry is still
to provide a solution to the hierarchy problem even in the presence of supersymmetry breaking, then
the relationships between dimensionless couplings that hold in an unbroken supersymmetric theory
must be maintained. Otherwise, there would be quadratically divergent radiative corrections to the
Higgs scalar masses of the form

∆m2
H =

1

8π2
(λS − |λf |2)Λ2

UV + . . . . (1.11)

We are therefore led to consider “soft” supersymmetry breaking. This means that the effective La-
grangian of the MSSM can be written in the form

L = LSUSY + Lsoft, (1.12)

where LSUSY contains all of the gauge and Yukawa interactions and preserves supersymmetry invari-
ance, and Lsoft violates supersymmetry but contains only mass terms and coupling parameters with
positive mass dimension. Without further justification, soft supersymmetry breaking might seem like
a rather arbitrary requirement. Fortunately, we will see in section 7 that theoretical models for super-
symmetry breaking do indeed yield effective Lagrangians with just such terms for Lsoft. If the largest
mass scale associated with the soft terms is denoted msoft, then the additional non-supersymmetric
corrections to the Higgs scalar squared mass must vanish in the msoft → 0 limit, so by dimensional
analysis they cannot be proportional to Λ2

UV. More generally, these models maintain the cancellation
of quadratically divergent terms in the radiative corrections of all scalar masses, to all orders in per-
turbation theory. The corrections also cannot go like ∆m2

H ∼ msoftΛUV, because in general the loop
momentum integrals always diverge either quadratically or logarithmically, not linearly, as ΛUV → ∞.
So they must be of the form

∆m2
H = m2

soft

[
λ

16π2
ln(ΛUV/msoft) + . . .

]
. (1.13)

Here λ is schematic for various dimensionless couplings, and the ellipses stand both for terms that
are independent of ΛUV and for higher loop corrections (which depend on ΛUV through powers of
logarithms).

‡A simple way to understand this is to recall that unbroken supersymmetry requires the degeneracy of scalar and
fermion masses. Radiative corrections to fermion masses are known to diverge at most logarithmically in any renormal-
izable field theory, so the same must be true for scalar masses in unbroken supersymmetry.
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Indications of  supersymmetry? 

Coupling constants “run” with energy 
 
Precise measurements of coupling 

constants of Standard Model 
SU(3),SU(2),U(1) at electroweak 
scale (LEP) indicate that they do 
not unify at high scale (GUT scale) 

 
SM coupling constants unify within 

MSSM 



R-parity 

Proton decay 
To prevent this introduce R parity  

R=(-1) 3B-3L+2S;   R=1: SM particles  R=-1 SUSY 
The LSP is stable : could be a suitable DM candidate if 

neutral 



Minimal Supersymmetric Standard Model 



MSSM – Lagrangian 
Full supersymmetric generalization of SM Lagrangian with chiral superfield: 

S,ψ + vector superfield A, λ (2 component fermion) 
 
 
Interactions specified by SM and SUSY invariance, no new parameter 
 
 
 
 
Superpotential : scalar potential + yukawa interactions 



MSSM – Lagrangian 
Interaction Lagrangian z: superfields 
 
 
F-terms and D-terms contribute to scalar potential 
 
 
Superpotential  
 
 
Exact SUSY : only one new parameter : µ 
Supersymmetry must be broken : no sparticles with SM 

masses  

 
 
 



MSSM – soft terms 
Many possibilities for SUSY breaking instead write 

most general Lagrangian which violate SUSY  
without disturbing cancellation of quadratic 
divergences in scalar mass (Grisaru and Girardelo 1982) 

 
 
 
 
 
 



Electroweak symmetry breaking 

Higgs potential 
 
 
 
Electroweak symmetry 

breaking: negative 
mass2 for some Hu,Hd 
combination 

 
 
Minimization condition µ2 

and  Bµ  
 

 
 
 



Higgs masses 

5 scalars: h,H,A,H+,H- 

 
 
 
 
Upper bound on light Higgs mass 
 
Increase with radiative corrections (stops) 



Light Higgs mass 

Implications for MSSM
• Mass at 125 GeV

– need large radiative corrections

– δt~85 GeV  (comparable to tree-level)
– Large stop mixing

– Fine-tuning issue

–
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1 Introduction

The ATLAS and CMS Collaborations have recently presented the first evidence for a Higgs boson

with a mass of 124–126 GeV [1, 2]. The ⇥⇥ channel yields excesses at the 2–3 ⌅ level for ATLAS

and CMS, insu⇥cient for a clear discovery. Yet the concordance between the ATLAS and CMS

excesses increases the likelihood that this is indeed the Higgs boson, and motivates us to study

the implications for natural electroweak breaking in the context of weak-scale supersymmetry.

