

OMEGA ROC ASICs for SiPMs

Salleh AHMAD, Sylvie BLIN, Stéphane CALLIER, Frederic DULUCQ, Julien FLEURY, Christophe de LA TAILLE, Gisèle MARTIN-CHASSARD, Ludovic RAUX Nathalie SEGUIN-MOREAU, Damien THIENPONT, Jeanne TONGBONG

OMEGA microelectronics group Ecole Polytechnique & CNRS IN2P3 http://omega.in2p3.fr & WEEROC SAS http://weeroc.com

OMEGA ROC chips

- Use of Silicon Germanium 0.35 µm BiCMOS technology since 2004
- Readout for MaPMT and SiPM for calorimetry
- Very high level of integration: System on Chip (SoC)

_			_
Chip	detector	ch	DR (C)
MAROC	PMT	64	-2f-50p
SPIROC	SiPM	36	+10f-200p
SKIROC	Si	64	+0.3f-10p
HARDROC	RPC	64	-2f-10p
PARISROC	PM	16	-5f-50p
SPACIROC	PMT	64	-5f-15p
MICROROC	μMegas	64	-0.2f-0.5p
PETIROC	SiPM	32	50fC-300pC

SPIROC2

Silicon-Photomultipliers Readout

- SPIROC
- EASIROC/CITIROC
- PETIROC
- TRIROC

SiPM from SPIROC to TRIROC

- FLC_SiPM designed and produced to equip the Analog H-Cal physics prototype for the ILC in 2005 (1 cubic meter, 38 layers, 2cm steel plates, 8000 tiles with SiPM)
 - > 1st ASIC to readout SiPM
- SPIROC developed in November 2007 to equip the CALICE AHCAL and ECAL EUDET technological prototypes
- Variants of SPIROC: EASIROC designed in September 2009, CITIROC in 2013
 - ➤ EASIROC/CITIROC : "light" analog version of SPIROC for SiPM users who don't need the ILC specific digital core
- Several thousands produced
- Others applications using SPIROC/EASIROC/CITIROC chips for SiPM readout
 - > Astrophysics: PEBS experiment (Aachen University), CTA
 - Medical imaging (Roma, Pisa, INMC Orsay, Valencia, etc.)
 - Nuclear physics: E40 experiment (KEK)
 - Volcanology: MuRay muon radiography of geological structures (INFN Napoli)
- Dedicated chips for fast timing and high timing resolution applications
 - > PETIROC (November 2013)
 - TRIROC (March 2014) "FP7" project

SPIROC for **SiPM** readout

 SPIROC : Silicon Photomultiplier Integrated Readout Chip

- Developed to read out the analog hadronic calorimeter for CALICE (ILC)
- DESY collaboration (EUDET project)
- Chip embedded in detector: OW power!
- 36 channels autotrigger 15bit readout
 - Energy measurement : 15 bits in 2 gains
 - Autotrigger down to ½ p.e.
 - Time measurement to ~1ns
 - Power dissipation : 25µW/ch (power pulsed)

SPIROC: System On Chip

SPIROC performance

SPIROC2 performance

Variant: EASIROC/CITIROC

- 32-channel front-end readout (analogue part of SPIROC)
 - 2 multiplexed analog outputs (high gain, low gain) [tri state outputs]
- Trigger output
 - 32 Trigger outputs
 - OR32 output
 - Trigger multiplexed output (latch included) [Tri state output]
 - Low power: 4.84 mW/channel, 155 mW/chip

SipMed, IMNC, LAL, OMEGA

Easiroc module

- two EASIROC's + on board ADC
- 32x2 channel
- $Vb = V0 \sim -4.5V 8bit$
- TCP/IP connection

LED

Ishijima

The "Shadow" of the Vesuvius **MAP-427** © P. Strolin INFN Napoli

CITIROC

Evolution of EASIROC 32 ch SiPM readout

- 32 channels, positive input, 5V input DAC HV adjustment
- 32 trigger outputs & High Gain / Low gain multiplexed charge output
- Peak detector and two trigger level (timing & energy)
- Gain adjustment per channel (6 bits)

PDM Electronics

FOV = 9.6° Ø = 350mm

Photon Detection Module (PDM) Pixel = $0.17^{\circ} \rightarrow 6.2 \times 6.2 \text{ mm}$

© O. Cataneo INAF Palermo

SiPM board (9 +1 temperature sensors embedde

Front-End board (2 CITIROC ASIC)

PDM FPGA Board (XILINX ARTIX 7)

CITIROC: Peak detector

© O. Cataneo INAF Palermo

CITIROC: Trigger Linearity

Gain premplifier =4*25fF \approx 150 nom. Shaping Time = 50ns Steps of 1,2,3,4,5,6,7,8,9,10 pe

