D-instantons, mock modular forms and BPS partition functions

Sergei Alexandrov

Laboratoire Charles Coulomb
Montpellier

S.A., S.Banerjee, J.Manschot, B.Pioline arXiv:1605.05945
(continuation of arXiv:1207.1109)

Plan of the talk

1. Calabi-Yau compactifications and quantum corrected hypermultiplet moduli space
2. Twistorial description of D-instanton corrections
3. D3-instantons: contact potential

- relation to BPS partition function
- modularity and mock modularity

4. D3-instantons: Darboux coordinates on twistor space

- modularity and indefinite theta functions

Calabi-Yau compactifications

> | Type II |
| :---: |
| string theory |

compactification on a Calabi-Yau
$\mathcal{N}=2$ supergravity in 4 d coupled to vector and hypermultiplets

The low energy effective action is completely determined by the metric on the moduli space

$$
\mathcal{M}_{\mathrm{VM}} \times \mathcal{M}_{\mathrm{HM}}
$$

Calabi-Yau compactifications

> Type II string theory
compactification on a Calabi-Yau
$\mathcal{N}=2$ supergravity in 4 d coupled to vector and hypermultiplets

The low energy effective action is completely determined by the metric on the moduli space

$$
\mathcal{M}_{\mathrm{VM}} \times \mathcal{M}_{\mathrm{HM}}
$$

$\mathcal{N}=2$
supersymmetry:
special Kähler (determined by twistorial space holomorphic prepotential) description

Calabi-Yau compactifications

Type II string theory

compactification on a Calabi-Yau
$\mathcal{N}=2$ supergravity in 4 d coupled to vector and hypermultiplets

The low energy effective action is completely determined by the metric on the moduli space

$$
\mathcal{M}_{\mathrm{VM}} \times \mathcal{M}_{\mathrm{HM}}
$$

$\mathcal{N}=2$
supersymmetry:
special Kähler (determined by holomorphic prepotential)
quaternion-Kähler twistorial space description various types of g_{s}-corrections

Quantum corrections and S-duality

Metric
 $=$ tree level + 1-loop + $\begin{aligned} & \text { D-brane } \\ & \text { instantons }\end{aligned}+\begin{aligned} & \text { NS5-brane } \\ & \text { instantons }\end{aligned}$

Quantum corrections and S-duality

Hierarchy of quantum corrections in type IIB in the large volume limit $t^{a} \rightarrow \infty$

- pert α^{\prime}-correct.+1-loop+D(-1)
- (p,q) string instantons (w.s.+D1)
- D3-instantons
- (p,q) five-brane instantons (D5+NS5)

Quantum corrections and S-duality

D-brane + instantons ${ }^{+}$

NS5-brane instantons

Hierarchy of quantum corrections in type IIB in the large volume limit $t^{a} \rightarrow \infty$

- pert α^{\prime}-correct.+1-loop+D(-1)
- (p,q) string instantons (w.s.+D1)
- D3-instantons
- (p,q) five-brane instantons (D5+NS5)

Quantum corrections and S-duality

D-brane + instantons ${ }^{+}$

NS5-brane instantons

D-branes wrapping cycles of CY

Type IIA
D2
S.A.,Pioline,Saueressig, Vandoren '08, S.A. '09

Type IIB D(-1) D1 D3 D5

Hierarchy of quantum corrections in type IIB in the large volume limit $t^{a} \rightarrow \infty$

- pert α^{\prime}-correct.+1-loop+D(-1)
- (p,q) string instantons (w.s.+D1)
- D3-instantons
invariant
sectors

S-duality group (manifest in type IIB)
$S L(2, \mathbb{R}) \longrightarrow S L(2, \mathbb{Z})$
quantum corrections

Quantum corrections and S-duality

D-brane + instantons ${ }^{+}$

NS5-brane instantons

D-branes wrapping cycles of CY

Type IIA
D2
S.A.,Pioline,Saueressig, Vandoren '08, S.A. '09

Type IIB D(-1) D1 D3 D5

Hierarchy of quantum corrections in type IIB in the large volume limit $t^{a} \rightarrow \infty$

- pert α '-correct.+1-loop+D(-1)
- (p,q) string instantons (w.s.+D1)
- D3-instantons
- (p,q) five-brane instantons (D5+NS5)

Quantum corrections and S-duality

D-brane instantons

NS5-brane instantons

D-branes wrapping cycles of CY

Type IIA
D2
S.A.,Pioline,Saueressig, Vandoren '08, S.A. '09

Type IIB D(-1)
D1
D3
D5

Hierarchy of quantum corrections in type IIB in the large volume limit $t^{a} \rightarrow \infty$

- pert α '-correct.+1-loop+D(-1)
- (p,q) string instantons (w.s.+D1)
- D3-instantons
- (p,q) five-brane instantons (D5+NS5)

The problem: to prove (and to derive consequences of) the modular symmetry of D3-instantons

HM moduli space

Type IIA/X
Type IIB/ \tilde{X}
$q_{\text {IIA }}^{\alpha}\left\{\begin{array}{ccc}u^{a} & \text { complex structure/complexified Kähler moduli } & z^{a}=b^{a}+\mathrm{i} t^{a} \\ \zeta^{\Lambda}, \tilde{\zeta}_{\Lambda} & \text { periods of RR gauge potentials } & c^{0}, c^{a}, \tilde{c}_{a}, \tilde{c}_{0} \\ \sigma & \text { NS-axion (dual to the B-field) } & \psi \\ \phi & \left.\text { dilaton (string coupling } e^{\phi} \sim g_{(4)}^{-2}, \tau_{2} \sim g_{s}^{-1}\right) & \tau_{2}\end{array}\right\} q_{\text {IIB }}^{\alpha}$

HM moduli space

Type IIA/X

Type IIB/ \tilde{X}
$q_{\text {IIA }}^{\alpha}\left\{\begin{array}{ccc}u^{a} & \text { complex structure/complexified Kähler moduli } & z^{a}=b^{a}+\mathrm{i} t^{a} \\ \zeta^{\Lambda}, \tilde{\zeta}_{\Lambda} & \text { periods of RR gauge potentials } & c^{0}, c^{a}, \tilde{c}_{a}, \tilde{c}_{0} \\ \sigma & \text { NS-axion (dual to the B-field) } & \psi \\ \phi & \left.\text { dilaton (string coupling } e^{\phi} \sim g_{(4)}^{-2}, \tau_{2} \sim g_{s}^{-1}\right) & \tau_{2}\end{array}\right\} q_{\text {IIB }}^{\alpha}$

$$
\begin{aligned}
& a=1, \ldots, n_{\mathrm{H}}-1 \\
& \Lambda=0, \ldots, n_{\mathrm{H}}-1
\end{aligned}
$$

The action of
SL(2,Z) on type IIB fields:

$$
\begin{array}{cc}
\tau \mapsto \frac{a \tau+b}{c \tau+d} \quad t^{a} \mapsto t^{a}|c \tau+d| \quad \tilde{c}_{a} \mapsto \tilde{c}_{a} \\
\binom{c^{a}}{b^{a}} \mapsto\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\binom{c^{a}}{b^{a}} \quad\binom{\tilde{c}_{0}}{\psi} \mapsto\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right)\binom{\tilde{c}_{0}}{\psi} & \begin{array}{l}
\Lambda=0, \ldots, n_{\mathrm{H}} \\
\operatorname{dim} \mathcal{M}_{\mathrm{HM}}=4 n
\end{array} \\
\tau=c^{0}+\mathrm{i} g_{s}^{-1}
\end{array}
$$

HM moduli space

Type IIA/X

Type IIB / \tilde{X}

$q_{\text {ILA }}^{\alpha}\left\{\begin{array}{ccc}u^{a} & \text { complex structure/complexified Kähler moduli } & z^{a}=b^{a}+\mathrm{i} t^{a} \\ \zeta^{\Lambda}, \tilde{\zeta}_{\Lambda} & \text { periods of RR gauge potentials } & c^{0}, c^{a}, \tilde{c}_{a}, \tilde{c}_{0} \\ \sigma & \text { NS-axion (dual to the B-field) } & \psi \\ \phi & \left.\text { dilator (string coupling } e^{\phi} \sim g_{(4)}^{-2}, \tau_{2} \sim g_{s}^{-1}\right) & \tau_{2}\end{array}\right\} q_{\text {IIB }}^{\alpha}$

$$
a=1, \ldots, n_{\mathrm{H}}-1
$$

$$
\Lambda=0, \ldots, n_{\mathrm{H}}-1
$$

$$
\operatorname{dim} \mathcal{M}_{\mathrm{HM}}=4 n_{\mathrm{H}}
$$

$$
\binom{c^{a}}{b^{a}} \mapsto\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\binom{c^{a}}{b^{a}} \quad\binom{\tilde{c}_{0}}{\psi} \mapsto\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right)\binom{\tilde{c}_{0}}{\psi} \quad \tau=c^{0}+\mathrm{i} g_{s}^{-1}
$$

9 | CY moduli | u^{a} | $=b^{a}+\mathrm{i} t^{a}$ | |
| ---: | :--- | ---: | :--- |
| RR fields $\left\{\begin{array}{rlrl}\zeta^{0} & =c^{0} & \text { Classical mirror map } \\ \zeta^{a} & =-\left(c^{a}-\tau_{1} b^{a}\right) & & \\ \tilde{\zeta}_{a} & =\tilde{c}_{a}+\frac{1}{2} \kappa_{a b c} b^{b}\left(c^{c}-\tau_{1} b^{c}\right) & \\ \text { NS axionm,Gunther,Hermann, Louis '99 } \\ \tilde{\zeta}_{0} & =\tilde{c}_{0}-\frac{1}{6} \kappa_{a b} b^{a} b^{b}\left(c^{c}-\tau_{1} b^{c}\right) & \\ \sigma & =-2\left(\psi+\frac{1}{2} \tau_{1} \tilde{c}_{0}\right)+\tilde{c}_{a}\left(c^{a}-\tau_{1} b^{a}\right)-\frac{1}{6} \kappa_{a b c} b^{a} c^{b}\left(c^{c}-\tau_{1} b^{c}\right)\end{array}\right.$ | | | |