In the Minimal Supersymmetric Standard Model (MSSM) the lightest Higgs boson is lighter

than about 135 GeV, depending on top squark parameters (for a review with original references,

see [3]), and heavier than 114 GeV, the LEP bound on the Standard Model Higgs [4]. A Higgs

mass of 125 GeV naively seems perfect, lying midway between the experimental lower bound and

the theoretical upper limit. The key motivation for weak-scale supersymmetry is the naturalness

problem of the weak scale and therefore we take the degree of fine-tuning [5, 6, 7, 8, 9] as a

crucial tool in guiding us to the most likely implementation of a 125 GeV Higgs. In this regard

we find that increasing the Higgs mass from its present bound to 125 GeV has highly significant

consequences. In the limit of decoupling one Higgs doublet the light Higgs mass is given by

m2
h = M2

Z cos2 2� + ⇤2t (1)

where ⇤2t arises from loops of heavy top quarks and top squarks and tan � is the ratio of elec-

troweak vacuum expectation values. At large tan �, we require ⇤t � 85 GeV which means that

a very substantial loop contribution, nearly as large as the tree-level mass, is required to raise

the Higgs mass to 125 GeV.

The Higgs mass calculated at two loops in the MSSM is shown in Figure 1 as a function of

the lightest top squark mass for two values of the top squark mixing parameter Xt. The red/blue

contours are computed using the Suspect [10] and FeynHiggs [11] packages, which have di�ering

renormalization prescriptions and the spread between them, highlighted by the shading, may

be taken as a rough measure of the current uncertainty in the calculation. For a given Higgs

mass, such as 125 GeV, large top squark mixing leads to lower and more natural top squark

masses, although the mixing itself contributes to the fine-tuning, as we will discuss. In fact,

stop mixing is required to raise the Higgs mass to 125 GeV without multi-TeV stops. Even at

maximal mixing, we must have
⇥
mQ3mu3 � 600 GeV (which, for degenerate soft masses, results

in stop masses heavier than have been directly probed by existing LHC searches [12, 13]) and,

as we will discuss in the next section, this implies that fine-tuning of at least 1% is required in

the MSSM, even for the extreme case of an ultra-low messenger scale of 10 TeV. Hence we seek

an alternative, more natural setting for a 125 GeV Higgs.

In the next-to-minimal model (NMSSM, for a review with references, see [14]) the supersym-

metric Higgs mass parameter µ is promoted to a gauge-singlet superfield, S, with a coupling to

1

The Higgs sector of the MSSM depends, at tree-level, on the ratio of the vevs, tan �, and on

the pseudoscalar mass mA, which determines the mixing between the two CP even scalars. In

this section, we focus on the decoupling limit, mA ⌅ mZ , where the lightest CP even Higgs is

SM-like in its coupling and has the largest possible tree-level mass (away from the decoupling

limit, mixing drives the lightest mass eigenstate lighter). In the decoupling limit, the tree-

level Higgs mass is given by mZ cos 2� and is maximized at high tan �, but is always far below

125 GeV.

At the one-loop level, stops contribute to the Higgs mass and three more parameters become

important, the stop soft masses, mQ3 and mu3 , and the stop mixing parameter Xt = At�µ cot �.

The dominant one-loop contribution to the Higgs mass depends on the geometric mean of the

stop masses, m2
t̃
= mQ3mu3 , and is given by,

m2
h ⇤ m2

Z cos2 2� +
3

(4⇥)2
m4

t

v2

⇤
ln

m2
t̃

m2
t

+
X2

t

m2
t̃

�
1� X2

t

12m2
t̃

⇥⌅
. (4)

The Higgs mass is sensitive to the degree of stop mixing through the second term in the brackets,

and is maximized for |Xt| = Xmax
t =

⇧
6mt̃, which is referred to as “maximal mixing.” The Higgs

mass depends logarithmically on the stop masses, which means, of course, that the necessary

stop mass depends exponentially on the Higgs mass. Therefore, an accurate loop calculation is

essential in order to determine which stop mass corresponds to a 125 GeV Higgs.

We use the Suspect [10] and FeynHiggs [11] packages to calculate the Higgs mass, which

include the full one-loop and leading two-loop contributions. In Figure 4 we give the mh = 124

and 126 GeV contours in the (Xt,mt̃) plane, with Suspect shown in red and FeynHiggs shown

in blue. For both curves, the axes are consistently defined in the DR renormalization scheme.

The left and right-handed top squark mass parameters are taken equal, mQ3 = mu3 , since the

Higgs mass depends only mildly on the ratio. As we shall show, this choice results in the lowest

fine-tuning for a given mt̃, since the stop contribution to fine-tuning is dominated by the largest

soft mass. The loop contribution depends slightly on the choice of some of the other SUSY

parameters: we have fixed all gaugino masses to 1 TeV, the Higgsino mass to µ = 200 GeV, and

mA = 1 TeV. We find that the Suspect and FeynHiggs results have considerable di�erences. The

two programs use di�erent renormalization prescriptions, and we take the di�erence between the

two programs as a rough estimate of the theoretical uncertainty in the Higgs mass calculation.

For an earlier comparison, see [23]. The uncertainty should be reduced if one takes into account

the results of recent three-loop calculations [24], although this is beyond the scope of our work.

