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This talk will be about highly speculative
work that is still in progress.

We are trying to find relations between
natural BPS counts in 4d N=4 string vacua,

and simple objects arising in arithmetic
algebraic geometry.

Many of the facts I’ll describe are known
to experts, but there are some new observations,

and the interpretations are still missing.
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The basic philosophy of the project is that
the ways we normally talk about string vacua -

in terms of supergravity solutions, or 2d worldsheet
CFTs - are perhaps not the best ways to

specify the relevant data.

It is at least possible that instead, auxiliary geometric
objects (encoding properties of the physics not

immediately visible in the above formulations) are
more basic, and will eventually be revealed as the

more fundamental underlying description.

c.f. Seiberg-Witten curve
in N=2 theories
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1.  Introduction

Let me begin with a success story in string theory,
that brings many of the relevant objects into play.

We might be interested in counting BPS black holes,
carrying enough gauge charges to have finite horizon

area in general relativity:

One of the first successes:  D1-D5
black holes on a K3 surface.
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The 1/2-BPS state counts on K3 come from many duality
frames, each giving different pictures of the final result.

M

S 1

Fig. 1: The string configuration corresponding to a twisted sec-

tor by a given permutation g ∈ SN . The string disentangles into

seperate strings according to the factorization of g into cyclic per-

mutations.

2. The Proof

The Hilbert space of an orbifold field theory [6] is decomposed into twisted sectors
Hg, that are labelled by the conjugacy classes [g] of the orbifold group, in our case the
symmetric group SN . Within each twisted sector, one only keeps the states invariant
under the centralizer subgroup Cg of g. We will denote this Cg invariant subspace by

HCg
g . Thus the total orbifold Hilbert space takes the form

H(SNM) =
⊕

[g]

HCg
g . (2.1)

For the symmetric group, the conjugacy classes [g] are characterized by partitions {Nn}
of N

∑

n

nNn = N, (2.2)

where Nn denotes the multiplicity of the cyclic permutation (n) of n elements in the

decomposition of g

[g] = (1)N1(2)N2 . . . (s)Ns. (2.3)

4

In the sector with charge n, a common
picture involves the sigma model with

target               .Hilbn(K3)

The resulting count of supersymmetric ground states
(Witten index of the sigma models) yields:

q�1
X

n

�(Hilbn(K3)) qn =
1

⌘24(q)
Vafa
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This formula has alternate derivations.  For instance, in a
different duality frame, where the BPS state involves D2-
branes wrapping curves in K3, the relevant index localizes

on counting nodal curves:

q�1
X

g

(�(MH
g ))qg =

1

⌘24(q)

Perhaps the most immediate derivation involves the duality 
frame of the heterotic string on       : T 4

24 light cone
cone left moving

oscillators

Yau, 
Zaslow

Dabholkar,
Harvey
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The story for 1/4-BPS states, which include the black
holes with macroscopic horizon area in string units, is

more involved.

The low-energy theory of type II on                has
28 abelian gauge fields.  Therefore, states are characterized

by electric and magnetic charge vectors            .

Up to U-duality transformations, then, the states carry
three kinds of charges, labelled by:
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Following the work of Dijkgraaf, Verlinde, Verlinde, one
can think of obtaining the generating function as a 
function of three chemical potentials via the sum:

Up to a correction factor of the Jacobi form        , this is
the (inverse) Igusa cusp form   

A direct interpretation of the appearance of the Siegel 
modular form, has been proposed in various works.

Gaiotto; Dabholkar, Gaiotto;
Banerjee, Sen, Srivastava

X

n

pn�1ZEG(Hilbn(K3); q, y)
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Figure 1: Intersection of strings of charges qe(red) and qm(blue) relaxes two supersymetric
junctions joined by a string of charges qe + qm

The naive configuration of the two strings wrapping the two cycles and intersecting at a
four-pronged intersection is not supersymmetric. We want to argue that it can reach a lower
energy, 1/4 BPS ground state by relaxing the intersection and splitting it up, to form two
three-pronged string junctions joined by a stub of charges qe + qm or qe − qm (See Figure 1).