HM moduli space

Type IIA/X

Type IIB/ \tilde{X}
$q_{\text {ILA }}^{\alpha}\left\{\begin{array}{ccc}u^{a} & \text { complex structure/complexified Kähler moduli } & z^{a}=b^{a}+\mathrm{i} t^{a} \\ \zeta^{\Lambda}, \tilde{\zeta}_{\Lambda} & \text { periods of RR gauge potentials } & c^{0}, c^{a}, \tilde{c}_{c}, \tilde{c}_{0} \\ \sigma & \text { NS-axion (dual to the B-field) } & \psi \\ \phi & \left.\text { dilation (string coupling } e^{\phi} \sim g_{(4)}^{-2}, \tau_{2} \sim g_{s}^{-1}\right) & \tau_{2}\end{array}\right\} q_{\text {LIB }}^{\alpha}$

$$
a=1, \ldots, n_{\mathrm{H}}-1
$$

$$
\Lambda=0, \ldots, n_{\mathrm{H}}-1
$$

$$
\operatorname{dim} \mathcal{M}_{\mathrm{HM}}=4 n_{\mathrm{H}}
$$

$$
\binom{c^{a}}{b^{a}} \mapsto\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\binom{c^{a}}{b^{a}} \quad\binom{\tilde{c}_{0}}{\psi} \mapsto\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right)\binom{\tilde{c}_{0}}{\psi} \quad \tau=c^{0}+\mathrm{i} g_{s}^{-1}
$$

9 \begin{tabular}{rlrl}

CY moduli \& | u^{a} | $=b^{a}+\mathrm{i}^{a}$ |
| ---: | :--- |
| RR fields $\left\{\begin{aligned} \zeta^{0} & =c^{0}\end{aligned}\right.$ | Classical mirror map |
| ζ^{a} | $=-\left(c^{a}-\tau_{1} b^{a}\right)$ |
| $\tilde{\zeta}_{a}$ | $=\tilde{c}_{a}+\frac{1}{2} \kappa_{a b c} b^{b}\left(c^{c}-\tau_{1} b^{c}\right)$ |
| $\tilde{\zeta}_{0}$ | $=\tilde{c}_{0}-\frac{1}{6} \kappa_{a b c} b^{a} b^{b}\left(c^{c}-\tau_{1} b^{c}\right)$ | \&

NS anion \& σ \& $=-2\left(\psi+\frac{1}{2} \tau_{1} \tilde{c}_{0}\right)+\tilde{c}_{a}\left(c^{a}-\tau_{1} b^{a}\right)-\frac{1}{6} \kappa_{a b c} b^{a} c^{b}\left(c^{c}-\tau_{1} b^{c}\right)$
\end{tabular}

Quantum corrections induce corrections to the mirror map

Twistor approach

How to describe instanton corrections to the HM metric?

How to parametrize QK manifolds?

$\mathcal{M}-\mathrm{QK} \longleftrightarrow$ Holonomy group $\mathrm{Sp}(n) \times \mathrm{SU}(2) \subset \mathrm{O}(4 n)$

$\operatorname{dim} \mathcal{M}=4 n$

Twistor approach

How to describe instanton corrections to the HM metric?

How to parametrize QK manifolds?

$$
\mathcal{M}-\mathrm{QK} \longleftrightarrow \text { Holonomy group } \mathrm{Sp}(n) \times \mathrm{SU}(2) \subset \mathrm{O}(4 n)
$$

The idea: one should work at the level of the twistor space

Connection on the $\mathbb{C P}{ }^{1}$ bundle
 the Levi-Civita connection

Twistor approach

How to describe instanton corrections to the HM metric?

How to parametrize QK manifolds?

$\mathcal{M}-\mathrm{QK} \longleftrightarrow$ Holonomy group $\mathrm{Sp}(n) \times \mathrm{SU}(2) \subset \mathrm{O}(4 n)$

The idea: one should work at the level of the twistor space

Quaternionic structure quaternion algebra of almost $\longleftrightarrow \mathbb{C P}^{1}$
complex structures
$J^{i} J^{j}=\varepsilon^{i j k} J^{k}-\delta^{i j}$

Twistor space

Connection on the $\mathbb{C P}{ }^{1}$ bundle

the Levi-Civita connection

Twistor space carries:

- integrable complex structure
- holomorphic contact structure

$$
\begin{aligned}
& \frac{D t}{t} \sim \mathcal{X} \\
& \quad \begin{array}{l}
\text { holomorphic } \\
\text { contact 1-form }
\end{array}
\end{aligned}
$$

Twistor approach

How to describe instanton corrections to the HM metric?

How to parametrize QK manifolds?

$\mathcal{M}-\mathrm{QK} \longleftrightarrow$ Holonomy group $\mathrm{Sp}(n) \times \mathrm{SU}(2) \subset \mathrm{O}(4 n)$

The idea: one should work at the level of the twistor space

Connection on the $\mathbb{C P}{ }^{1}$ bundle

the Levi-Civita connection

Twistor space carries:

- integrable complex structure
- holomorphic contact structure

$$
\frac{D t}{t} \sim \mathcal{X}=\mathrm{d} \alpha+\xi^{\Lambda} \mathrm{d} \tilde{\xi}_{\Lambda}
$$

Twistor approach

How to describe instanton corrections to the HM metric?

How to parametrize QK manifolds?
M - QK
Holonomy group
$\mathrm{Sp}(n) \times \mathrm{SU}(2) \subset \mathrm{O}(4 n)$
$\operatorname{dim} \mathcal{M}=4 n$
The idea: one should work at the level of the twistor space

Twistor space carries:

- integrable complex structure
- holomorphic contact structure

$$
\left.\frac{D t}{t} \sim \mathcal{X}=\mathrm{d} \alpha+\xi^{\Lambda} \mathrm{d} \tilde{\xi}_{\Lambda}, c \left\lvert\, \begin{array}{c}
\text { Darboux } \\
\text { colomorphic } \\
\text { contact 1-form }
\end{array}\right.\right)
$$

Connection on the $\mathbb{C P}{ }^{1}$ bundle

$$
D t=\mathrm{d} t+p^{+}-\mathrm{i} t p^{3}+t^{2} p^{-}
$$

D-instantons

It is convenient to work with
$\mathcal{X}_{\gamma}=e^{-2 \pi \mathrm{i}\left(q_{\Lambda} \xi^{\Lambda}-p^{\Lambda} \tilde{\xi}_{\Lambda}\right)}$
Classical result

$$
\alpha^{\text {sf }}(t)=-\frac{1}{2} \sigma+\text { polynomial in } t \text { and } t^{-1}
$$

$\begin{array}{ll}\gamma=\left(p^{\Lambda}, q_{\Lambda}\right) & \text { D-brane charge } \\ \Xi=\left(\xi^{\Lambda}, \tilde{\xi}_{\Lambda}\right) & \text { vector of D.c. } \\ C=\left(\zeta^{\Lambda}, \tilde{\zeta}_{\Lambda}\right) & \text { vector of RR fields }\end{array}$
$Z_{\gamma}=q_{\Lambda} u^{\Lambda}-p^{\Lambda} F_{\Lambda}(u) \quad \begin{aligned} & \text { central } \\ & \text { charge }\end{aligned}$

D-instantons

It is convenient to work with
$\mathcal{X}_{\gamma}=e^{-2 \pi \mathrm{i}\left(q_{\Lambda} \xi^{\Lambda}-p^{\Lambda} \tilde{\xi}_{\Lambda}\right)}$

$\alpha^{\text {sf }}(t)=-\frac{1}{2} \sigma+$ polynomial in t and t^{-1}
$\gamma=\left(p^{\Lambda}, q_{\Lambda}\right) \quad$ D-bratations:
$\Xi=\left(\xi^{\Lambda}, \tilde{\xi}_{\Lambda}\right) \quad$ vector of D.c.
$C=\left(\zeta^{\Lambda}, \tilde{\zeta}_{\Lambda}\right)$ vector of RR fields
$Z_{\gamma}=q_{\Lambda} u^{\Lambda}-p^{\Lambda} F_{\Lambda}(u) \quad \begin{aligned} & \text { central } \\ & \text { charge }\end{aligned}$

Integral equations on Darboux coordinates

$$
\mathcal{X}_{\gamma}=\mathcal{X}_{\gamma}^{\text {sf }} \exp \left[\frac{1}{4 \pi \mathrm{i}} \sum_{\gamma^{\prime}} \Omega\left(\gamma^{\prime}\right)\left\langle\gamma, \gamma^{\prime}\right\rangle \int_{\ell_{\gamma^{\prime}}} \frac{\mathrm{d} t^{\prime}}{t^{\prime}} \frac{t+t^{\prime}}{t-t^{\prime}} \log \left(1-\mathcal{X}_{\gamma^{\prime}}\left(t^{\prime}\right)\right)\right]
$$

Donaldson-Thomas
invariants
joins $t=0$ and $t=\infty$ along direction determined by $\arg Z_{\gamma}$

D-instantons

It is convenient to work with
$\mathcal{X}_{\gamma}=e^{-2 \pi \mathrm{i}\left(q_{\Lambda} \xi^{\Lambda}-p^{\Lambda} \tilde{\xi}_{\Lambda}\right)}$
Classical result

$$
\mathcal{X}_{\gamma}^{\mathrm{sf}}(t)=e^{-\frac{\pi \mathrm{i} \tau_{2}}{2}\left(t^{-1} Z_{\gamma}-t \bar{Z}_{\gamma}\right)-2 \pi \mathrm{i}\langle\gamma, C\rangle}
$$

$\alpha^{\text {sf }}(t)=-\frac{1}{2} \sigma+$ polynomial in t and t^{-1}

Notations:

$\gamma=\left(p^{\Lambda}, q_{\Lambda}\right) \quad$ D-brane charge
$\Xi=\left(\xi^{\Lambda}, \tilde{\xi}_{\Lambda}\right) \quad$ vector of D.c.
$C=\left(\zeta^{\Lambda}, \tilde{\zeta}_{\Lambda}\right) \quad$ vector of RR fields
$Z_{\gamma}=q_{\Lambda} u^{\Lambda}-p^{\Lambda} F_{\Lambda}(u) \quad \begin{aligned} & \text { central } \\ & \text { charge }\end{aligned}$

$\bar{\Omega}(\gamma)=\sum_{d \mid \gamma} \frac{1}{d^{2}} \Omega(\gamma / d)$

D-instantons

It is convenient to work with
$\mathcal{X}_{\gamma}=e^{-2 \pi \mathrm{i}\left(q_{\Lambda} \xi^{\Lambda}-p^{\Lambda} \tilde{\xi}_{\Lambda}\right)}$
$\begin{gathered}\text { Classical } \\ \text { result }\end{gathered} \mathcal{X}_{\gamma}^{\text {sf }}(t)=e^{-\frac{\pi \mathrm{i} \tau_{2}}{2}\left(t^{-1} Z_{\gamma}-t \bar{Z}_{\gamma}\right)-2 \pi \mathrm{i}\langle\gamma, C\rangle}$
$\alpha^{\text {sf }}(t)=-\frac{1}{2} \sigma+$ polynomial in t and t^{-1}

Notations:

$\gamma=\left(p^{\Lambda}, q_{\Lambda}\right) \quad$ D-brane charge
$\Xi=\left(\xi^{\Lambda}, \tilde{\xi}_{\Lambda}\right) \quad$ vector of D.c.
$C=\left(\zeta^{\Lambda}, \tilde{\zeta}_{\Lambda}\right) \quad$ vector of RR fields
$Z_{\gamma}=q_{\Lambda} u^{\Lambda}-p^{\Lambda} F_{\Lambda}(u) \begin{aligned} & \text { central } \\ & \text { charge }\end{aligned}$

$$
\begin{aligned}
& \text { Integral equations on Darboux coordinates } \\
& \mathcal{X}_{\gamma}=\mathcal{X}_{\gamma}^{\mathrm{sf}} \exp \left[\frac{-1}{4 \pi \mathrm{i}} \sum_{\gamma^{\prime}} \bar{\Omega}\left(\gamma^{\prime}\right)\left\langle\gamma, \gamma^{\prime}\right\rangle \int_{\ell_{\gamma^{\prime}}} \frac{\mathrm{d} t^{\prime}}{t^{\prime}} \frac{t+t^{\prime}}{t-t^{\prime}} \mathcal{X}_{\gamma^{\prime}}\left(t^{\prime}\right)\right] \\
& \begin{array}{c}
\text { rational } \\
\begin{array}{c}
\text { Donaldson-Thomas } t=0 \text { and } t=\infty \text { along } \\
\text { invariants }
\end{array} \\
\bar{\Omega}(\gamma)=\sum_{d \mid \gamma} \frac{1}{d^{2}} \Omega(\gamma / d) \\
\quad \alpha=\alpha^{\mathrm{sf}}+\frac{1}{16 \pi^{3} \mathrm{i}} \sum_{\gamma} \bar{\Omega}(\gamma) \int_{\ell_{\gamma}} \frac{\mathrm{d} t^{\prime}}{t^{\prime}} \frac{t+t^{\prime}}{t-t^{\prime}}\left(1+q_{\Lambda} \xi^{\Lambda}\left(t^{\prime}\right)+\cdots\right) \mathcal{X}_{\gamma}\left(t^{\prime}\right)
\end{array}
\end{aligned}
$$

S-duality in twistor space

All isometries of \mathcal{M} can be lifted to holomorphic isometries on twistor space which are realized as contact transformations.

Classical twistor space

On $\mathbb{C P}^{1}$ fiber: $t \mapsto \frac{c \tau_{2}+\left(\left(c \tau_{1}+d\right)+|c \tau+d|\right) t}{\left(c \tau_{1}+d\right)+|c \tau+d|-c \tau_{2} t}$

One can use instead:

$$
z=\frac{t+\mathrm{i}}{t-\mathrm{i}} \quad z \mapsto \frac{c \bar{\tau}+d}{|c \tau+d|} z
$$

Holomorphic representation of $\operatorname{SL}(2, \mathbb{Z})$

$$
\begin{aligned}
& \xi^{0} \mapsto \frac{a \xi^{0}+b}{c \xi^{0}+d} \quad \xi^{a} \mapsto \frac{\xi^{a}}{c \xi^{0}+d} \\
& \tilde{\xi}_{a} \mapsto \tilde{\xi}_{a}+\frac{c}{2\left(c \xi^{0}+d\right)} \kappa_{a b c} \xi^{b} \xi^{c}
\end{aligned} \underbrace{\binom{\tilde{\xi}_{0}}{\alpha}}_{\mathcal{X} \mapsto \frac{\mathcal{X}}{c \xi^{0}+d}} \begin{aligned}
& \mapsto\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right)\binom{\tilde{\xi}_{0}}{\alpha}+\begin{array}{c}
\text { non-linear } \\
\text { terms }
\end{array} \\
&
\end{aligned}
$$

contact transformation

S-duality in twistor space

All isometries of \mathcal{M} can be lifted to holomorphic isometries on twistor space which are realized as contact transformations.

Classical twistor space

On $\mathbb{C P}^{1}$ fiber: $t \mapsto \frac{c \tau_{2}+\left(\left(c \tau_{1}+d\right)+|c \tau+d|\right) t}{\left(c \tau_{1}+d\right)+|c \tau+d|-c \tau_{2} t}$

One can use instead:
$z=\frac{t+\mathrm{i}}{t-\mathrm{i}} \quad z \mapsto \frac{c \bar{\tau}+d}{|c \tau+d|} z$

Holomorphic representation of $\operatorname{SL}(2, \mathbb{Z})$

$$
\begin{gathered}
\xi^{0} \mapsto \frac{a \xi^{0}+b}{c \xi^{0}+d} \quad \xi^{a} \mapsto \frac{\xi^{a}}{c \xi^{0}+d} \\
\tilde{\xi}_{a} \mapsto \tilde{\xi}_{a}+\frac{c}{2\left(c \xi^{0}+d\right)} \kappa_{a b c} \xi^{b} \xi^{c} \\
\binom{\tilde{\xi}_{0}}{\alpha} \\
\mapsto\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right)\binom{\tilde{\xi}_{0}}{\alpha}+\begin{array}{c}
\text { non-linear } \\
\text { terms }
\end{array} \\
\underset{\mathcal{X} \mapsto \frac{\mathcal{X}}{c \xi^{0}+d}}{\square}
\end{gathered}
$$

proven for α^{\prime}-corrections and
D1-D(-1) instantons
S.A.,Saueressig ‘09

Contact potential

Complications with D3-instantons:

- One cannot solve integral equations for Darboux coordinates
- Wall-crossing: DT invariants $\bar{\Omega}(\gamma)$ jump at walls of marginal stability

Contact potential

Complications with D3-instantons:

- One cannot solve integral equations for Darboux coordinates
- Wall-crossing: DT invariants $\bar{\Omega}(\gamma)$ jump at walls of marginal stability

The idea: to test S-duality using the contact potential contact 1 -form canonical $(1,0)$-form
$\mathcal{X} \sim \frac{D t}{t}$

Contact potential

Complications with D3-instantons:

- One cannot solve integral equations for Darboux coordinates
- Wall-crossing: DT invariants $\bar{\Omega}(\gamma)$ jump at walls of marginal stability

The idea: to test S-duality using the contact potential contact 1 -form canonical $(1,0)$-form

$$
\underset{\text { Itact }}{\boldsymbol{X}}=e^{\Phi(t)} \frac{D t}{t}
$$

Contact potential

Complications with D3-instantons:

- One cannot solve integral equations for Darboux coordinates
- Wall-crossing: DT invariants $\bar{\Omega}(\gamma)$ jump at walls of marginal stability

The idea: to test S-duality using the contact potential
Why is it important? contact 1-form canonical $(1,0)$-form

$$
\underset{\text { itact }}{\mathcal{X}}=e^{\Phi(t)} \frac{D t}{t}
$$

- Geometrically: gives the Kähler pot. on \mathcal{Z}

$$
K_{\mathcal{Z}}=\log \frac{1+t \bar{t}}{|t|}+\operatorname{Re} \Phi(t)
$$

- Physically: coincides with dilaton $e^{\Phi} \sim g_{(4)}^{-2}$

Contact potential

Complications with D3-instantons:

- One cannot solve integral equations for Darboux coordinates
- Wall-crossing: DT invariants $\bar{\Omega}(\gamma)$ jump at walls of marginal stability

The idea: to test S-duality using the contact potential
Why is it important?
contact 1 -form canonical $(1,0)$-form

$$
\mathcal{X}=e^{\Phi(t)} \frac{D t}{t}
$$

contact potential

- Geometrically: gives the Kähler pot. on \mathcal{Z}

$$
K_{\mathcal{Z}}=\log \frac{1+t \bar{t}}{|t|}+\operatorname{Re} \Phi(t)
$$

- Physically: coincides with dilaton $e^{\Phi} \sim g_{(4)}^{-2}$

Contact potential on the D-instanton corrected moduli space

$$
e^{\Phi}=\frac{\mathrm{i} \tau_{2}^{2}}{16}\left(\bar{u}^{\Lambda} F_{\Lambda}-u^{\Lambda} \bar{F}_{\Lambda}\right)-\frac{\chi_{\mathrm{CY}}}{192 \pi}+\frac{\mathrm{i} \tau_{2}}{64 \pi^{2}} \sum_{\gamma} \bar{\Omega}(\gamma) \int_{\ell_{\gamma}} \frac{\mathrm{d} t}{t}\left(t^{-1} Z_{\gamma}-t \bar{Z}_{\gamma}\right) \mathcal{X}_{\gamma}(t)
$$