For a detailed discussion of the two-loop calculations, see for example [25]. Fortunately, the two

programs agree to within a factor of two on the necessary stop mass in the maximal mixing

regime: mt̃ = 500� 1000 GeV for Xt ⇥
⇧
6mt̃ and mt̃ ⇥ 800� 1800 GeV for Xt ⇥ �

⇧
6mt̃, for

a Higgs mass in the 124–126 GeV range.
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Figure 4: Contours of mh in the MSSM as a function of a common stop mass mQ3 = mu3 = mt̃

and the stop mixing parameter Xt, for tan � = 20. The red/blue bands show the result from
Suspect/FeynHiggs for mh in the range 124–126 GeV. The left panel shows contours of the fine-
tuning of the Higgs mass, �mh

, and we see that �mh
> 75(100) in order to achieve a Higgs mass

of 124 (126) GeV. The right panel shows contours of the lightest stop mass, which is always
heavier than 300 (500) GeV when the Higgs mass is 124 (126) GeV.

We now consider the degree of fine-tuning [5, 6, 7, 8, 9] necessary in the MSSM to accommo-

date a Higgs of 125 GeV. We have just seen that rather heavy stops are necessary in order to

boost the Higgs to 125 GeV using the loop correction. The (well-known) problem is that heavy

stops lead to large contributions to the quadratic term of the Higgs potential, ⇥m2
Hu

,

⇥m2
Hu

= �3y2t
8⌅2

�
m2

Q3
+m2

u3
+ |At|2

⇥
ln

⇤
⇥

mt̃

⌅
, (5)

where ⇥ is the messenger scale for supersymmetry breaking. If ⇥m2
Hu

becomes too large the

parameters of the theory must be tuned against each other to achieve the correct scale of elec-

troweak symmetry breaking. We see from equation 5 that large stop mixing also comes with a

cost because At induces fine-tuning. At large tan �, Xt ⇥ At, and maximal mixing (|At|2 = 6m2
t̃
)

introduces the same amount of fine-tuning as doubling both stop masses in the unmixed case.

In order to quantify the fine-tuning [8], it is helpful to consider a single Higgs field with a

potential

V = m2
H |h|2 +

⇤h

4
|h|4. (6)

7

where Mstop denotes an average value of the top squark masses. (It is not necessary to be
more precise here, in contrast to the radiative corrections to the physical Higgs masses.) It
is straightforward to express the vevs vu, vd and s in terms of M2

Z , tan β and µeff with the
help of these equations.

Hence the relevant parameters pSusyi at the Susy scale are given by (leaving aside the
electroweak gauge couplings g1 and g2, as well as Mstop inside the logarithm)

pSusyi = mHu
, mHd

, m2
S, Aλ, Aκ, λ, κ, and ht . (13)

In order to compute the variations ∆Susy
i (see (8)) with respect to these parameters, we

use

0 = δEj =
∑

i

∂Ej

∂pSusyi

δpSusyi +
∂Ej

∂MZ
δMZ +

∂Ej

∂ tan β
δ tanβ +

∂Ej

∂µeff
δµeff (14)

for j = 1, 2, 3. Since all partial derivatives of the equations Ej can be computed explicitely,
the three equations (14) can be solved for δMZ (and, separately, for δ tanβ and δµeff) as
function of all δpSusyi , which allows to determine the variations ∆Susy

i in (8).
At this stage it is useful to recall the origin of the “little fine tuning problem” in the

MSSM. Neglecting the radiative corrections, the minimisation equations (12) of the Higgs
potential imply, with µeff ≡ µ in the MSSM,

M2
Z ≃ −2µ2 +

2(m2
Hd

− tan2 βm2
Hu

)

tan2 β − 1
. (15)

In the absence of fine tuning, all terms on the right hand side of (15) should be of comparable
magnitude, and no large cancellations should occur; hence both µ2 and |m2

Hu
| should not be

much larger than O(M2
Z). However, from the RG equations one typically obtains m2

Hu
∼

−M2
stop, which is often required to be much larger (in absolute value) than M2

Z : At least
within the MSSM, the SM-like Higgs scalar mass increases proportionally to ln

(

M2
stop/m

2
top

)

due to top/stop induced radiative corrections. Then, large values for Mstop are unavoidable
in order to satisfy the LEP bound. Albeit large stop masses are consistent with the non-
observation of top squarks, they would generate an uncomfortably large value for −m2

Hu

which has to be cancelled by µ2 in (15).
For large |m2

Hu
| ∼ µ2 one finds for tan2 β ≫ 1, following (8) with i = mHu

or i = µ,

∆Susy
mHu

∼ 2
|m2

Hu
|

M2
Z

∼ ∆Susy
µ ∼ 2

µ2

M2
Z

. (16)

Accordingly large values for ∆Susy
i (leading, generally, to large values for ∆GUT

i ) reflect well
the necessary fine tuning if |m2

Hu
| and hence µ2 are large.

In the NMSSM µ is replaced by µeff = λs. For large |m2
Hu

| ∼ µ2
eff , the above reasoning

remains essentially unchanged: For s ≫ MZ (valid in most of the parameter space), E3 in
(12) gives

s ∼
1

4κ

(

−Aκ −
√

A2
κ − 8m2

S

)

. (17)
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Figure 4: Contours of mh in the MSSM as a function of a common stop mass mQ3 = mu3 = m
˜t

and the stop mixing parameter Xt, for tan � = 20. The red/blue bands show the result from
Suspect/FeynHiggs for mh in the range 124–126 GeV. The left panel shows contours of the fine-
tuning of the Higgs mass, �mh

, and we see that �mh
> 75(100) in order to achieve a Higgs mass

of 124 (126) GeV. The right panel shows contours of the lightest stop mass, which is always
heavier than 300 (500) GeV when the Higgs mass is 124 (126) GeV.