In other words the dyon can be realized as a network or web of black strings wrapping the
T 2, made out of three strands of different charges joined at two supersymmetric junctions.

It is well known that a junction of three BPS strings can preserve 1/4 of the supersymme-
tries. As long as the strings are in a plane, charge is conserved at the junction and the relative
angles are fixed by mechanical equilibrium [4] the BPS bound is saturated. This is true in
particular of these black strings from IIB compactified on K3. Periodic, honeycomb-like
networks of strings of charges qe,qm,qe + qm can be built out of those intersections (See for
example [5]). Quotient by the periodicity of the lattice gives the 1/4 BPS network wrapping a
T 2, with two three-pronged intersections, that corresponds to a BPS dyon in four dimensions.
(See Figure 2)

The actual angles between the strands depend on the background values of the scalar
moduli: the K3 moduli fix the tensions of the three strands and hence the relative angles at
the junction, while the shape of the torus fixes the position and orientation of the junction.
It should be possible to make use of this construction to understand the attractor equations
geometrically.

The topology of the string network wrapping the torus is the same as a genus two Riemann
surface with very thin handles. This can be made precise: to count the (index) number of
BPS microstates of such a string network, one computes the partition function with euclidean
time compactified on a supersymmetric circle.

By taking the limit in which the supersymmetric thermal circle is very small we can dualize
IIB theory to M-theory on a torus. The partition function is then computed in M-theory

3

Figure 2: An honeycomb network can be quotiented to give the network on the torus

compactified on K3 × T 4.
The duality relates a network of black strings wrapped on the torus to an M5 brane

wrapping K3 and a holomorphic curve in the T 4. The topology of the string network with
two three-pronged junctions implies that the curve is of genus two. There is a natural
holomorphic map from a genus two Riemann surface into a T 4, that is the map between the
complex curve and its Jacobian. This map is unique.

The partition function for the M5 brane wrapping the K3 and a genus two Riemann
surface is easily computed. For example by a second duality from M-theory on K3 to heterotic
string on T 3, this is the partition function for a fundamental heterotic string wrapping the
genus two Riemann surface.

As the fermions are periodic around each circle, the partition function is computed with
Ramond boundary conditions around each cycle of the curve, that projects the right-moving
sector onto the Ramond ground state. The electric and magnetic charges along each strand
of the network fix the value of the Narain momenta running across the various cycles of the
Riemann surface.

Level matching identifies then Ne with the left oscillator level propagating along one han-
dle of the surface, Nm along the other handle, Ne + Nm + Nem along the stub. The number
of states contributing to the partition function is computed from the Fourier coefficients of the
genus two partition function for 24 chiral bosons: Φ(

(ρ v
v σ

)

) =
∑

d(Ne, Nem, Nm)e2πi(Neρ+Nemv+Nmσ)

4

The genus 2 surface appears as an M theory lift
of a web of string junctions.
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In this talk, I will describe two new sets of
observations about these BPS state counts:

i) A potential relation to modularity conjectures
for rigid Calabi-Yau n-folds, in a sense I’ll explain

ii) Evolving interpretations in terms of curve counts
on K3 surfaces and generalizations
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II.  More 4d N=4 compactifications

To gather data, it will be useful
to describe more than one connected

component of the moduli space of
4d N=4 string vacua.

In addition to the familiar component arising from 
heterotic strings on      and their duals, 

there are a number of easily constructed
generalizations -- CHL strings.
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I will not detail their construction here, but the 
basic idea is to start with type II on            and

orbifold by      
     here

accompany by
shift here

in such a way as to preserve N=4 supersymmetry.

Zp
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There is a standard table of resulting theories. 
The simplest cases arise for primes p such that

(p-1) | 24:

There are many other examples that work in a 
slightly more intricate way, but these will suffice

for our discussion today.

