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Part I

String theory effective action
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Derivative expansion in string theory
Higher derivative corrections to the low-energy effective action
of string theory have coupling depending on the moduli ϕi

L =

∫
d10x |−g|

1
2

(
e−2φ

α ′4
R+

∑
k>0

fk(ϕ
i)(α ′∂2)kα ′

3
R4 + · · ·

)

α ′ is the inverse tension of the string
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Derivative expansion in string theory
The structure of the effective action is constrained by

I unitarity, spectrum
I supersymmetry leading to differential equations on fk(ϕi)
I duality symmetry acting on the scalars ϕi

Determining these coefficients is extremely important for
I UV divergences of maximal supergravity
I α ′ corrections to black hole entropy [Sen,. . . ]

I lead to α ′ corrections the vector- and hyper-multiplet
geometry on CY 3-fold

I . . .
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Type IIB superstring
The vacuum parametrized byΩ = C(0) + ie−φ in the duality
group coset SL(2,R)/SO(2)
The Einstein frame effective action `8P = α ′4 exp(2φ)

LIIB =

∫
d10x |−g|

1
2

(
1
`8P

R+
∑
k>0

f0k(Ω) (`2P∂
2)k`6P R

4 + · · ·

)

The coefficients are modular forms for SL(2,Z) with a U(1)
weight w = − the R-symmetry charge of the coupling

fwk

(
aΩ+ b

cΩ+ d

)
=

(
cΩ+ d

cΩ̄+ d

)w
fk(Ω)

(
a b

c d

)
∈ SL(2,Z)

5/34



Supersymmetry protected couplings
The 1

2 - and 1
4 -BPS protected terms satisfy

4(=mΩ)2∂Ω∂̄Ω̄f
w
k (Ω) = λwk f

w
k (Ω); k = 0, 2

Given by Eisenstein series fwk (Ω) = Ew3
2+k

(Ω)

Ew3
2+k

(Ω) =
∑

(m,n)∈Z2\(0,0)

(=mΩ)
3+k

2

(mΩ+ n)
3+k

2 +w(mΩ̄+ n)
3+k

2 −w
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Supersymmetry protected couplings

I R4 : 1
2 -BPS term one-loop exact

Ω
1
2
2E 3

2
(Ω) = 2ζ(3)Ω2

2 + 4ζ(2) + non-pert.

I D4R4 : 1
4 -BPS term two-loop exact

Ω
− 1

2
2 E 5

2
(Ω) = 2ζ(5)Ω2

2 + 0 +
8
3
ζ(4)Ω−2

2 + non-pert.

Only a finite number of perturbative term:
tree-level, one-loop, two-loop
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Supersymmetry protected couplings
The 1

8 -BPS is not an Eisenstein series

4=m(Ω)2∂Ω∂̄Ω̄f
0
3(Ω) = 12f03(Ω) − 6(f00(Ω))2

I D6R4 : 1
8 -BPS three-loop exact

Ω−1
2 f03(Ω) =

2
3
ζ(3)2Ω2

2 +
4ζ(2)ζ(3)

3
+ 4ζ(4)Ω−2

2

+
4ζ(6)

27
Ω−4

2 + non-pert.

Only a finite number of perturbative term:
tree-level, one-loop, two-loop, three-loop
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Weak coupling expansion
The weak coupling expansion reads

Ω−αk
2 fwk (Ω) =

∑
g>0

agΩ
2−2g
2 + non-pert.

The power behaved terms are the perturbative contributions
given by the analytic contribution from genus-g four gravitons
amplitudes in string theory

They are expressed as integrals over the moduli space of Mg,n

with n punctures at genus g with period matrix τ

ag =

∫
Mg,n

dµ f(τ)
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UV structure of maximal supergravity
The structure extends to lower dimensions for higher-rank
(Chevalley) group and allowed to predicted the UV behaviour
maximal supergravity till seven loops [Green,Russo,Vanhove]

Determining the coupling from D8R4 onward will give a direct
proof of the UV behaviour N = 8 supergravity in four
dimensions

So far all higher-loop divergences in N = 8 (and N = 4)
supergravity are given by single zeta values