We now consider the degree of fine-tuning [5, 6, 7, 8, 9] necessary in the MSSM to accommo-

date a Higgs of 125 GeV. We have just seen that rather heavy stops are necessary in order to

boost the Higgs to 125 GeV using the loop correction. The (well-known) problem is that heavy

stops lead to large contributions to the quadratic term of the Higgs potential, �m2

Hu
,

�m2

Hu
= �3y2t

8⇡2

�
m2

Q3
+m2

u3
+ |At|2

�
ln

✓
⇤

m
˜t

◆
, (5)

where ⇤ is the messenger scale for supersymmetry breaking. If �m2

Hu
becomes too large the

parameters of the theory must be tuned against each other to achieve the correct scale of elec-

troweak symmetry breaking. We see from equation 5 that large stop mixing also comes with a

cost because At induces fine-tuning. At large tan �, Xt ⇡ At, and maximal mixing (|At|2 = 6m2

˜t
)

introduces the same amount of fine-tuning as doubling both stop masses in the unmixed case.

In order to quantify the fine-tuning [8], it is helpful to consider a single Higgs field with a

potential

V = m2

H |h|2 +
�h

4
|h|4. (6)

7

Xt=At-µ/tanβ	




The	  MSSM	  case	  

Fine-tuning issue 
 
 
Unless  µ ~O(100)GeV (natural SUSY)  need large cancellation 
– implications for DM since µ determines the Higgsino 

component of the LSP 
Fine-tuning also from radiative corrections – mHu strong 

dependence on parameters of stop sector 
 

 
 



Fine-‐tuning	  

Barbieri-‐Giudici	  measure	  
	  
	  
	  
In	  MSSM	  :	  	  (Δ0 <100	  if µ<700 GeV)	  
Δ>100	  -‐>	  %level	  fine-‐tuning	  

Casas	  et	  al,	  1407.6966	  



MSSM parameters 
Soft Lagrangian: many new parameters ~105 
 
Soft parameters obey RGE equations (can be quite different at weak scale 

and messenger scale (e.g. GUT scale or Planck scale or other 
intermediate scale) 

 
If assume  

All parameters are real (no new source of CP violation) – no real 
justification 

All mass matrices and trilinear couplings are flavour diagonal -- want to 
avoid FCNC 

First and second generation are identical (constraints on rare  processes,  
K , lepton) 

MSSM :  22 new parameters  
 
 
 



MSSM parameters 
Real parameters and no flavour structure : 22 parameters 
 
 
 
 
 
 
 
 
 
 
Can trade scalar mass for more physical parameters : µ, MA  

Trilinear couplings of light fermions mostly irrelevant(except g-2,DD) 
 
 
 



Constrained MSSM 
¢  Underlying theory at high scale : relations amongst parameters at GUT scale – 

renormalisation group equations used to get MSSM spectrum at SUSY scale 

¢  Heavily used in early studies – reduced number of parameters 

¢  Unification of gaugino masses: m1/2, scalar masses m0, trilinear couplings A0 at 
GUT scale 

 
¢  Gaugino mass M3:M2:M1= 6:2:1 
 
¢  Sfermions RH< LH  
 
¢  Squarks heavier than sleptons 
 
¢  In general µ>>M1  - bino LSP 
 
¢  Focus point region (at large m0) µ ~M1  

l  Fixed point behaviour – value of Higgs mass parameters independent of 
boundary value (depends on top Yukawa) 

 
 



Properties of supersymmetric particles 



The neutralino mass matrix 

Mass and nature of neutralino LSP : determined by smallest mass 
parameter 

M1 < M2, µ  bino 
µ < M1, M2 Higgsino  ( in this case mχ1 ~mχ2 ~mχ+)  
M2 < µ, M1 wino 
 

Determine couplings of neutralino to vector bosons, scalars… 
In most studied SUSY model CMSSM (or mSUGRA) the LSP is 

usually bino 
 
 



Chargino mass matrix 

Lightest chargino constrained by LEP direct searches  >103GeV 
M2, µ >100GeV à restrictions on neutralino mass matrix  

Additional relation M2=2M1 à lower bound on neutralino mass 
 



Sfermion mass matrix 

Charged fermions constrained by LEP direct searches  >103GeV 
L-R mixing relevant only for third generation (exception DD) 
 



Neutralino	  
Neutral spin ½ SUSY partner of gauge bosons (Bino, Wino) and 

Higgs scalars (Higgsinos) 
 
Lightest neutralino is stable because of R-parity (also stabilizes the 

proton) 
Neutralino is Majorana particle 
 
Exact nature of neutralino (model dependent) will determine its annihilation 

properties – relevant for relic density, for indirect detection rate, for direct 
detection through interaction with nuclei in large detector 

orders	  of	  magnitude	  variaMons	  in	  DM	  observables	  
	  
	  Since	  only	  SUSY	  parMcles	  known	  are	  SM	  ones	  :	  large	  parameter	  space	  to	  

explore	  	  
 
	  