3.3 k=10

It gets boring to keep discussing examples, so lets move to the other end of the
spectrum of dimensions. The regular heterotic string on T 6 has BPS counting
function f1

24
related to a Calabi-Yau eleven-fold constructed in [7], which also

contains useful general discussion. Interestingly, this eleven-fold is birational to
the Kuga-Sato variety E(10). We remind the reader that

E(r) ⌘ M
1

(r + 1)

where M
g

(k) is the moduli space of genus g curves with k marked points.
In plain English, this means that this Calabi-Yau manifold is birational to

a space fibered over the axio-dilaton moduli space H/SL(2,Z) where the fiber
is ten copies of the elliptic curve associated to a point in the base.

4 The big picture

• What is the general picture we propose? Obviously one that would be ideal
is something like having the analogue space E(k) ) H/� with � the relevant
congruence subgroup for each CHL model.

• Why are we led to look at the k such that 2k + 2 is the number of N = 4
matter multiplets? Based only on footnote 2 of [4], I think that [8] may have
relevant information from the K3 perspective.

p rank M
dilaton

� 28 SL(2, Z)\H
2 20 �

1

(2)\H
3 16 �

1

(3)\H
5 12 �

1

(5)\H
7 10 �

1

(7)\H

p f(⌧) weight
� ⌘24(⌧) 12
2 ⌘8(⌧)⌘8(2⌧) 8
3 ⌘6(⌧)⌘6(3⌧) 6
5 ⌘4(⌧)⌘4(5⌧) 5
7 ⌘3(⌧)⌘3(7⌧) 3
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For each of these connected components in the space
of vacua, there is a simple coupling function which 

counts the 1/2 BPS states.  

functions, are determined at tree level. However, there are interesting four-
derivative terms that exhibit non-trivial quantum corrections. One such term
is an R2 correction to the 4d theory, of the general form

Z
d4x �(⌧, ⌧̄)

�
R

µ⌫⇢

Rµ⌫⇢ � 4R
µ⌫

Rµ⌫ +R2

�

with ⌧ = a+ iS 2 H the heterotic axio-dilaton.
These quantum corrections have been of interest in the pursuit of precise

formulas for BPS black hole entropy, starting with e.g. [1]. Interestingly, they
are governed by modular objects. Using facts about supersymmetry and duality,
Sen was able to argue that the form of the coupling should be

�(⌧, ⌧̄) = ln
�
f(⌧)f(⌧̄) · (Im(⌧))14

�

with f(⌧) a cusp-form of weight 12. There is a unique candidate,

f(⌧) = �(⌧) = (⌘(⌧))24 .

The appearance of the ⌘(⌧)24 here is not a surprise. It can be argued on
general grounds that � receives contributions only from 1/2 BPS states, and �
is the counting-function for half-BPS states in this model. (Note that the ⌧ here
is, however, the space-time coupling multiplet, and not the modular parameter
of a one-loop worldsheet amplitude; such transmutation of functional forms
of dependence from the modular parameter to space-time moduli is a fairly
common occurence in BPS string amplitudes).

2.2 CHL Strings

A diverse set of 4d N = 4 string vacua (as well as vacua with 1/2 maximal
supersymmetry in diverse other dimensions) can be discovered following the
strategy of [2]; we will call such theories “CHL strings.”

The basic idea is to do orbifolds of the heterotic string which act only on
the left-moving degrees of freedom. As all space-time supersymmetry in the
heterotic string comes from right-moving supercharges, this opens up the possi-
bility of discovering new theories with 16 supercharges. Indeed, many examples
which satisfy level-matching have been discovered.

At the same time, using e.g. string-string duality, one can map the orbifold
action to the dual type II description on K3 ⇥ T 2. This gives type II duals as
orbifolds of K3⇥ T 2.

A large set of examples has been constructed, and the computation of 1/2
BPS and 1/4 BPS state counting functions was undertaken in e.g. [3, 4] and
related works. Here, we summarize some of the properties of these examples.

2

It is one of the lowest order higher-derivative terms 
relevant for computing corrections to black hole

entropies.
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The function f governing the correction term, literally
counts the 1/2 BPS states.