SiPM 4 pixel High Gain =150

Shaping Time = 50ns
delay time = 38 x 2.5 ns

Temp = 23.7 °C U_{over} = 1V

Resistance = 50 Ohm

Threshold = 922 DAC ~50% of 1

plateau
16 iup 15

SiGe GHz Front End

- R&D of 10GHz GBWP preamps for applications where fast timing or high timing resolution is needed (Time Of Flight PET MRI, preclinical, particle physics...)
- 3 architectures in 0.35µm SiGe technology integrated and tested

1 pe-=160fC

Testboard #3	RF (Common Emitter)	Common Base	Super Common Bas
With 100pf/50 Ohm injector (SiPM emulation)		Vb_cb : 400 #DAC	Vb_scb : 1023 #DAC
Noise floor (pedestal)	185-187 #DAC / 1.196V	216-224 #DAC / 1.259V	340-342 #DAC / 1.514V
Signal value @ 10pe	235 #DAC / 1.300V	137 #DAC / 1.085V	115 #DAC / 1.038V
Signal amplitude @ 10pe (signal minus pedestal)	50 #DAC / 110mV	83 #DAC / 174mV	226 #DAC / 476mV
Gain (mV/pe)	10.4mV/pe (5 #DAC/pe)	17.4mV (8.3 #DAC)	47.6mV/pe (22.6 #DAC/
Jitter - threshold 1 pe @10pe	13ps RMS	6ps RMS	8ps RMS
Jitter - threshold 3 pe @10pe	8ps RMS	6ps RMS	8ps RMS
With 100nF DC block (for voltage gain & BW meas.,	18mV injection	18mV injection	7mV inject
Signal Value	267 #DAC / 1.371V	41 #DAC / 0.884V	192 #DAC / 1.2V
Signal amplitude (signal minus pedestal)	81 #DAC / 175mV	179 #DAC / 375mV	150 #DAC / 320mV
Voltage gain (before 50 ohm bridge => factor of 0 .5)	4.86 V/V	10.4 V/V	22.5 V/V
Bandwidth, after discriminator (Δt 10% T50% meas.)	Δt : 150ps / 660MHz	Δt : 360ps / 280MHz	Δt : 400ps / 250MHz

- ⇒ Design of PETIROC1: 16 channels with RF amplifier
- ⇒ PETIROC2 32ch TRIROC 64 ch

PETIROC1: Triggers on first pe

- Tests on EPTIROC1 (analog version of PETIROC2)
- 1x1mm SiPM Hamamatsu
- Laser for low light injection
 - 405nm, Jitter: 28 ps FWMH
- Petiroc can trigger on first photoelectron
- Petiroc is low noise : single photon identification

2 ns/div

2 ns/div

CdLT SiPM ROC chips

Petiroc: bandwidth issues

- Pulser vs SiPM comparison
- SiPM is significantly slower than Petiroc
 - Pulser with 100pF injection capacitance, 10pe injection
 - SiPM illuminated with laser pulse, 10pe measured
 - Threshold from 1pe to 9pe
- Petiroc bandwidth meas.: 877MHz with puls
- With SiPm: limitation due to the stray inducta

PETIROC2

- 32 ch SiPM GHz readout ASIC, dual polarity, 100 fC-400 pC, 6 mW/ch
- 32 trigger outputs and multiplexed data output
- Embedded 10 bit ADC and 50 ps TDC
- Dual threshold : first photons and energy

PETIROC2: Input DAC uniformity

Linearity and dispersion of the 32 8-bit input DAC

PETIROC2: « S-curves »

Trigger efficiency measurements:

PETIROC2: efficiency uniformity

Trigger efficiency measurements: Lineari

One 10-bit DAC Unit= 923 μV

PETIROC2: Time measurement

- Jitter vs threshold & injection
- Jitter improves with signal
- Clock couplings (understood)
- Jitter below 20ps

PETIROC2: TAC measurement

The TRIMAGE european project

• Cost effective tri-modality (PET – MR – EEG) imaging tools

Project Partners	Role in the project
University of Pisa (UNIPI)	Coordinator & PET system development
Technological Educational Institute of Athens (TEIA)	Dissemination & Monte Carlo simulations
Forschungszentrum Juelich GmbH (FZJ)	Coil design & PET/MR/EEG integration
JARA BRAIN, RWTH (JRB)	Clinical application
Technische Universitat Munich (TUM)	Image quantification & clinical application
University of Zurich (PUK)	Patient recruitment & clinical data analysis
Istituto Nazionale di Fisica Nucleare (INFN)	PET system development & characterization
AdvanSiD (ASD)	SiPMs and chip-scale package development
Weeroc (WRC)	PET modules production & testing
Raytest GmbH (RAY)	Mechanical parts design & market strategy
RS2D (RS2D)	Design, assembly, test 1.5T MRI

TRIROC

- 64-channel SiPM readout : positive & negative polarity inputs
- 8-bit Input DAC for SiPM HV tuning
- Time Stamp and ADC charge outputs