	  



Neutralino dark matter 
Annihilation of LSP  depend on parameters of model 

Mass of neutralino  LSP 
Couplings of LSP : whether  neutralino (bino,wino, higgsino) 
Mass of sparticles exchanged 
Mass of NLSP (Stau, Neutralino2, Chargino) 





General	  remark	  
•  Bino(U(1)):	   annihilaMon	   into	  

fermion	   pairs,	   usually	   relic	   too	  
large	  unless	   light	   sfermion	  and/or	  
coannihilaMon	  

•  Higgsino	   –	   annihilaMon	   into	   W	  
pairs,	   large	   cross	   secMon,	   relic	  
density	  too	  small	  unless	  DM	  mass	  
>1	  TeV	  

•  Mixed	  state	  (bino/higgsino	  and/or	  
wino)	  :	  adjust	  coupling	  for	  correct	  
relic	  density	  

•  Possibility	   of	   annihilaMon	   through	  
resonance:	  if	  mLSP~mh/2	  coupling	  
can	  be	  very	  small	  

M2=2M1	  



Direct	  detec)on	  
•  Coupling	  of	  neutralino	  to	  Higgs	  maximal	  for	  a	  mixed	  state	  

Constraints	  from	  DD	  (LUX)	  on	  	  
Neutralinos	  that	  naturally	  	  
Reproduce	  measured	  relic	  density	  

33	  
100	  

800	  



LHC	  -‐	  Higgs	  
•  Discovery	   of	   SM-‐like	   Higgs	   with	   mass	   of	   125	   GeV	   impose	  

strong	  constraint	  on	  supersymmetric	  models	  	  
•  Need	  large	  enough	  correcMons	  to	  tree-‐level	  mass	  (bounded	  by	  

MZ)	  –	  constrain	  stop	  sector	  
•  	  Higgs	  couplings	  are	  SM-‐like	  –	  decoupling	  limit	  –	  large	  MA	  

•  No	  large	  contribuMon	  from	  susy	  in	  loops	  +	  small	  invisible	  width	  



SUSY production at LHC 
¢  pp collider 10-14TeV  
¢  Direct production : missing energy no trigger 
¢  Production of coloured particles: DM in decay chain 
 
 
¢  Signatures include  Missing ET 

¢  For direct DM production : gluon or photon 
radiation from initial state 



LHC	  –	  SUSY	  	  
Standard	  susy	  searches	  :	  coloured	  parMcles	  

 

q-

g
q̃

q

q

-̃
g̃



LHC	  –	  SUSY	  	  
	  
•  Signatures	  of	  squarks	  and	  gluinos	  :	  jets+MET	  

•  Jets+MET	  +Leptons	  

q

q̃

q

q
g̃

r̃  
1
0

r̃  
1
0



Neutralino	  in	  CMSSM	  
•  TradiMonally	  predicMons	   in	  context	  of	  CMSSM	  (scenario	  with	  

parameters	   defined	   at	   unificaMon	   scale)	   full	   spectrum	  
predictable	  from	  handful	  of	  parameters	  

•  Neutralino	   is	   generally	   bino	   U(1)	   (too	   much	   dark	   maker	  
unless	  m	  ~100GeV)	  or	  bino/higgsino	  	  

•  RelaMons	  between	  masses	  of	  parMcles	  –	  e.g.	  mgluino~6	  mLSP	  

•  LHC	   has	   put	   strong	   constraints	   on	   this	   model	   –	   because	  
mh=125GeV	  with	  SM-‐like	  couplings,	  no	  squarks	  and/or	  gluino	  	  
discovered	  ,	  no	  evidence	  of	  SUSY	  in	  B	  physics	  



LHC limits on CMSSM 

•  Gluino>1.4TeV, squark > 1.7 TeV 

mh>122 GeV 



What’s left? 
After fit to all observables (relic,LUX,flavour,LHC) 

L. Roszkowski 1405.4289 

●  Indirect	  detecMon	  :	  annihilaMon	  into	  bb	  and	  WW	  are	  usually	  
dominant,	  annihilaMon	  into	  light	  fermions	  are	  suppressed	  at	  
small	  v	  



Neutralino	  in	  pMSSM	  
•  Constrained model too restrictive 
•  pMSSM : phenomenological 

M S S M – E W s c a l e i n p u t 
p a r a m e t e r s ~ 1 9 w i t h f e w 
assumptions  

•  Decouple strong and electroweak 
sector 

•  LHC bounds from electroweak-ino 
searches (much weaker) 

•  Include all particle physics 
constraints, Higgs, flavour, LHC-
susy+monojet 

•  Only upper bound on relic density 
 
 

Arbey,	  Bakaglia,	  Mahmoudi,	  1311.7641	  

Any	  mass	  for	  neutralino	  above	  30	  
GeV	  s6ll	  allowed	  
	  



SUSY	  search	  channels	  
•  0lepton	  +	  jets	  
•  Third	  generaMon	  
•  Monojet	  
•  Disappearing	  or	  charged	  tracks	  