In the CHL vacua we’ve discussed, similar terms arise:

3.3 k=10

It gets boring to keep discussing examples, so lets move to the other end of the
spectrum of dimensions. The regular heterotic string on T 6 has BPS counting
function f1

24
related to a Calabi-Yau eleven-fold constructed in [7], which also

contains useful general discussion. Interestingly, this eleven-fold is birational to
the Kuga-Sato variety E(10). We remind the reader that

E(r) ⌘ M
1

(r + 1)

where M
g

(k) is the moduli space of genus g curves with k marked points.
In plain English, this means that this Calabi-Yau manifold is birational to

a space fibered over the axio-dilaton moduli space H/SL(2,Z) where the fiber
is ten copies of the elliptic curve associated to a point in the base.

4 The big picture

• What is the general picture we propose? Obviously one that would be ideal
is something like having the analogue space E(k) ) H/� with � the relevant
congruence subgroup for each CHL model.

• Why are we led to look at the k such that 2k + 2 is the number of N = 4
matter multiplets? Based only on footnote 2 of [4], I think that [8] may have
relevant information from the K3 perspective.
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I would like to discuss some observations about
these functions and moduli spaces.
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III.  Arithmetic underlying BPS counts?
(with A. Tripathy)

Let us move briefly to another story which many
of you know better than me.  Consider some simple

elliptic curve, like

You might be interested in the counts of points on
this curve, over      . 
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Suppose this number of points is       . 

Then, let

You extend this definition to non-prime coefficients in a
standard way:

and to more composite index coefficients via
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These definitions have been for “primes of good 
reduction”; the coefficient is modified in a simple way at
primes of bad reduction (i.e. when the curve is singular

viewed as a curve over      ).

For the particular curve I mentioned, 11 is a prime of bad
reduction.

Then if we gather the resulting coefficients together

we find an elegant result:
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This is a cusp form of weight 2 for          ! 

This is a particular example of a famous relation 
between elliptic curves and weight 2 cusp forms following 
from Taniyama-Shimura (now the modularity theorem):

what was actually proved is a conjecture about
properties of modular forms!

Ribet had shown that if a solution to Fermat’s equation
exists, it can be used to construct an elliptic curve 

NOT associated with a modular form.

By proving Taniyama-Shimura, Fermat’s theorem was
finally proven.

Sunday, November 22, 15
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Here are some natural questions:

Are there analogous results for modular
forms associated to counting points on higher

dimensional varieties?  

Do these point counts have any 
interesting physical interpretation, say

related to the appearance of automorphic
forms in various string theory BPS

state counts? c.f. Candelas, de la Ossa;
Schimmrigk
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There are only partial answers to the first question, e.g.:
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RIGID CALABI-YAU THREEFOLDS OVER Q ARE
MODULAR

FERNANDO Q. GOUVÊA AND NORIKO YUI

Abstract. The proof of Serre’s conjecture on Galois representa-
tions over finite fields allows us to show, using a method due to
Serre himself, that all rigid Calabi-Yau threefolds defined over Q

are modular.

In the mid-1980s, J.-P. Serre conjectured in [11] that all absolutely
irreducible odd two-dimensional representations of GQ = Gal(Q/Q)
over a finite field come from modular forms of prescribed weight, level,
and character. This has now been proved by C. Khare and J.-P. Win-
tenberger; see [6, 7]. Because this result can be seen as a generalization
of Artin Reciprocity to the GL2 case (over Q), we will refer to it as
“Serre Reciprocity.”
Already in [11], Serre showed how, given a compatible system of !-

adic Galois representations and bounds on the weight and level of the
predicted modular forms in characteristic !, one can use Serre Reci-
procity to obtain results in characteristic zero. We refer to this as
“Serre’s method” and state and prove a generalized form of it in Sec-
tion 1 below.
Serre’s method allows us to show that certain geometric Galois rep-

resentations are modular. Specifically, we show that the representation
obtained from the third étale cohomology of a rigid Calabi-Yau three-
fold defined over Q comes from a modular form of weight 4 on Γ0(N).
The proof is an application of Serre’s method; it can, in fact, be read
off directly from [11, Section 4.8], which is why one might describe this
short paper as a “footnote to Serre.” Recent results allow a slightly
simpler version of the proof.
The observation that the proof of Serre’s reciprocity allows us to

establish the modularity of odd irreducible motives of rank two has

2000 Mathematics Subject Classification. 14J32, 11F30, 11F03, 11F11.
This work was partially supported by the Natural Sciences and Engineering