Contact potential

Complications with D3-instantons:

- One cannot solve integral equations for Darboux coordinates
- Wall-crossing: DT invariants $\bar{\Omega}(\gamma)$ jump at walls of marginal stability

The idea: to test S-duality using the contact potential
Why is it important? contact 1-form canonical (1,0)-form

$$
\mathcal{X}=e^{\Phi(t)} \frac{D t}{t}
$$

potential

- Geometrically: gives the Kähler pot. on \mathcal{Z}

$$
K_{\mathcal{Z}}=\log \frac{1+t \bar{t}}{|t|}+\operatorname{Re} \Phi(t)
$$

- Physically: coincides with dilaton $e^{\Phi} \sim g_{(4)}^{-2}$

$$
\begin{aligned}
& \text { Contact potential on the D-instanton corrected moduli space } \\
& e^{\Phi}=\frac{\mathrm{i} \tau_{2}^{2}}{16}\left(\bar{u}^{\Lambda} F_{\Lambda}-u^{\Lambda} \bar{F}_{\Lambda}\right)-\frac{\chi_{\mathrm{CY}}}{192 \pi}+\frac{\mathrm{i} \tau_{2}}{64 \pi^{2}} \sum_{\gamma} \bar{\Omega}(\gamma) \int_{\ell_{\gamma}} \frac{\mathrm{d} t}{t}\left(t^{-1} Z_{\gamma}-t \bar{Z}_{\gamma}\right) \mathcal{X}_{\gamma}(t)
\end{aligned}
$$

Contact potential

Complications with D3-instantons:

- One cannot solve integral equations for Darboux coordinates
- Wall-crossing: DT invariants $\bar{\Omega}(\gamma)$ jump at walls of marginal stability

The idea: to test S-duality using the contact potential
Why is it important? contact 1-form canonical (1,0)-form

$$
\mathcal{X}=e^{\Phi(t)} \frac{D t}{t}
$$

potential

- Geometrically: gives the Kähler pot. on \mathcal{Z}

$$
K_{\mathcal{Z}}=\log \frac{1+t \bar{t}}{|t|}+\operatorname{Re} \Phi(t)
$$

- Physically: coincides with dilaton $e^{\Phi} \sim g_{(4)}^{-2}$

Contact potential on the D-instanton corrected moduli space

$$
e^{\Phi}=\frac{\mathrm{i} \tau_{2}^{2}}{16}\left(\bar{u}^{\Lambda} F_{\Lambda}-u^{\Lambda} \bar{F}_{\Lambda}\right)-\frac{\chi_{\mathrm{CY}}}{192 \pi}+\frac{\mathrm{i} \tau_{2}}{64 \pi^{2}} \sum_{\gamma} \bar{\Omega}(\gamma) \int_{\ell_{\gamma}} \frac{\mathrm{d} t}{t}\left(t^{-1} Z_{\gamma}-t \bar{Z}_{\gamma}\right) \mathcal{X}_{\gamma}(t)
$$

smooth across walls of marginal stability

S-duality

$$
\left.\begin{array}{c}
\mathcal{X} \mapsto \frac{\mathcal{X}}{c \xi^{0}+d} \\
\frac{\mathrm{~d} t}{t} \mapsto \frac{|c \tau+d|}{c \xi^{0}+d} \frac{\mathrm{~d} t}{t}
\end{array}\right\} \quad \square e^{\Phi} \mapsto \frac{e^{\Phi}}{|c \tau+d|}
$$

Quantum corrected mirror map

Way to proceed:

- Evaluate e^{Φ} in terms of type IIB fields
- Apply S-duality
$\longrightarrow\left\{\begin{array}{l}\text { Requires: } \\ - \text { an approximation } \\ - \text { quantum mirror map }\end{array}\right.$

Quantum corrected mirror map

Way to proceed:

- Evaluate e^{Φ} in terms of type IIB fields
- Apply S-duality

Approximation: • D3-instantons: D-brane charges of the form $\gamma=\left(0, p^{a}, q_{a}, q_{0}\right)$

- 2-instanton approx.: second order in DT invariants $\bar{\Omega}(\gamma)$
- large volume limit $t^{a} \rightarrow \infty$

Quantum corrected mirror map

Way to proceed:

- Evaluate e^{Φ} in terms of type IIB fields - Apply S-duality

Approximation: • D3-instantons: D-brane charges of the form $\gamma=\left(0, p^{a}, q_{a}, q_{0}\right)$

- 2-instanton approx.: second order in DT invariants $\bar{\Omega}(\gamma)$
- large volume limit $t^{a} \rightarrow \infty$

Quantum corrections to the mirror map: (follows from the general formalism of S.A.,Pioline '12, S.A.,Banerjee '13)

$$
\begin{aligned}
& \delta u^{a}=-\frac{\mathrm{i}}{8 \pi^{2} \tau_{2}} \sum_{\gamma \in \Gamma_{+}} \sigma_{\gamma} \bar{\Omega}(\gamma) p^{a}\left[\int_{\ell_{\gamma}} \mathrm{d} z(1-z) \mathcal{X}_{\gamma}+\int_{\ell_{-\gamma}} \frac{\mathrm{d} z}{z^{3}}(1-z) \mathcal{X}_{-\gamma}\right] \\
& \delta \zeta^{a}=0 \\
& \delta \tilde{\zeta}_{a}=\frac{1}{4 \pi^{2}} \kappa_{a b c} t^{b} \sum_{\gamma \in \Gamma_{+}} \sigma_{\gamma} \bar{\Omega}(\gamma) p^{c} \operatorname{Im}\left(\int_{\ell_{\gamma}} \mathrm{d} z \mathcal{X}_{\gamma}\right) \\
& \delta \tilde{\zeta}_{0}=-\frac{1}{4 \pi^{2}} \kappa_{a b c} t^{b} \sum_{\gamma \in \Gamma_{+}} \sigma_{\gamma} \bar{\Omega}(\gamma) p^{c} \operatorname{Im} \int_{\ell_{\gamma}} \mathrm{d} z\left(b^{a}-\frac{\mathrm{i}}{2} t^{a} z\right) \mathcal{X}_{\gamma} \\
& \delta \sigma=-\frac{1}{4 \pi^{2}} \kappa_{a b c} t^{b} \sum_{\gamma \in \Gamma_{+}} \sigma_{\gamma} \bar{\Omega}(\gamma) p^{c} \operatorname{Im} \int_{\ell_{\gamma}} \mathrm{d} z\left(c^{a}-4 \mathrm{i} \tau_{2} b^{a}-\left(\frac{\mathrm{i}}{2} \tau_{1}+3 \tau_{2}\right) t^{a} z\right) \mathcal{X}_{\gamma}{ }^{2} \begin{array}{c}
\text { The charge lattice } \\
\Gamma_{+}=\left\{\gamma=\left(0, p^{a}, q_{a}, q_{0}\right):\right. \\
\left.\left(p t^{2}\right) \equiv \kappa_{a b c} p^{a} t^{b} t^{c}>0\right\}
\end{array}
\end{aligned}
$$

Quantum corrected contact potential

Define the function:

$$
\mathcal{F}=\frac{1}{4 \pi^{2}} \sum_{\gamma \in \Gamma_{+}} \bar{\Omega}(\gamma) \int_{\ell_{\gamma}} \mathrm{d} z \mathcal{X}_{\gamma}
$$

Quantum corrected contact potential

Define the function:
$\mathcal{F}=\frac{1}{4 \pi^{2}} \sum_{\gamma \in \Gamma_{+}} \bar{\Omega}(\gamma) \int_{\ell_{\gamma}} \mathrm{d} z \mathcal{X}_{\gamma}$
$=\sum_{p} \mathcal{F}_{p}^{(1)}+\sum_{p_{1}, p_{2}} \mathcal{F}_{p_{1} p_{2}}^{(2)}+\cdots$

Expansion of Darboux coordinates

$$
\underbrace{\mathcal{X}_{\gamma}=\mathcal{X}_{\gamma}^{\mathrm{cl}}\left[1+\frac{1}{2 \pi} \sum_{\gamma^{\prime} \in \Gamma_{+}} \Omega\left(\gamma^{\prime}\right) \int_{\ell_{\gamma^{\prime}}} \mathrm{d} z^{\prime}\left(\left(\text { tpp }^{\prime}\right)-\frac{\mathrm{i}\left\langle\gamma, \gamma^{\prime}\right\rangle}{z^{\prime}-z}\right) \mathcal{X}_{\gamma^{\prime}}^{\mathrm{cl}}\left(z^{\prime}\right)+\cdots\right]}_{\text {from mirror map }} \underset{\text { from integral }}{\text { equation }},
$$

Quantum corrected contact potential

$$
\begin{aligned}
& \text { Define the function: } \\
& \begin{aligned}
\mathcal{F} & =\frac{1}{4 \pi^{2}} \sum_{\gamma \in \Gamma_{+}} \bar{\Omega}(\gamma) \int_{\ell_{\gamma}} \mathrm{d} z \mathcal{X}_{\gamma} \\
& =\sum_{p} \mathcal{F}_{p}^{(1)}+\sum_{p_{1}, p_{2}} \mathcal{F}_{p_{1} p_{2}}^{(2)}+\cdots
\end{aligned} \\
& \tilde{\mathcal{F}}_{p}=\mathcal{F}_{p}^{(1)}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \mathcal{F}_{p_{1} p_{2}}^{(2)}
\end{aligned}
$$