Could we find of some special organizing principle putting in
relation modularity and special zeta values ?
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Part II

Tree amplitudes and MZV
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Tree-level expansion
The closed string amplitudes are given by integrals on the
moduli space M0,n−3 of the Riemann sphere minus three points
(mapped to the complex plane)

Atree =

∫
Cn−3

exp

( ∑
16i<j6n

α ′ki · kjGtree(zi − zj)

)
n−1∏
i=2

d2zi

The tree-level propagator is

Gtree(z) = log z+ log z̄

They are Selberg integrals which α ′ expansion is known to lead
to multiple zeta values (MZV) [Terasoma, Brown, Schloterer, Stieberger, etc.]
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Tree-level expansion
The four-graviton amplitude has the expansion
σn = α ′n(sn + tn + un)

A4g =
R4

σ3
exp

(
−
∑
n>0

2ζ(2n+ 1)
2n+ 1

σ2n+1

)

I The expansion in polynomial only in odd zeta values
I Higher-point amplitude exhibits similar properties since

only Brown’s single valued multiple zetas arise in the α ′

expansion [Schloterer, Stieberger, . . . ]
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σ3
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σ3

+
ζ(7)
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σ2
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2
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Brown’s single valued multiple zetas

ζ(k1, . . . ,kr) =
∑

nr>···>n1>0

r∏
i=1

1
nkii

They are the value at 1 of the multiple polylogarithms (MPL) of

Lik1,...,kr (z) =
∑

nr>···>n1>0

znr∏r
i=1 n

ki
i

This function has monodromies around z = 0 and z = 1, e.g.
1 0 · · · 0

−Li1 (z) 2iπ
−Li2 (z) 2iπ log z (2iπ)2

... · · ·


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Brown’s single valued multiple zetas
By cancelling the monodromies at z = 0 and z = 1 one can
defined a single valued function on C\{0, 1}

sv(Lik1,...,kr (z))

Francis Brown defined the single valued MZV as their value at
z = 1, e.g. for n ∈N

ζsv(2n) = 0

ζsv(2n+ 1) = 2ζ(2n+ 1)
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Zagier single valued polylogarithms
Da,b(x) on C\[1,+∞[

Da,b(x) = (−1)a−1
a+b−1∑
k=a

(
k− 1
a− 1

)
(−2 log |x|)a+b−1−k

(a+ b− 1 − k)!
Lik (x)

+ (−1)b−1
a+b−1∑
k=b

(
k− 1
b− 1

)
(−2 log |x|)a+b−1−k

(a+ b− 1 − k)!
(Lik (x))∗

e.g.

D2,3(x) = −2 (ln |x|)
2 Li2 (x)

+ 4 ln |x|Li3 (x) − 2 ln |x| (Li3 (x))∗

− 3 Li4 (x) + 3 (Li4 (x))∗
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Zagier single valued polylogarithms
Da,a(x) single valued on C\{0, 1}

Da,a(x) = 2<e
(
(−1)a−1

a−1∑
k=0

(
k+ a− 1
a− 1

)
× (−2 log |x|)a−1−k

(a− 1 − k)!
Lia+k (x)

)
e.g.

D1,1(z) = Li1 (z) + (Li1 (z))∗ = Gtree(1 − z)

D2,2(z) = 2<e
(

log |z|Li2 (z) − Li3 (z)
)
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Zagier single valued polylogarithms
Their value at z = 1 gives Brown’s single valued zeta

Da,b(1) = 0 a+ b ∈ 2N− 1

Da,b(1) ∈ ζ(a+ b− 1)×Z a+ b ∈ 2N

17/34



Brown’s single valued multiple zetas
The dimension dsvw of the subspace of weight w in the ring over
Q of single-valued multiple-zeta values is smaller [Brown]

At weight 11 a basis of MZVs has dimension 9 is

ζ(3, 5, 3), ζ(3, 5)ζ(3), ζ(3)2ζ(5), ζ(11),

ζ(2)ζ(3)3, ζ(2)4ζ(3), ζ(2)3ζ(5), ζ(2)2ζ(7), ζ(2)ζ(9) .