Research Council of Canada (NSERC).
1

But there is quite a bit of lore coming from the Langlands
program, and various explorers have uncovered examples 

of relations in specific cases.
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The basic result is that motives with the same
structure as “rigid” CY manifolds, should be

modular (in the sense that their point counts
give automorphic forms for SL(2,Z) or congruence

subgroups thereof). 

A special exception occurs in d=2: the only
non-trivial Calabi-Yau space is K3.  It is not
rigid, but K3 surfaces which are singular (in

the sense that their Picard number is 20!) are
thought to be modular.
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Let us return to our list of N=4 models.

* For each of our test cases, the moduli space of the
axio-dilaton                is of genus zero.

* There is a standard construction associated with 
such moduli spaces, yielding something called a 

Kuga-Sato variety.  

Here are some other interesting facts:

* For each of our test cases, the moduli space of the
axio-dilaton                is of genus zero.

* There is a standard construction associated with 
such moduli spaces, yielding something called a 

Kuga-Sato variety.  
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Here is the list again:

We’ve added a column for k, which is found by subtracting
2 from the weight of the form governing the      correction.

Now, consider the Kuga-Sato variety obtained by taking the 
k-fold fiber product of the elliptic curve above each point

on              .
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We claim that there is a Calabi-Yau manifold birational to 
this space, whose point counts yield the modular 

form         counting half-BPS states, for each model.

That is, the BPS states in the CHL model with a given k,
are tied to arithmetic geometry of a Calabi-Yau k+1-fold

which is an elliptic fibration over             .

For this construction to yield (rigid) Calabi-Yau spaces,
it was important that the modular curve for the relevant

S-duality group be of genus zero.
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Example:

For k=1, we get an elliptic fibered K3 surface.

A K3 surface whose Frobenius traces correctly give
the desired modular form was studied by

Ahlgren-Ono-Penniston.  It is a double cover
of      branched over 6 lines:

{X

�

}, for � 2 Q \ {0,�1}, of K3 surfaces whose function fields are given by

X

�

: s

2 = xy(x + 1)(y + 1)(x + �y) (1)

in relation to the family of elliptic curves

E

�

: y

2 = (x� 1)
�
x

2
�

1
�+1

�
. (2)

For convenience, if p is an odd prime, then let �

p

(x) denote the Legendre symbol
�

x

p

�
.

Theorem 1.1. If � 2 Q \ {0,�1} and p is an odd prime at which E

�

has good reduction,

then the local zeta function of X

�

at p is

Z(X
�

/F
p

, T ) =
1

(1� T )(1� p

2
T )(1� pT )19(1� �pT )(1� �⇡

2
�,p

T )(1� �⇡

2
�,p

T )
,

where ⇡

�,p

and ⇡

�,p

are the eigenvalues of the Frobenius at p on E

�

, and � = �

p

(� + 1).

In view of Theorem ??, it is easy to characterize those � for which X

�

is modular.

Theorem 1.2. If � 2 Q \ {0,�1}, then the surface X

�

is modular if and only if

� 2 {1, 8, 1/8, �4, �1/4, �64, �1/64}.

For completeness, we note that Beukers and Stienstra [?] show that X�1 is also a modular
K3 surface. This follows easily from Theorem 1.2 since X�1 is a quadratic twist of both X8

and X1/8. Even though E�1 is singular, the modularity of X�1 can be proved using a minor
modification of the arguments contained here. We prefer to omit them for brevity.