Expansion of Darboux coordinates

$$
\underbrace{\mathcal{X}_{\gamma}=\mathcal{X}_{\gamma}^{\mathrm{cl}}\left[1+\frac{1}{2 \pi} \sum_{\gamma^{\prime} \in \Gamma_{+}} \Omega\left(\gamma^{\prime}\right) \int_{\ell^{\prime}} \mathrm{d} z^{\prime}\left(\left(t p p^{\prime}\right)-\frac{\mathrm{i}\left(\gamma, \gamma^{\prime}\right)}{\left.z^{\prime}\right)}\right) \mathcal{X}_{\left.\gamma_{\gamma^{\prime}}^{\mathrm{c}}\left(z^{\prime}\right)+\cdots\right]}^{\substack{ \\\text { from integral } \\ \text { equation }}}\right.}_{\text {from mirror map }}
$$

Quantum corrected contact potential

$$
\begin{aligned}
& \text { Define the function: } \\
& \begin{aligned}
\mathcal{F} & =\frac{1}{4 \pi^{2}} \sum_{\gamma \in \Gamma_{+}} \bar{\Omega}(\gamma) \int_{\ell_{\gamma}} \mathrm{d} z \mathcal{X}_{\gamma} \\
& =\sum_{p} \mathcal{F}_{p}^{(1)}+\sum_{p_{1}, p_{2}} \mathcal{F}_{p_{1} p_{2}}^{(2)}+\cdots
\end{aligned} \\
& \tilde{\mathcal{F}}_{p}=\mathcal{F}_{p}^{(1)}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \mathcal{F}_{p_{1} p_{2}}^{(2)}
\end{aligned}
$$

Expansion of Darboux coordinates

$$
\begin{aligned}
& \underbrace{\mathcal{X}_{\gamma}=\mathcal{X}_{\gamma}^{\mathrm{cl}}\left[1+\frac{1}{2 \pi} \sum_{\gamma^{\prime} \in \Gamma_{+}} \Omega\left(\gamma^{\prime}\right) \int_{\ell_{\gamma^{\prime}}} \mathrm{d} z^{\prime} \underset{\uparrow}{\left(t p^{\prime}\right)}-\frac{\mathrm{i}\left\langle\gamma, \gamma^{\prime}\right\rangle}{z^{\prime}-z}\right)}_{\text {from mirror map }} \mathcal{X}^{\mathrm{c}} \mathrm{c}\left(z^{\prime}\right)+\cdots]) ~\left(\begin{array}{c}
\text { from integral }
\end{array}\right. \\
& \text { equation }
\end{aligned}
$$

Modular covariant derivative

$$
\mathcal{D}_{\mathfrak{h}}: f_{\mathfrak{h}, \overline{\mathfrak{h}}} \mapsto f_{\mathfrak{h}+2, \overline{\mathfrak{h}}}^{\prime}
$$

D3-instanton contribution to the contact potential

$$
\delta e^{\Phi}=\frac{\tau_{2}}{2} \operatorname{Re} \sum_{p} \mathcal{D}_{-\frac{3}{2}} \tilde{\mathcal{F}}_{p}-\frac{1}{8} \sum_{p_{1}, p_{2}}\left(p_{1} p_{2} t\right) \tilde{\mathcal{F}}_{p_{1}} \overline{\tilde{\mathcal{F}}_{p_{2}}}
$$

Quantum corrected contact potential

$$
\begin{aligned}
& \text { Define the function: } \\
& \begin{aligned}
\mathcal{F} & =\frac{1}{4 \pi^{2}} \sum_{\gamma \in \Gamma_{+}} \bar{\Omega}(\gamma) \int_{\ell_{\gamma}} \mathrm{d} z \mathcal{X}_{\gamma} \\
& =\sum_{p} \mathcal{F}_{p}^{(1)}+\sum_{p_{1}, p_{2}} \mathcal{F}_{p_{1} p_{2}}^{(2)}+\cdots
\end{aligned} \\
& \tilde{\mathcal{F}}_{p}=\mathcal{F}_{p}^{(1)}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \mathcal{F}_{p_{1} p_{2}}^{(2)}
\end{aligned}
$$

Expansion of Darboux coordinates

$$
\underbrace{\mathcal{X}_{\gamma}=\mathcal{X}_{\gamma}^{\mathrm{cl}}\left[1+\frac{1}{2 \pi} \sum_{\gamma^{\prime} \in \Gamma_{+}} \Omega\left(\gamma^{\prime}\right) \int_{\ell_{\gamma^{\prime}}} \mathrm{d} z^{\prime}\left({\underset{\uparrow}{\uparrow}}_{\substack{\left(t p^{\prime}\right)}}^{\substack{\mathrm{i}\left\langle\gamma, \gamma^{\prime}\right\rangle \\
z^{\prime}-z}}\right) \mathcal{X}_{\gamma^{\prime}}^{\mathrm{cl}}\left(z^{\prime}\right)+\cdots\right]}_{\text {from mirror map }} \begin{gathered}
\text { from integral } \\
\text { equation }
\end{gathered}
$$

Modular covariant derivative

$$
\mathcal{D}_{\mathfrak{h}}: f_{\mathfrak{h}, \overline{\mathfrak{h}}} \mapsto f_{\mathfrak{h}+2, \overline{\mathfrak{h}}}^{\prime}
$$

D3-instanton contribution to the contact potential

$$
\delta e^{\Phi}=\frac{\tau_{2}}{2} \operatorname{Re} \sum_{p} \mathcal{D}_{-\frac{3}{2}} \tilde{\mathcal{F}}_{p}-\frac{1}{8} \sum_{p_{1}, p_{2}}\left(p_{1} p_{2} t\right) \tilde{\mathcal{F}}_{p_{1}} \overline{\tilde{\mathcal{F}}_{p_{2}}}
$$

δe^{Φ} transforms as modular form of weight $\left(-\frac{1}{2},-\frac{1}{2}\right)$ provided $\tilde{\mathcal{F}}_{p}$ transforms as modular form of weight $\left(-\frac{3}{2}, \frac{1}{2}\right)$

DT and MSW

DT invariants depend on Kähler moduli via wall crossing.
Define $\Omega_{\gamma}^{\mathrm{MSW}}=\Omega\left(\gamma ; z_{\infty}^{a}(\gamma)\right) \quad$ counts states in SCFT
attractor point constructed in Maldacena,Strominger, Witten '97

$$
\begin{aligned}
& z_{\infty}^{a}(\gamma)=\lim _{\lambda \rightarrow+\infty}\left(-\kappa^{a b} q_{b}+\mathrm{i} \lambda p^{a}\right) \\
& \kappa_{a b}=\kappa_{a b c} p^{c} \\
& \text { quadratic form } \\
& \text { of signature } \\
& \left(1, b_{2}-1\right)
\end{aligned}
$$

DT and MSW

DT invariants depend on Kähler moduli via wall crossing.
Define $\Omega_{\gamma}^{\mathrm{MSW}}=\Omega\left(\gamma ; z_{\infty}^{a}(\gamma)\right) \quad$ counts states in SCFT
attractor point constructed in Maldacena,Strominger, Witten '97
$z_{\infty}^{a}(\gamma)=\lim _{\lambda \rightarrow+\infty}\left(-\kappa^{a b} q_{b}+\mathrm{i} \lambda p^{a}\right)$
Manschot '09
$\kappa_{a b}=\kappa_{a b c} p^{c}$
quadratic form
of signature
$\left(1, b_{2}-1\right)$

Decomposition of DT in terms of MSW
$\left.\bar{\Omega}\left(\gamma ; z^{a}\right)=\bar{\Omega}_{\gamma}^{\mathrm{MSW}}+\frac{1}{2} \sum_{\substack{\gamma_{1}, 2 \in \Gamma_{+} \\ \gamma_{1}+\gamma_{2}=\gamma}}(-1)^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle}\left\langle\gamma_{1}, \gamma_{2}\right\rangle \Delta_{\gamma_{1} \gamma_{2}}^{t} \bar{\Omega}_{\gamma_{1}}^{\mathrm{MSW}} \bar{\Omega}_{\gamma_{2}}^{\mathrm{MSW}}+\cdots\right]$ sign factor

DT and MSW

DT invariants depend on Kähler moduli via wall crossing.
Define $\Omega_{\gamma}^{\mathrm{MSW}}=\Omega\left(\gamma ; z_{\infty}^{a}(\gamma)\right) \quad$ counts states in SCFT
$=\lim _{\lambda \rightarrow+\infty}\left(-\kappa^{a b} q_{b}+\mathrm{i} \lambda p^{a}\right)$
constructed in Maldacena,Strominger,Witten ‘97
$z_{\infty}^{a}(\gamma)=\lim _{\lambda \rightarrow+\infty}\left(-\kappa^{a b} q_{b}+\mathrm{i} \lambda p^{a}\right)$
Manschot ‘09
$\kappa_{a b}=\kappa_{a b c} p^{c}$ quadratic form of signature $\left(1, b_{2}-1\right)$

\[

\]

Crucial property

DT and MSW

DT invariants depend on Kähler moduli via wall crossing.
Define $\Omega_{\gamma}^{\mathrm{MSW}}=\Omega\left(\gamma ; z_{\infty}^{a}(\gamma)\right) \quad$ counts states in SCFT

$z_{\infty}^{a}(\gamma)=\lim _{\lambda \rightarrow+\infty}\left(-\kappa^{a b} q_{b}+\mathrm{i} \lambda p^{a}\right)$
Manschot '09
$\kappa_{a b}=\kappa_{a b c} p^{c}$ quadratic form of signature $\left(1, b_{2}-1\right)$

$$
\bar{\Omega}\left(\gamma ; z^{a}\right)=\bar{\Omega}_{\gamma}^{\text {Decomposition of DT in terms of MSW }}+\frac{1}{2} \sum_{\substack{\gamma_{1}, 2 \in \Gamma_{1}+\gamma \\ \gamma_{1}+\gamma_{2}=\gamma}}(-1)^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle}\left\langle\gamma_{1}, \gamma_{2}\right\rangle \Delta_{\gamma_{1} \gamma_{2}}^{t} \bar{\Omega}_{\gamma_{1}}^{\mathrm{MSW}} \bar{\Omega}_{\gamma_{2}}^{\mathrm{MSW}}+\cdots
$$