0lepton+	  2-‐6jets+MET	  
•  Wide	   ranging	   sensiMvity	   to	   strong	   parMcle	   producMon	   with	  	  

squark-‐>	  q+LSP	  and	  gluino-‐>	  qq+LSP	  	  +	  various	  cascade	  decays	  
•  High	  (low)	  mulMplicity	  :	  gluinos	  (squarks)	  
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Figure 10. Exclusion limits for direct production of (case (a) – top left) gluino pairs with de-
coupled squarks, (case (b) – top right) light-flavour squarks and gluinos and (case (c) – bottom)
light-flavour squark pairs with decoupled gluinos. Gluinos (light-flavour squarks) are required to
decay to two quarks (one quark) and a neutralino LSP. In the bottom figure (case (c)) limits are
shown for scenarios with eight degenerate light-flavour squarks (q̃L + q̃R), or with only one non-
degenerate light-flavour squark produced. Exclusion limits are obtained by using the signal region
with the best expected sensitivity at each point. The blue dashed lines show the expected limits
at 95% CL, with the light (yellow) bands indicating the 1σ excursions due to experimental and
background-only theory uncertainties. Observed limits are indicated by medium dark (maroon)
curves, where the solid contour represents the nominal limit, and the dotted lines are obtained by
varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertain-
ties. Previous results from ATLAS [16] are represented by the shaded (light blue) areas and light
blue dotted lines. The black stars indicate benchmark models used in figures 4–6.

In figure 10 limits are shown for three classes of simplified model in which only direct

production of (a) gluino pairs, (b) light-flavour squarks and gluinos or (c) light-flavour

squark pairs are considered. All other superpartners, except for the neutralino LSP χ̃0
1,

are decoupled thereby forcing each light-flavour squark or gluino to decay directly to one

or more quarks and a χ̃0
1. Cross-sections are evaluated assuming decoupled (masses set to

4.5TeV) light-flavour squarks or gluinos in cases (a) and (c), respectively. In case (b) the

masses of the light-flavour squarks are set to 0.96 times the mass of the gluino, matching

the prescription used in refs. [104, 105]. In case (c) limits are shown for scenarios with

eight degenerate light-flavour squarks (q̃L + q̃R), or with only one non-degenerate light-

– 25 –

mgluino>1330	  GeV	  



0lepton+	  2-‐6jets+MET	  
•  Wide	   ranging	   sensiMvity	   to	   strong	   parMcle	   producMon	   with	  	  

squark-‐>	  q+LSP	  and	  gluino-‐>	  qq+LSP	  	  +	  various	  cascade	  decays	  
•  High	  (low)	  mulMplicity	  :	  gluinos	  (squarks)	  

Msquark>850	  GeV	  
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Figure 10. Exclusion limits for direct production of (case (a) – top left) gluino pairs with de-
coupled squarks, (case (b) – top right) light-flavour squarks and gluinos and (case (c) – bottom)
light-flavour squark pairs with decoupled gluinos. Gluinos (light-flavour squarks) are required to
decay to two quarks (one quark) and a neutralino LSP. In the bottom figure (case (c)) limits are
shown for scenarios with eight degenerate light-flavour squarks (q̃L + q̃R), or with only one non-
degenerate light-flavour squark produced. Exclusion limits are obtained by using the signal region
with the best expected sensitivity at each point. The blue dashed lines show the expected limits
at 95% CL, with the light (yellow) bands indicating the 1σ excursions due to experimental and
background-only theory uncertainties. Observed limits are indicated by medium dark (maroon)
curves, where the solid contour represents the nominal limit, and the dotted lines are obtained by
varying the signal cross-section by the renormalisation and factorisation scale and PDF uncertain-
ties. Previous results from ATLAS [16] are represented by the shaded (light blue) areas and light
blue dotted lines. The black stars indicate benchmark models used in figures 4–6.

In figure 10 limits are shown for three classes of simplified model in which only direct

production of (a) gluino pairs, (b) light-flavour squarks and gluinos or (c) light-flavour

squark pairs are considered. All other superpartners, except for the neutralino LSP χ̃0
1,

are decoupled thereby forcing each light-flavour squark or gluino to decay directly to one

or more quarks and a χ̃0
1. Cross-sections are evaluated assuming decoupled (masses set to

4.5TeV) light-flavour squarks or gluinos in cases (a) and (c), respectively. In case (b) the

masses of the light-flavour squarks are set to 0.96 times the mass of the gluino, matching

the prescription used in refs. [104, 105]. In case (c) limits are shown for scenarios with

eight degenerate light-flavour squarks (q̃L + q̃R), or with only one non-degenerate light-
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3rd	  genera)on	  
•  Simplified	  models,	  Stops	  -‐>	  t+LSP,	  +	  …	  

 [GeV]
1t

~m
200 300 400 500 600 700 800

 [G
eV

]
10 χ∼

m

0

50

100

150

200

250

300

350

400

450

1
0
χ∼ t →1t

~

1
0
χ∼ t →1t

~

1
0
χ∼/b f f’ 