In §5 we shall show that all of the surfaces in Theorem ?? are related to weight 3 newforms
that are products of Dedekind’s eta-function. It is interesting to note that these forms con-
stitute the complete list of weight 3 newforms which are eta-products. Proving Theorem ??
is tantamount to computing the Picard number of all of the X

�

. Finding the Picard number
of a K3-surface is in general a di�cult problem, and is often equivalent to calculating the
rank of an elliptic curve over a function field. In our situation, the computation follows easily
from a well known theorem of Ribet [?].

2. A theorem on character sums

In this section we prove a theorem about character sums which is essential for all of the
results in this paper. Suppose that � 2 Q \ {0,�1} and that p is an odd prime such that
� 6⌘ 0,�1 (mod p). If q = p

r, then let �

q

be the extended Legendre symbol on F
q

(we will
often write � = �

q

for simplicity). Further, define quantities a(�, q) and A(�, q) by

a(�, q) := �

X

x2Fq

�

q

�
(x� 1)

�
x

2
�

1
�+1

��
,

A(�, q) :=
X

x,y2Fq

�

q

(xy(x + 1)(y + 1)(x + �y)).
(3)

Theorem 2.1. If � 2 Q, and � 6⌘ 0,�1 (mod p), then A(�, q) = �

q

(� + 1)(a(�, q)2
� q).

2

with              .  (Other values seem to enjoy a similar
reationship with CHL models I’m not discussing here).

Tuesday, May 24, 16



Example:
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MODULAR FORMS AND CALABI-YAU VARIETIES

KAPIL PARANJAPE1 AND DINAKAR RAMAKRISHNAN2

Introduction

Let f(z) =
∞
∑

n=1
anqn be a holomorphic newform of weight k ≥ 2

relative to Γ1(N) acting on the upper half plane H. Suppose the co-
efficients an are all rational. When k = 2, a celebrated theorem of
Shimura asserts that there corresponds an elliptic curve E over Q such
that for all primes p ! N , ap = p + 1 − |E(Fp)|. Equivalently, there
is, for every prime !, an !-adic representation ρ! of the absolute Galois
group GQ of Q, given by its action on the !-adic Tate module of E,
such that ap is, for any p ! !N , the trace of the Frobenius Frp at p on
ρ!.
The primary aim of this article is to provide some positive evidence

for the expectation of Mazur and van Straten that for every k ≥ 2,
any (normalized) newform f of weight k and level N should, if it has
rational coefficients, have an associated Calabi-Yau variety X/Q of
dimension k − 1 such that

(Ai) The {(k− 1, 0), (0, k− 1)}-piece of Hk−1(X) splits off as a sub-
motive Mf over Q,

(Aii) ap = tr(Frp |Mf,!), for almost all p, and
(Aiii) det(Mf,!) = χk−1

! ,

where χ! is the !-adic cyclotomic character.

In fact we expect (Aiii) to hold for every p not dividing !N .

Furthermore, we even hope that in addition the following holds:

(Aiv) X admits an involution τ which acts by −1 on H0(X,Ωk−1).

We anticipate that the involution τ can be chosen in such a way to
make the quotient X/τ a rational variety.
This typically holds in our examples below. This extra structure is

natural to want and is needed for understanding a variety of operations

1 Partly supported by the the JCBose Fellowship of the DST (IISERM:10-DST-
JCB-F.3) and IMSc, Chennai.

2 Partly supported by the NSF grants DMS-0701089 and DMS-1001916.
1

Paranjape and Ramakrishnan have found several
examples of Calabi-Yau manifolds (via the

construction I mentioned) whose zeta functions
are related to the CHL counting functions

appropriately.

Most basically,       itself arises from counting points
on a Calabi-Yau eleven-fold birational to the 10-fold

Kuga-Sato fiber product over                   .
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Example:

This example is distinct from the others in that it
isn’t an elliptic fibration over the axio-dilaton moduli
space.  Rather (in a case not appearing in the table,

corresponding to the prime p = 11), we choose
a CHL string with k=0 -- giving rise to

a weight 2 cusp form as        .