Crucial property

spectral flow
$q_{a} \mapsto q_{a}-\kappa_{a b} \epsilon^{b}$
$q_{0} \mapsto q_{0}-\epsilon^{a} q_{a}+\frac{1}{2} \kappa_{a b} \epsilon^{a} \epsilon^{b}$

> charge decomposition $\left(q_{0}, q_{a}\right) \rightarrow\left(\hat{q}_{0}, \mu_{a}, \epsilon^{a}\right)$

$$
\begin{aligned}
& \hat{q}_{0} \equiv q_{0}-\frac{1}{2} \kappa^{a b} q_{a} q_{b}-\text { invariant charge } \\
& q_{a}=\mu_{a}+\frac{1}{2} \kappa_{a b} p^{b}+\kappa_{a b} \epsilon^{b}
\end{aligned}
$$

DT and MSW

DT invariants depend on Kähler moduli via wall crossing.
Define $\Omega_{\gamma}^{\mathrm{MSW}}=\Omega\left(\gamma ; z_{\infty}^{a}(\gamma)\right) \quad$ counts states in SCFT

$z_{\infty}^{a}(\gamma)=\lim _{\lambda \rightarrow+\infty}\left(-\kappa^{a b} q_{b}+\mathrm{i} \lambda p^{a}\right)$
Manschot '09
$\kappa_{a b}=\kappa_{a b c} p^{c}$ quadratic form of signature $\left(1, b_{2}-1\right)$

$$
\bar{\Omega}\left(\gamma ; z^{a}\right)=\bar{\Omega}_{\gamma}^{\text {Decomposition of DT in terms of MSW }}+\frac{1}{2} \sum_{\substack{\gamma_{1}, \in \Gamma_{1}+\\ \gamma_{1}+\gamma_{2}=\gamma}}(-1)^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle}\left\langle\gamma_{1}, \gamma_{2}\right\rangle \Delta_{\gamma_{1} \gamma_{2}}^{t} \bar{\Omega}_{\gamma_{1}}^{\mathrm{MSW}} \bar{\Omega}_{\gamma_{2}}^{\mathrm{MSW}}+\cdots
$$

Crucial property
spectral flow
$q_{a} \mapsto q_{a}-\kappa_{a b} \epsilon^{b}$
$q_{0} \mapsto q_{0}-\epsilon^{a} q_{a}+\frac{1}{2} \kappa_{a b} \epsilon^{a} \epsilon^{b}$

$$
\Omega_{\gamma}^{\mathrm{MSW}}=\Omega_{p, \mu}^{\mathrm{MSW}}\left(\hat{q}_{0}\right)
$$

$$
\begin{aligned}
& \hat{q}_{0} \equiv q_{0}-\frac{1}{2} \kappa^{a b} q_{a} q_{b}-\text { invariant charge } \\
& q_{a}=\mu_{a}+\frac{1}{2} \kappa_{a b} p^{b}+\kappa_{a b} \epsilon^{b}
\end{aligned}
$$

BPS partition function

Define $\mathcal{Z}_{p}\left(\tau, z^{a}, c^{a}\right)=\sum \bar{\Omega}(\gamma) e^{-2 \pi \tau_{2}\left|Z_{\gamma}\right|-2 \pi i \tau_{1}\left(q_{0}+b^{a} q_{a}+\frac{1}{2} b^{2}\right)+2 \pi i c \cdot\left(q+\frac{1}{2} b\right)}$
Boltzmann

couplings to
factor axions

BPS partition function

Define $\mathcal{Z}_{p}\left(\tau, z^{a}, c^{a}\right)=\sum \bar{\Omega}(\gamma) e^{-2 \pi \tau_{2}\left|Z_{\gamma}\right|-2 \pi i \tau_{1}\left(q_{0}+b^{a} q_{a}+\frac{1}{2} b^{2}\right)+2 \pi i c \cdot\left(q+\frac{1}{2} b\right)}$

$$
\begin{gathered}
\substack{q_{\Lambda} \\
\begin{array}{c}
\text { Boltzmann } \\
\text { factor }
\end{array} \\
\mathcal{F}_{p}^{(1)}=\frac{1}{4 \pi^{2}} \sum_{\gamma \in \Gamma_{+}} \bar{\Omega}(\gamma) \int_{\ell_{\gamma}} \mathrm{d} z \mathcal{X}_{\gamma}^{\mathrm{cl}}=\frac{e^{2 \pi \mathrm{i} p^{a} \tilde{c}_{a}}}{4 \pi^{2} \sqrt{2 \tau_{2}\left(p t^{2}\right)}} \mathcal{Z}_{p} \\
\text { axions } \\
\text { couplings to } \\
\mathcal{N}^{\omega}(\gamma)}
\end{gathered}
$$

BPS partition function

Define $\mathcal{Z}_{p}\left(\tau, z^{a}, c^{a}\right)=\sum \bar{\Omega}(\gamma) e^{-2 \pi \tau_{2}\left|Z_{\gamma}\right|-2 \pi i \tau_{1}\left(q_{0}+b^{a} q_{a}+\frac{1}{2} b^{2}\right)+2 \pi i c \cdot\left(q+\frac{1}{2} b\right)}$

$$
\begin{gathered}
\substack{\text { Boltzmann } \\
\text { factor }} \\
\mathcal{F}_{p}^{(1)}=\frac{1}{4 \pi^{2}} \sum_{\gamma \in \Gamma_{+}} \bar{\Omega}(\gamma) \int_{\ell_{\gamma}} \mathrm{d} z \mathcal{X}_{\gamma}^{\mathrm{cl}}=\frac{e^{2 \pi \mathrm{i} p^{a} \tilde{c}_{a}}}{4 \pi^{2} \sqrt{2 \tau_{2}\left(p t^{2}\right)}} \mathcal{Z}_{p}^{\text {axions }} \begin{array}{l}
\text { couplings }
\end{array}
\end{gathered}
$$

Expand in terms of MSW invariants $\mathcal{Z}_{p}=\sum_{n \geq 1} \mathcal{Z}_{p}^{(n)}$
$\mathcal{Z}_{p}^{(1)} \quad \begin{aligned} & \text { Gaiotto,Strominger,Yin '06 } \\ & \text { de Boer,Cheng,Dijkgraaf, }\end{aligned}$
elliptic genus of MSW SCFT
Jacobi form of weight $\left(-\frac{3}{2}, \frac{1}{2}\right)$

the right modular behavior of the contact potential in
the 1-instanton (MSW) approx.

BPS partition function

Define $\mathcal{Z}_{p}\left(\tau, z^{a}, c^{a}\right)=\sum \bar{\Omega}(\gamma) e^{-2 \pi \tau_{2}\left|Z_{\gamma}\right|-2 \pi i \tau_{1}\left(q_{0}+b^{a} q_{a}+\frac{1}{2} b^{2}\right)+2 \pi i c \cdot\left(q+\frac{1}{2} b\right)}$

$$
\begin{aligned}
& \text { Boltzmann } \\
& \text { factor } \\
& \mathcal{F}_{p}^{(1)}=\frac{1}{4 \pi^{2}} \sum_{\gamma \in \Gamma_{+}} \bar{\Omega}(\gamma) \int_{\ell_{\gamma}} \mathrm{d} z \mathcal{X}_{\gamma}^{\mathrm{cl}}=\frac{e^{2 \pi \mathrm{i} p^{a} \tilde{c}_{a}}}{4 \pi^{2} \sqrt{2 \tau_{2}\left(p t^{2}\right)}} \mathcal{Z}_{p}
\end{aligned}
$$

Expand in terms of MSW invariants $\mathcal{Z}_{p}=\sum_{n \geq 1} \mathcal{Z}_{p}^{(n)}$

$$
\mathcal{Z}_{p}^{(1)}=\sum_{\mu} h_{p, \mu}(\tau) \theta_{p, \mu}
$$

elliptic genus of MSW SCFT

$$
k \in \mathbb{Z}^{b^{2}}+\mu+\frac{1}{2} p
$$

$$
\left(q=e^{2 \pi i \tau}\right)
$$

Jacobi form of weight $\left(-\frac{3}{2}, \frac{1}{2}\right)$ Seigel-Narain theta series - vector valued modular form of weight $\left(\frac{b_{2}-1}{2}, \frac{1}{2}\right)$

$$
h_{p, \mu}(\tau)=\sum_{\hat{q}_{0} \leq \hat{q}_{0}^{\max }} \bar{\Omega}_{p, \mu}\left(\hat{q}_{0}\right) e^{-2 \pi \mathrm{i} \hat{q}_{0} \tau}
$$

generating func. of MSW invariants - vector valued modular form of weight $\left(-\frac{b_{2}}{2}-1,0\right)$

2-instanton contribution

The full 2-instanton result
$\tilde{\mathcal{F}}_{p}=\frac{e^{2 \pi \mathrm{i} p^{a} \tilde{c}_{a}}}{4 \pi^{2} \sqrt{2 \tau_{2}\left(p t^{2}\right)}}\left[\mathcal{Z}_{p}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}} \Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(+)}\right]$

2-instanton contribution

The full 2-instanton result

$$
\tilde{\mathcal{F}}_{p}=\frac{e^{2 \pi \mathrm{i} p^{a} \tilde{c}_{a}}}{4 \pi^{2} \sqrt{2 \tau_{2}\left(p t^{2}\right)}}[\underbrace{\downarrow}_{\widehat{\mathcal{Z}}_{p}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}} \Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(+)}}]
$$

2-instanton contribution

The full 2-instanton result

double theta series
$\sum_{\mu} h_{p, \mu} \theta_{p, \mu}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}}\left(\Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}+\Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(+)}\right)$