Technology transfer

- Several chips transfered to other academic users
- Non-profit « academic price » (100€/chip). Free for IN2P3! (10 pieces)
- Industry transfer via startup « WEEROC »

chip	year	IN2P3 users	external users
MAROC3	2010	LAL , APC, CSNSM	NEVIS, KEK, CERN, Roma, Seoul, Pisa, Bari, Genève, Mocow, Valencia, Kolkata, Durham, Bruxelles, München, Jülich, Valparaiso, Lisboa, Bristol, Frascatti, Budapest, Catania, Glasgow, Coimbra, Grenoble
HARDROC2B	2010	IPNL, LPCCF	
SPIROC2B	2010		DESY (D), TOHOKU (JP), Bergen (N)
SKIROC2	2010	LAL, LLR	IHEP
SPACIROC1	2010	APC, LAL	
EASIROC	2010	IMNC, LAL, LLR,	Palermo, FNAL, KEK, München, Dijon, CERN, Roma, Aachen, Toulouse, Lyon, Seoul, Bari, Tokyo, Pusan, Kyushu, Osaka
PARISROC2	2010	IPNO, LAPP, LLR, APC	IHEP
CITIROC	2013		INAF, CERN, JLAB, Rio, Berne, Mendoza, Aachen
PETIROC2	2013	IPNL, LPCCF	KEK, Tohoku

CdLT SiPM ROC chips

Summary

- Large family available
 - SPIROC et al. : large dynamic range, internal digitization
 - PETIROC et al. : GHz bandwidth, high speed discriminators
- Used by many external groups
 - DESY, KEK, INFN, CERN, FNAL..
- Large production available
- NB : variant SKIROC for Si
 - Used for CALICE and CMS
 - Will be moved to 65 or 130 nm

Chip	Detector	Ch	Polarity	Dyn Range	Specificities
MAROC	PM	64	<0	5 fC - 5 pC	64 trig outputs, internal 8/10/12-bit ADC (for charge measurment)
SPACIROC	PM	64	<0	2 pC- 220 pC	Fast photon counting (50MHz)
PARISROC	PM	16	<0	50 fC - 100 pC	Internal TDC (<1ns), 16 trig outputs
HARDROC	RPC	64	<0	2 fC - 10 pC	3 discriminators, 128 deep digital memory to store 2x64 discriminator encoded data
MICROROC	μMEGAS/GEM	64	<0	0.2 fC - 500 fC	3 discriminators, 128 deep digital memory to store 2x64 discriminator encoded data
SKIROC	Si pin diodes	64	>0	0.3 f C - 10 pC	Internal 12-bit ADC for charge measurement
SPIROC	SiPM	36	>0	10 fC - 300 pC	36 HV SiPM tuning (8 bits), Internal 12-bit ADC for charge and time measurement
EASIROC	SiPM	32	>0	10 fC - 300 pC	32 HV SiPM tuning (8 bits), 32 trigger outputs
CITIROC	SiPM	32	>0	10 fC - 300 pC	32 HV SiPM tuning (8 bits), 32 trigger outputs
PETIROC	SiPM	32	<0	100fC – 300 pC	32 HV SiPM tuning (8 bits), 32 trigger outputs, Internal 10-bit ADC for charge and time measurement (25 ps)
TRIROC	SiPM	64	Both	100 fC- 300 pC	64 HV SiPM tuning (8 bits), 64 trigger outputs, Internal 10-bit ADC for charge and time measurement (25 ps)

Backup slides

CALICE = « imaging calorimetry »

Omega

- Calorimeter readout: auto-trigger, analog storage, digitization and token-ring readout...
- power pulsing : <1 % duty cycle
- Optimized commonalities within EUDET/AIDA

HARDROC2 for RPC readout

- HARDROC2: 64 channels (RPC DHCAL)
 - preamp + shaper+ 3 discris (semi digital readout)
 - Auto trigger on 10fC up to 20 pC
 - 5 0.5 Kbytes memories to store 127 events
 - Full power pulsing => 7.5 μW/ch
 - Fully integrated ILC sequential readout
 - 10 000 chips produced to equip 400 000 ch
 - SDHCAL technological proto with 40 layers (5760 HR2 chips
 - Successful TB in 2012: 40 layers with Power Pulsing mode mic hadronic shower

Χ

Variant: MICROROC

MICROROC: 64 channels for µMegas (DHCAL ILC)

- ☐ Very similar to HARDROC except for the input preamp (collaboration with LAPP Annecy) and shapers (100-150 ns)
- □ Noise: 0.2fC Cd=80 pF => Auto trigger on 1fC up to 500fC
- □ Pulsed power: 10 µW/ch (0.5 % duty cycle)
- HV sparks protection
- ☐ 1 m2 in TB in August and October 2011. Very good performance of the electronics and detector (Threshold set to 1fC).
- □ 2012: 4 m2 in TB

1m2 equipped with 144 MICROROC

SKIROC: SiECAL chip

Omega

- 64 ch Si readout chip
 - Autotrigger @ ½ MIP = 2 fC
 - Charge measurement 15 bits
 - Time measurement 1 ns