In this model, the axio-dilaton moduli space is: 

And the particular modular form which arises
is our friend:

⌘2(⌧)⌘2(11⌧)
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IV.  Lifts and curve counts

It is an interesting fact that the 1/4 BPS counting
functions for each of these CHL strings, can be

obtained as “lifts” of the 1/2 BPS counting functions.

Let us start with the canonical example.  The 1/2 BPS
states of the heterotic string have counting function

  .⌘24(⌧)

There are a couple of canonical “lifts” in the modularity
literature that turn this into the 1/4 BPS counting

function                  .�10(⌧,�, z)
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The first lift, discussed by Skoruppa, takes a cusp form
of weight k to a Jacobi form of weight k-2 and index 1:

The Maass lift from Jacobi to Siegel forms then takes

�10,1 ! �10

�10,1 =
X

n,`

c(n, `)qny`

⌘24(⌧) ! ⌘18(⌧)✓1(⌧, z)2 ⌘ �10,1(⌧, y)

�10(q, y, p) =
X

g(n, `,m)qny`pm

g(n, `,m) =
X

d|(n,`,m)

d9c(
n`

d2
,
m

d
)
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This pattern repeats for each of the CHL strings I’ve
described.  The 1/2 BPS function “lifts” to a quarter BPS

counting function.

The intuition is perhaps the following.  The Siegel form
is defined on a genus two surface.  In a suitable limit

the form becomes a product:
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In this limit, the quarter BPS
black hole is degenerating to
a widely separated pair of 1/2

BPS black holes.

The “Skoruppa lift” is a kinematic factor accounting
for center of mass degrees of freedom.

�10(⌧,�, z ! 0) ⇠ z2⌘24(⌧)⌘24(�)
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These facts should have echoes in other pictures
of the system.

In algebraic geometry, the BPS states have found 
interpretation in terms of suitable curve counts on 

K3⇥ T 2 .

* The 1/2 BPS counting function, as we discussed earlier,
counts nodal curves on K3.

* In a 5D picture on              , there should be additional
quantum numbers one can grade the state by.

K3⇥ S1
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In particular, a massive particle in 5D has a little
group given by                                   . SO(4) ' SU(2)⇥ SU(2)

So, there are two additional quantum numbers we can
grade a 1/2 BPS state with, the SU(2) spins.

The first SU(2) was added quite some time ago by
Katz, Klemm, Vafa.  The (inverse) counting function is:

This is nothing but our friend         . �10,1

�KKV (⌧, z) = q
Q

k(1� qk)20(1� qky)2(1� qky�1)2
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Much more recently, Katz-Klemm-Pandharipande have
generalized this to include the second SU(2):

The KKV functions lifts to the Igusa cusp form.
This raises the question: what is the analogous 4 variable

generalization of the KKP counting function?  

1/4 BPS black holes on                have four charges,
as in addition to the electric and magnetic charges

and their dot product, there is a spin.  

K3⇥ T 2

�KKP (⌧, z, w) = q
Y

k

(1�qk)20(1�qkuy)(1�qkuy�1)(1�qku�1y)(1�qku�1y�1)
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We have some conjectures about this, which aren’t quite
ready for public appearance.

Here, I want to mention some further connections to
curve counting.  

On the modularity side, passing from 1/2 to 1/4 BPS
states corresponds to a lift.  What is the mirror of

this lift in enumerative algebraic geometry? 
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CURVE COUNTING ON K3× E , THE IGUSA CUSP
FORM χ10 , AND DESCENDENT INTEGRATION

G. OBERDIECK AND R. PANDHARIPANDE

Abstract. Let S be a nonsingular projective K3 surface. Mo-
tivated by the study of the Gromov-Witten theory of the Hilbert
scheme of points of S, we conjecture a formula for the Gromov-
Witten theory (in all curve classes) of the Calabi-Yau 3-fold S×E
where E is an elliptic curve. In the primitive case, our conjecture
is expressed in terms of the Igusa cusp form χ10 and matches a
prediction via heterotic duality by Katz, Klemm, and Vafa. In
imprimitive cases, our conjecture suggests a new structure for the
complete theory of descendent integration for K3 surfaces. Via
the Gromov-Witten/Pairs correspondence, a conjecture for the re-
duced stable pairs theory of S ×E is also presented. Speculations
about the motivic stable pairs theory of S × E are made.