2-instanton contribution

The full 2-instanton result

$$
\tilde{\mathcal{F}}_{p}=\frac{e^{2 \pi \mathrm{i} p^{a} \tilde{c}_{a}}}{4 \pi^{2} \sqrt{2 \tau_{2}\left(p t^{2}\right)}} \underbrace{\text { Series }}_{\sum_{\mu} h_{p, \mu} \theta_{p, \mu}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}} \underbrace{}_{\Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}+\Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(+1)}} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}} \Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(+)}]}
$$

double theta

2-instanton contribution

The full 2-instanton result

$$
\begin{aligned}
& \text { The full 2-instanton result } \\
& \tilde{\mathcal{F}}_{p}=\frac{e^{2 \pi \mathrm{i} p^{a} \tilde{c}_{a}}}{4 \pi^{2} \sqrt{2 \tau_{2}\left(p t^{2}\right)}}[\underbrace{\mathcal{Z}_{p} h_{p, \mu} \theta_{p, \mu}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}} \underbrace{\mathcal{Z}_{p}^{(2)}}_{\Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}+\Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(+)}}}_{\left.\mathcal{Z}_{p}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}} \Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(+)}\right]} .
\end{aligned}
$$

Results of Manschot '09

- Ψ is a mock Jacobi form
- There exists a modular completion of weight $\left(b_{2}+\frac{1}{2}, \frac{1}{2}\right)$

$$
\widehat{\Psi}=\Psi+\Psi^{(+)}+\Psi^{(-)}
$$

2-instanton contribution

The full 2-instanton result

$$
\begin{align*}
& \tilde{\mathcal{F}}_{p}=\frac{e^{2 \pi \mathrm{i} p^{a} \tilde{c}_{a}}}{4 \pi^{2} \sqrt{2 \tau_{2}\left(p t^{2}\right)}}[\underbrace{\left.\mathcal{Z}_{p}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\widehat{\mu}_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}} \Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(+)}\right]}_{\mathcal{Z}_{p}^{(1)}} \\
& \sum_{\mu} h_{p, \mu} \theta_{p, \mu}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}} \Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}+\Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(+)} \\
& \text {- } \Psi \text { is a mock Jacobi form } \\
& \text { - There exists a modular completion of weight }\left(b_{2}+\frac{1}{2}, \frac{1}{2}\right) \\
& \widehat{\Psi}=\Psi+\Psi^{(+)}+\Psi^{(-)}
\end{align*}
$$

There seems to be a clash between modular symmetry of $\widehat{\mathcal{Z}}_{p}$ and $\widehat{\Psi}$

Mock modularity

$$
\widehat{\mathcal{Z}}_{p}=\sum_{\mu} h_{p, \mu} \theta_{p, \mu}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}}\left(\widehat{\Psi}_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}-\Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(-)}\right)
$$

Mock modularity

$$
\begin{aligned}
& \hat{\mathcal{Z}}_{p}=\sum_{\mu} h_{p, \mu} \theta_{p, \mu}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}}\left(\widehat{\Psi}_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}-\Psi_{p_{1,1}, p_{2}, \mu_{1}, \mu_{2}}^{(-)}\right) \\
& \frac{1}{2} \sum_{\mu} R_{p_{p}, \mu} \theta_{p, \mu}=\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}} \Psi_{p_{1}, 1, p_{2}, \mu_{1}, \mu_{2}}^{(-)}
\end{aligned}
$$

Mock modularity

$$
\begin{aligned}
& \widehat{\mathcal{Z}}_{p}=\sum_{\mu} h_{p, \mu} \theta_{p, \mu}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}}\left(\widehat{\Psi}_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}-\Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(-)}\right) \\
& \frac{1}{2} \sum_{\mu} R_{p, \mu} \theta_{p, \mu}=\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}} \Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(-)}
\end{aligned}
$$

Mock modularity

$$
\begin{aligned}
& \widehat{\mathcal{Z}}_{p}=\sum_{\mu} h_{p, \mu} \theta_{p, \mu}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}}\left(\widehat{\Psi}_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}-\Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(-)}\right) \\
& \frac{1}{2} \sum_{\mu} R_{p, \mu} \theta_{p, \mu}=\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}} \Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(-)}
\end{aligned}
$$

Proposal: when the divisor given by p^{a} is reducible, $h_{p, \mu}$ transforms as a mock modular form with the modular completion given by

$$
\widehat{h}_{p, \mu}=h_{p, \mu}(\tau)-\frac{1}{2} R_{p, \mu}(\tau, \bar{\tau})+\cdots
$$

Mock modularity

$$
\begin{aligned}
& \widehat{\mathcal{Z}}_{p}=\sum_{\mu} h_{p, \mu} \theta_{p, \mu}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}}\left(\widehat{\Psi}_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}-\Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(-)}\right) \\
& \frac{1}{2} \sum_{\mu} R_{p, \mu} \theta_{p, \mu}=\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}} \Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(-)}
\end{aligned}
$$

Proposal: when the divisor given by p^{a} is reducible, $h_{p, \mu}$ transforms as a mock modular form with the modular completion given by

$$
\widehat{h}_{p, \mu}=h_{p, \mu}(\tau)-\frac{1}{2} R_{p, \mu}(\tau, \bar{\tau})+\cdots
$$

$$
\widehat{\mathcal{Z}}_{p}=\sum_{\mu} \widehat{h}_{p, \mu} \theta_{p, \mu}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} \widehat{h}_{p_{1}, \mu_{1}} \widehat{h}_{p_{2}, \mu_{2}} \widehat{\Psi}_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}+O\left(\widehat{h}^{3}\right)
$$

Mock modularity

$$
\begin{aligned}
& \widehat{\mathcal{Z}}_{p}=\sum_{\mu} h_{p, \mu} \theta_{p, \mu}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}}\left(\widehat{\Psi}_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}-\Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(-)}\right) \\
& \frac{1}{2} \sum_{\mu} R_{p, \mu} \theta_{p, \mu}=\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} h_{p_{1}, \mu_{1}} h_{p_{2}, \mu_{2}} \Psi_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}^{(-)}
\end{aligned}
$$

Proposal: when the divisor given by p^{a} is reducible, $h_{p, \mu}$ transforms as a mock modular form with the modular completion given by

$$
\widehat{h}_{p, \mu}=h_{p, \mu}(\tau)-\frac{1}{2} R_{p, \mu}(\tau, \bar{\tau})+\cdots
$$

$$
\widehat{\mathcal{Z}}_{p}=\sum_{\mu} \widehat{h}_{p, \mu} \theta_{p, \mu}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \sum_{\mu_{1}, \mu_{2}} \widehat{h}_{p_{1}, \mu_{1}} \widehat{h}_{p_{2}, \mu_{2}} \widehat{\Psi}_{p_{1}, p_{2}, \mu_{1}, \mu_{2}}+O\left(\widehat{h}^{3}\right)
$$

- consistent with some results for non-compact CYs
- the elliptic genus $\mathcal{Z}_{p}^{(1)}=\sum h_{p, \mu} \theta_{p, \mu}$ is only mock modular
- can be thought as a result of the continuum of states in the spectrum

Darboux coordinates

Darboux coordinates are analyzed in the limit $z \rightarrow 0$ with $z t^{a}$ kept constant All of them can be expressed in terms of two functions: $\tilde{\mathcal{F}}_{p}$ and $\tilde{\mathcal{J}}_{p}(z)$

$$
\begin{gathered}
\mathcal{J}(z)=\frac{1}{4 \pi^{2}} \sum_{\gamma \in \Gamma_{+}} \bar{\Omega}(\gamma) \int_{\ell_{\gamma}} \frac{\mathrm{d} z^{\prime}}{z-z^{\prime}} \mathcal{X}_{\gamma}\left(z^{\prime}\right)=\sum_{p} \mathcal{J}_{p}^{(1)}(z)+\sum_{p_{1}, p_{2}} \mathcal{J}_{p_{1} p_{2}}^{(2)}(z)+\cdots \\
\tilde{\mathcal{J}}_{p}(z)=\mathcal{J}_{p}^{(1)}(z)+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \mathcal{J}_{p_{1} p_{2}}^{(2)}(z)
\end{gathered}
$$

Darboux coordinates

Darboux coordinates are analyzed in the limit $z \rightarrow 0$ with $z t^{a}$ kept constant All of them can be expressed in terms of two functions: $\tilde{\mathcal{F}}_{p}$ and $\tilde{\mathcal{J}}_{p}(z)$

$$
\begin{gathered}
\mathcal{J}(z)=\frac{1}{4 \pi^{2}} \sum_{\gamma \in \Gamma_{+}} \bar{\Omega}(\gamma) \int_{\ell_{\gamma}} \frac{\mathrm{d} z^{\prime}}{z-z^{\prime}} \mathcal{X}_{\gamma}\left(z^{\prime}\right)=\sum_{p} \mathcal{J}_{p}^{(1)}(z)+\sum_{p_{1}, p_{2}} \mathcal{J}_{p_{1} p_{2}}^{(2)}(z)+\cdots \\
\tilde{\mathcal{J}}_{p}(z)=\mathcal{J}_{p}^{(1)}(z)+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \mathcal{J}_{p_{1} p_{2}}^{(2)}(z)
\end{gathered}
$$

Darboux coordinates transform according to the classical law provided $\tilde{\mathcal{J}}_{p}(z)$ transforms as modular form of weight $(-1,0)$

Darboux coordinates

Darboux coordinates are analyzed in the limit $z \rightarrow 0$ with $z t^{a}$ kept constant All of them can be expressed in terms of two functions: $\tilde{\mathcal{F}}_{p}$ and $\tilde{\mathcal{J}}_{p}(z)$

$$
\begin{gathered}
\mathcal{J}(z)=\frac{1}{4 \pi^{2}} \sum_{\gamma \in \Gamma_{+}} \bar{\Omega}(\gamma) \int_{\ell_{\gamma}} \frac{\mathrm{d} z^{\prime}}{z-z^{\prime}} \mathcal{X}_{\gamma}\left(z^{\prime}\right)=\sum_{p} \mathcal{J}_{p}^{(1)}(z)+\sum_{p_{1}, p_{2}} \mathcal{J}_{p_{1} p_{2}}^{(2)}(z)+\cdots \\
\tilde{\mathcal{J}}_{p}(z)=\mathcal{J}_{p}^{(1)}(z)+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \mathcal{J}_{p_{1} p_{2}}^{(2)}(z)
\end{gathered}
$$

Darboux coordinates transform according to the classical law provided $\tilde{\mathcal{J}}_{p}(z)$ transforms as modular form of weight $(-1,0)$

But this is not true even at one instanton level!