1
0
χ∼ W b →1t

~

1
0
χ∼ W b →1t

~

1
0
χ∼ c →1t

~

1
0
χ∼ b f f’ →1t

~

1
0

χ∼

,t)
 < 

m
1t~

 m
(

∆

W

 + 
m

b

) <
 m

1
0

χ∼,
1t~

 m
(

∆

) <
 0

1
0

χ∼, 
1t~

 m
(

∆

1
0
χ∼ t →1t

~ / 1
0
χ∼ W b →1t

~ / 1
0
χ∼ c →1t

~ / 1
0
χ∼ b f f’ →1t

~ production, 1t
~
1t

~

ATLAS 

1
0
χ∼W b 

1
0
χ∼c 

1
0
χ∼b f f’ 

Observed limits Expected limits All limits at 95% CL

-1=8 TeV, 20 fbs
t0L/t1L combined
t2L, SC
WW
t1L, t2L
tc
tc, t1L

 [GeV]
1t

~m
170 180 190 200 210

 [G
eV

]
10 χ∼

m

0
10
20
30
40

ATLAS	  1508.08616	  	  



Electroweak-‐inos	  
•  Direct connection with dark matter (neutralino sector) 
•  Reach dependent on search channel (here simplified model) 
•  Weak constraints on charginos which decay into gauge bosons 
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Figure 11: Impact of electroweak searches (as listed in Table 1) (a) on the �̃0
2–�̃0

1 plane and (b) on the �̃±1 –�̃0
1 plane.

The 95% CL observed exclusion limit from Ref. [53] is for a simplified model that assumes pure-wino �̃±1 + �̃
0
2

production, followed by the decays �̃±1 �̃
0
2 ! W⇤�̃0

1Z⇤�̃0
1. The colour scale is as described in Figure 3.

mixing, leading to a larger �m�, and a shorter �̃±1 lifetime, hence the Disappearing Track analysis loses
sensitivity. The Figure 11(a) row in which m(�̃0

1) ⇠ 50 GeV has lower sensitivity for the Disappearing
Track analysis. This region is dominated by models for which the relic density is controlled by the Z and
h boson funnels, so has bino-like LSPs with a Higgsino admixture. Such models do not typically feature
long-lived charginos.

For m(�̃0
2) <⇠ 400 GeV and m(�̃0

1) <⇠ 200 GeV, direct production of �̃0
2 (and/or �̃±1 ) states provides sens-

itivity via the 2-leptons, 3-leptons and 4-leptons analyses. The sensitive region for these multi-lepton
analyses is similar to that shown from the simplified model of Ref. [53]. Nevertheless there remain many
viable pMSSM points within the region excluded in the simplified-model scenario. For example, many
points in the Z and h boson funnel regions (m(�̃0

1) ⇠ 50 GeV) have little sensitivity in the multi-lepton
analyses as the �̃0

2 is predominantly Higgsino-like, leading to a lower production cross-section.

The equivalent plot for the projection onto the plane of the lightest chargino and the LSP is shown in
Figure 11(b), again showing the fraction excluded by the electroweak ATLAS searches. In this figure
the Disappearing Track analysis has sensitivity to models with wino-like LSPs which lie close to the
leading diagonal where m(�̃±1 ) is only a little larger than m(�̃0

1). Models with Higgsino-like LSPs also
lie close to that diagonal, but have larger mass splittings and so little sensitivity from the Disappearing
Track analysis. Away from that diagonal only bino-dominated LSPs are found. Here the best sensitivity
is from the multi-lepton electroweak search analyses (2-leptons, 3-leptons and 4-leptons), particularly
for m(�̃±1 ) <⇠ 400 GeV and m(�̃0

1) <⇠ 200 GeV. The region with sensitivity to the multi-lepton searches
again shows some similarity with the simplified-model limit from Ref. [53], but again no region is totally
excluded.

28



Sleptons	  
•  Weak constraints, especially when small mass splitting with 

LSP 
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Figure 9: Impact of electroweak searches (as listed in Table 1) in (a) the ˜̀L–�̃0
1 and (b) ˜̀R–�̃0

1 projections. It
should be noted that in the 19-parameter pMSSM, the first- and second-generation sleptons of each handedness are
required to be degenerate. The simplified-model limit in the ˜̀L ( ˜̀R) case is set assuming directly pair-produced left
(right) handed selectrons/smuons, decaying to an electron/muon and neutralino. The simplified-model limits are
from Figures 8(a) and 8(b) of Ref. [53]. The colour scale is as described in Figure 3.
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Long-lived particles 
•  In SUSY, charged/neutral winos have very small mass  

splitting (<3GeV) -> displaced vertex or stable 
•  But cannot explain all DM 

ATLAS	  1506.05332	  
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Figure 4: Number of pMSSM parameter points in the sub-space covering sparticle masses up to
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What’s left after LHC 
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Analysis All LSPs Bino-like Wino-like Higgsino-like
0-lepton + 2–6 jets + Emiss

T 32.1% 35.8% 29.7% 33.5%
0-lepton + 7–10 jets + Emiss

T 7.8% 5.5% 7.6% 8.0%
0/1-lepton + 3b-jets + Emiss

T 8.8% 5.4% 7.1% 10.1%
1-lepton + jets + Emiss

T 8.0% 5.4% 7.5% 8.4%
Monojet 9.9% 16.7% 9.1% 10.1%
SS/3-leptons + jets + Emiss

T 2.4% 1.6% 2.4% 2.5%
⌧(⌧/`) + jets + Emiss

T 3.0% 1.3% 2.9% 3.1%
0-lepton stop 9.4% 7.8% 8.2% 10.2%
1-lepton stop 6.2% 2.9% 5.4% 6.8%
2b-jets + Emiss