The reduced Gromov-Witten theory of the Hilbert scheme of
points of S is much richer than S × E. The 2-point function of
Hilbd(S) determines a matrix with trace equal to the partition
function of S ×E. A conjectural form for the full matrix is given.

Contents

0. Introduction 2

1. Rubber geometry 5

2. The Igusa cusp form χ10 7

3. Hilbert schemes of points 10

4. Conjectures 12

5. The full matrix 24

6. Motivic theory 33
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These authors define           :Ng,�,d

#  of genus g holomorphic curves (or really orbits under 
action of the elliptic curve) in the class

 
� 2 H2(S,Z)

wrapping the torus d times.

Suppose that     is primitive, and that�h

h�h,�hi = 2h� 2 .
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Then the O-P conjecture is as follows.  If you define the 
counting function

CURVE COUNTING ON K3× E 13

The moduli space (16) is of stable maps with 1-pointed domains with

complex structure fixed after stabilization to be (E, 0). The reduced
virtual dimension of M (E,0)(S [d], C(βh) + kA) is 1. The divisor class

β∨
h,k ∈ H2(S [d],Q) is chosen to satisfy

(17)

∫

C(βh)+kA

β∨
h,k = 1 .

The integral (16) is well-defined.

Following the perspective of [6, 29, 30], a connection between the
disconnected Gromov-Witten invariants N•

g,βh,d
ofK3×E and the series

(16) obtained from the geometry of S [d] is natural to expect.

We may rewrite Hd(y, q) by degenerating (E, 0) to the nodal elliptic

curve (and using the divisor equation) as

(18) Hd(y, q) =
∑

k∈Z

∑

h≥0

ykqh−1

∫

[M0,2(S[d],C(βh)+kA)]red
(ev1× ev2)

∗[∆[d]] ,

where [∆[d]] ∈ H2d(S [d] × S [d],Q) is the diagonal class. Equation (18)

shows the integral (16) is independent of the choice of β∨
h,k satisfying

(17). By convention,

H1(q) =
∑

h≥0

qh−1

∫

[M0,2(S[1],C(βh))]red
(ev1× ev2)

∗[∆[1]]

= 2q
d

dq
∆−1

= −2
E2

∆
.

For the second equality, we have used the Yau-Zaslow formula.

We define a generating series over all d > 0 of the Hilbert scheme

geometry:

H(y, q, q̃) =
∑

d>0

Hd(y, q) q̃
d−1.

The analogous generating series over all d for the 3-fold geometry

X = S × E

is defined by

(19) NX•(u, q, q̃) =
∑

g∈Z

∑

h≥0

∑

d≥0

NX•
g,βh,d

u2g−2qh−1q̃d−1.

The main conjecture in the primitive case is the following.

it satisfies:

NX• = � 1
�10

.

In fact, this function is a count of quarter BPS states
in string compactification on            .K3⇥ T 2
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* counts of 1/2 & 1/4 BPS states correspond to curve-
counts in a suitable geometry

For the CHL strings we mentioned, at a given (small)
prime p the 1/2-BPS counting function was given by:

⌘k+2(⌧)⌘k+2(p⌧)

These lift to (higher level) genus 2 Siegel 
modular forms of weight k, for each p.

* adding wrappings of the base of a fibration maps
      to a “lift” on the modular side

is repeated in all of our examples.

This basic structure:
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The type II geometries corresponding to these 
models are     orbifolds of            .Zp K3⇥ T 2

And, curve counts in the fiber, 
and counts of curves also wrapping the base, give 
generating functions related by automorphic lifts.
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As the final speaker, it is my duty and pleasure
to thank the organizers:

Thank you!
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