Removing anomaly

The idea: the modular completion can be generated by a local contact transformation

All such transformations can be generated by holomorphic functions - "Hamiltonians" $\mathcal{G}(\xi, \tilde{\xi}, \alpha)$

Removing anomaly

The idea: the modular completion can be generated by a local contact transformation

In our case:
$\mathcal{G}=\sum_{p} e^{2 \pi i p^{a} \tilde{\xi}_{a}} f_{p}(\xi)$
local coordinate transformation preserving the contact 1 -form up to a factor

All such transformations can be generated by holomorphic functions - "Hamiltonians" $\mathcal{G}(\xi, \tilde{\xi}, \alpha)$

The effect on Darboux coordinates:

$$
\tilde{\mathcal{J}}_{p} \mapsto \widehat{\mathcal{J}}_{p}=\tilde{\mathcal{J}}_{p}+\tilde{\mathcal{G}}_{p} \longleftarrow \text { holomorphic }\left\{\begin{array}{l}
\mathcal{G}=\sum_{p} \mathcal{G}_{p}+\sum_{p_{1}, p_{2}} \mathcal{G}_{p_{1} p_{2}}+\cdots \\
\tilde{\mathcal{G}}_{p}=\mathcal{G}_{p}^{(1)}+\frac{1}{2} \sum_{p_{1}+p_{2}=p}^{\mathcal{G}_{p_{1} p_{2}}^{(2)}}
\end{array}\right.
$$

Removing anomaly

The idea: the modular completion can be generated by a local contact transformation

In our case:
$\mathcal{G}=\sum_{p} e^{2 \pi \mathrm{i} p^{a} \tilde{\xi}_{a}} f_{p}(\xi)$
local coordinate transformation preserving the contact 1 -form up to a factor

All such transformations can be generated by holomorphic functions - "Hamiltonians" $\mathcal{G}(\xi, \tilde{\xi}, \alpha)$

The effect on Darboux coordinates:

$$
\tilde{\mathcal{J}}_{p} \mapsto \widehat{\mathcal{J}}_{p}=\tilde{\mathcal{J}}_{p}+\tilde{\mathcal{G}}_{p} \longleftarrow \sim\left\{\begin{array}{l}
\mathcal{G}=\sum_{p} \mathcal{G}_{p}+\sum_{p_{1}, p_{2}} \mathcal{G}_{p_{1} p_{2}}+\cdots \\
\tilde{\mathcal{G}}_{p}=\mathcal{G}_{p}^{(1)}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \mathcal{G}_{p_{1} p_{2}}^{(2)} \\
\text { integral holomorphic mock }
\end{array}\right.
$$

$$
\begin{array}{|l}
\begin{array}{c}
\text { At 1-instanton level, the anomaly is canceled by } \\
\text { the indefinite theta series } \quad f_{p}(\xi)=\sum_{q_{\Lambda}} \Delta_{q}^{t t^{\prime}} e^{-2 \pi \mathrm{i} q_{\Lambda} \xi^{\Lambda}} \\
\Delta_{q}^{t t^{\prime}}=\frac{1}{2}\left[\operatorname{sgn}\left(\operatorname{Im}\left(z+\frac{\mathrm{i}(q \cdot t)}{\left(p t^{2}\right)}\right)\right)-\operatorname{sgn}\left(\operatorname{Im}\left(z+\frac{\mathrm{i}\left(q \cdot t^{\prime}\right)}{2\left(p t t^{\prime}\right)}\right)\right)\right] \\
t^{\prime a} \quad \text { - vector belonging to the boundary } \\
\text { of the Kähler cone: }\left(p t^{\prime 2}\right)=0
\end{array}
\end{array} e^{-2 \pi \mathrm{i} \mathrm{i}_{0} \xi^{0}} e^{-\pi \mathrm{i} \xi^{0} \kappa^{a b} q_{q} q_{b}}
$$

Removing anomaly

The idea: the modular completion can be generated by a local contact transformation

In our case:
$\mathcal{G}=\sum_{p} e^{2 \pi \mathrm{i} p^{a} \tilde{\xi}_{a}} f_{p}(\xi)$
local coordinate transformation preserving the contact 1 -form up to a factor

All such transformations can be generated by holomorphic functions - "Hamiltonians" $\mathcal{G}(\xi, \tilde{\xi}, \alpha)$

The effect on Darboux coordinates:

$$
\begin{gathered}
\tilde{\mathcal{J}}_{p} \mapsto \widehat{\mathcal{J}}_{p}=\tilde{\mathcal{J}}_{p}+\tilde{\mathcal{G}}_{p} \leftarrow \sum_{p} \longleftarrow \mathcal{G}_{p}^{(1)}+\sum_{p_{1}, p_{2}} \mathcal{G}_{p_{1} p_{2}}^{(2)}+\cdots \\
\text { period holomorphic } \\
\tilde{\mathcal{G}}_{p}=\mathcal{G}_{p}^{(1)}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \mathcal{G}_{p_{1} p_{2}}^{(2)}
\end{gathered}
$$

At 1 -instanton level, the anomaly is canceled by the indefinite theta series $f_{p}(\xi)=\sum_{q_{\Lambda}} \Delta_{q}^{t t^{\prime}} e^{-2 \pi \mathrm{i} q_{\Lambda} \xi^{\Lambda}}$

$\Delta_{q}^{t t^{\prime}}=\frac{1}{2}\left[\operatorname{sgn}\left(\operatorname{Im}\left(z+\frac{\mathrm{i}(q \cdot t)}{\left(p t^{2}\right)}\right)\right)-\operatorname{sgn}\left(\operatorname{Im}\left(z+\frac{\mathrm{i}\left(q \cdot t^{\prime}\right)}{2\left(p t t^{\prime}\right)}\right)\right)\right]$

$$
t^{\prime a}-\text { vector belonging to the boundary }
$$

$$
\text { of the Kähler cone: }\left(p t^{\prime 2}\right)=0
$$

Removing anomaly

The idea: the modular completion can be generated by a local contact transformation

In our case:
$\mathcal{G}=\sum_{p} e^{2 \pi \mathrm{i} p^{a} \tilde{\xi}_{a}} f_{p}(\xi)$
local coordinate transformation preserving the contact 1 -form up to a factor

All such transformations can be generated by holomorphic functions - "Hamiltonians" $\mathcal{G}(\xi, \tilde{\xi}, \alpha)$

The effect on Darboux coordinates:

$$
\begin{gathered}
\text { effect on Darboux coordinates: } \\
\qquad \tilde{\mathcal{J}}_{p} \mapsto \widehat{\mathcal{J}}_{p}=\tilde{\mathcal{J}}_{p}+\tilde{\mathcal{G}}_{p} \leftarrow \\
\begin{array}{c}
\text { period holomorphic } \\
\text { integral mock }
\end{array}
\end{gathered}\left\{\begin{array}{l}
\mathcal{G}=\sum_{p} \mathcal{G}_{p}^{(1)}+\sum_{p_{1}, p_{2}} \mathcal{G}_{p_{1} p_{2}}^{(2)}+\cdots \\
\tilde{\mathcal{G}}_{p}=\mathcal{G}_{p}^{(1)}+\frac{1}{2} \sum_{p_{1}+p_{2}=p} \mathcal{G}_{p_{1} p_{2}}^{(2)}
\end{array}\right.
$$

At 1 -instanton level, the anomaly is canceled by the indefinite theta series $f_{p}(\xi)=\sum \Delta_{q}^{t t^{\prime}} e^{-2 \pi \mathrm{i} q_{\Lambda} \xi^{\Lambda}}$
$\Delta_{q}^{t t^{\prime}}=\frac{1}{2}\left[\operatorname{sgn}\left(\operatorname{Im}\left(z+\frac{\mathrm{i}(q \cdot t)}{\left(p t^{2}\right)}\right)\right)-\operatorname{sgn}\left(\operatorname{Im}\left(z+\frac{\mathrm{i}\left(q \cdot t^{\prime}\right)}{2\left(p t t^{\prime}\right)}\right)\right)\right]$

What is f_{p} for

2-instantons?

$$
t^{\prime a}-\text { vector belonging to the boundary }
$$

$$
\text { of the Kähler cone: }\left(p t^{\prime 2}\right)=0
$$

Main results:

Conclusions

- The elliptic genus for a reducible divisor of CY is mock modular with the modular completion resulting from $\quad \widehat{h}_{p, \mu}=h_{p, \mu}(\tau)-\frac{1}{2} R_{p, \mu}(\tau, \bar{\tau})$
- Relation between the contact potential of the twistor formalism and (the modular completion of) the BPS partition function
- Modularity of Darboux coordinates
- Anomaly cancellation by indefinite theta functions
- New modular forms from (double) integrals on the twistor space
- Instanton corrected mirror map

Main results:

Conclusions

- The elliptic genus for a reducible divisor of CY is mock modular with the modular completion resulting from $\quad \widehat{h}_{p, \mu}=h_{p, \mu}(\tau)-\frac{1}{2} R_{p, \mu}(\tau, \bar{\tau})$
- Relation between the contact potential of the twistor formalism and (the modular completion of) the BPS partition function
- Modularity of Darboux coordinates
- Anomaly cancellation by indefinite theta functions
- New modular forms from (double) integrals on the twistor space
- Instanton corrected mirror map

Some open questions:

- Modular completion for Darboux coordinates at 2-instanton level
- The nature of the light-like vector $t^{\prime a}$
- Derivation of $R_{p, \mu}$ from CFT
- Consequences for the counting of states of BPS black holes
- Extension beyond our approximation (large volume \& 2-instanton)