T 3.1% 3.3% 2.3% 3.6%
2-leptons stop 0.8% 1.1% 0.8% 0.7%
Monojet stop 3.5% 11.3% 2.8% 3.6%
Stop with Z boson 0.4% 1.0% 0.4% 0.5%
tb+Emiss

T , stop 4.2% 1.9% 3.1% 5.0%
`h, electroweak 0 0 0 0
2-leptons, electroweak 1.3% 2.2% 0.7% 1.6%
2-⌧, electroweak 0.2% 0.3% 0.2% 0.2%
3-leptons, electroweak 0.8% 3.8% 1.1% 0.6%
4-leptons 0.5% 1.1% 0.6% 0.5%
Disappearing Track 11.4% 0.4% 29.9% 0.1%
Long-lived particle 0.1% 0.1% 0.0% 0.1%
H/A! ⌧+⌧� 1.8% 2.2% 0.9% 2.4%
Total 40.9% 40.2% 45.4% 38.1%

Table 7: Percentage of model points excluded by the individual analyses. It should be noted that the fraction of
model points that can be excluded will depend on the model employed and range of input masses initially generated.
The reader is reminded (Table 2) that the sparticle mass terms in this paper extend to 4 TeV. References for the
individual analyses can be found in Table 1.
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What’s left after LHC 
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(a) Before ATLAS Run 1 (b) After ATLAS Run 1

Figure 14: The density of pMSSM points projected onto the plane of dark matter relic density versus LSP mass,
before and after the constraints from the search analyses. The colours labelling the di↵erent LSP types, as defined
in Table 4.

searches for electroweak production. Further study shows that, for the sampling of pMSSM points made
in this paper, the analyses with the largest regions of unique sensitivity are the 0-lepton + 2–6 jets + Emiss

T
analysis [57], and the Disappearing Track analysis [71]. Nevertheless some care is required in interpreting
these results. The degree of apparent overlap is subjective, in that it depends, in some cases sensitively,
on the metric used when sampling the pMSSM space. Even in cases where the apparent overlap appears
to be large, for example between the 0-lepton + 2–6 jets + Emiss

T and 0-lepton + 7–10 jets + Emiss
T analyses,

both searches are found to have regions of pMSSM space in which they provide unique sensitivity. The
Disappearing Track analysis is mostly sensitive to model points with a wino-like LSP, so an alternative
prior (or weighting by LSP type) of the sample model points would directly a↵ect the apparent relative
sensitivity of this analysis.

The overall fraction of model points within the pMSSM space excluded by each analysis for each of
the LSP types is shown in Table 7. Only the `h analysis is unable to constrain the pMSSM set with
the luminosity available. The lack of sensitivity for that analysis is not unexpected since for simplified
models it excludes only points with very light LSPs [69]. It should again be noted that the absolute
values of the fractions of model points excluded is strongly a↵ected by the prior sampling, in particular
by the upper mass bounds used for the scan in selecting the pMSSM input parameters (see Table 2).
The relative fractions of model points excluded by each analysis are a little more informative, but again
care is necessary in their interpretation since they too are sensitive to changes to the assumptions or
constraints applied to the initial model set. Nevertheless, the high sensitivity of the 0-lepton + 2–6 jets +
Emiss

T analysis for all LSP types, and the Disappearing Track analysis for models with a wino-like LSP is
unambiguous.
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What’s left after LHC 
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Figure 16: Left, the distribution of model points generated; right, the distribution of model points not excluded by
ATLAS Run 1 searches, as projected onto the scaled spin-independent (SI) interaction cross-section of nucleons
with the neutralino versus the neutralino mass. The cross-sections are scaled by a factor of R⌦ = ⌦(�̃0

1)h2/⌦Planckh2.
The calculated spin-independent interaction cross-sections are a weighted average of the contributions from proton
and neutron scattering, corresponding to the Xenon atom (the target nucleus of the LUX experiment) and normal-
ised to one nucleon. The 90% confidence limit [90] from the LUX direct detection experiment is overlaid, in which
it is assumed that the dark matter comprises only the LSP, with relic density as measured by the Planck Collabora-
tion [89]. For the spin-dependent cross-sections, the calculated proton cross-section is shown. It is compared to the
direct detection limit from the COUPP experiment [91].
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Summary	  MSSM+DM	  
•  Higgs mass à fine-tuning issue with MSSM,  heavily mixed stops 
•  Coloured sector under pressure by LHC if below TeV -> more at 13 TeV 
•  Electroweak sector still wide open 
•  Higgs decays -> constrain light LSP (more later) 
•  Flavour physics : constrain large tanbeta 
•  Neutralino as a single DM component under pressure 

•  Bino : constrained Higgs + direct search 
•  Mixed higgsino/gaugino : constrain by LUX 
•  Pure higgsino or pure wino : not enough relic + long-lived particles 