Since ζsv(2) = 0 and ζsv(3, 5) = −10ζsv(3)ζsv(5)
the basis at weight 11 has dimension 3 [Brown; Schnetz]

ζsv(3, 5, 3), ζsv(3)2ζsv(5), ζsv(11)

with ζsv(3, 5, 3) = 2ζ(3, 5, 3) − 2ζ(3)ζ(3, 5) − 10ζ(3)2ζ(5)
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Part III

Loop amplitudes and elliptic
polylogarithms
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Genus-one amplitude
By unitarity the special properties of the α ′ expansion at
tree-level amplitude will reappear in some way at one-loop

A1−loop(α
′sij) =

∫
F

BN(α
′sij|τ)

d2τ

τ2
2

F is a fundamental domain for SL(2,Z)

BN(sij|τ) =

N∏
n=1

∫
Σ

d2zn

τ2
exp

( ∑
16i<j6N

α ′sijG1−loop(zi − zj|τ)

)
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Genus-one amplitude
The analytic part (i.e. not on the logarithmic thresholds which
start from α ′7D8R4 )

B1(s, t,u|τ) =
∞∑

p,q=0

j(p,q)(τ)σp2 σ
q
3

j(p,q)(τ) are SL(2,Z) modular functions of weight zero

j(p,q)(γ · τ) = j(p,q)(τ) γ ∈ SL(2,Z)

Integrating these modular functions lead to ag in ten or
lower-dimensions when multiplied by the appropriate lattice
factor [Green, Vanhove, Russo; Angelantonij, Florakis, Pioline; . . . ]
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The one-loop Green function
The one-loop green function satisfies

4∂z∂̄z̄G1−loop(z|τ) = −4πδ(2)(z)+
4π
τ2

;
∫
Σ

d2zG1−loop(z|τ) = 0 .

solved by the modular invariant expression z = v+ τu

G1−loop(z|τ) = − ln
∣∣∣∣ϑ1(z|τ)

η(τ)

∣∣∣∣2 − π

2τ2
(z− z̄)2

it has the lattice sum expansion

G1−loop(z|τ) =
∑

(m,n),(0,0)

τ2

π|mτ+ n|2
e2iπ(mv−nu)
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Elliptic polylogarithm
This Green function is Zagier’s a singled value elliptic 1-log
q = e2πiτ and ζ = e2πiz = que2iπv

G1−loop(z|τ) =
∑
n>0

D1,1(q
nζ) +

∑
n>1

D1,1(q
n/ζ)

+ 2πτ2

(
u2 − u+

1
6

)

This expression is singled value in ζ ∈ C×/qZ on the torus
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6
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Elliptic multiple-polylogarithm
Non singled valued elliptic multiple polylogarithms have
appeared in other different contexts in QFT and string theory

I QFT : sunset, three-loop banana graph [Bloch, Vanhove, Kerr, Weinzierl,

Adams, Bodgner, . . . ]

I Open string expansion [Scholterer, Mathes, Broedel, . . . ]

They can be constructed using a elliptic generalisation of Chen
iterated integral for multiple-polylogarithm (see Schloterer’s
talk)

They are related to the construction of Brown and Levin
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Part IV

Modular graph functions

=
∑
n,m>0 an,mq

nq̄m.
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Genus-one world-sheet graphs

The propagator is one-loop propagator G1−loop

n = G(zi − zj|τ)
n.

ζi ζj

Recall ζ = e2iπz
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Genus-one world-sheet graphs

n12

n23

n34

n14

n24

n13

IΓ (q) =

IΓ (q) =

4∏
k=2

∫
Σ

d2zk

2πτ2

∏
16i<j64

G1−loop(zj − zi|τ)
nij
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Genus-one world-sheet graphs

n12

n23

n34

n14

n24

n13

IΓ (q) =

Using the lattice sum representation for the propagator

G1−loop(z|τ) =
∑

(m,n),(0,0)

τ2

π|mτ+ n|2
e2iπ(mv−nu)
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Genus-one world-sheet graphs

n12

n23

n34

n14

n24

n13

IΓ (q) =

The lattice momentum space Feynman representation [Green, Vanhove;

Green, Russo, Vanhove; Green, d’Hoker, Vanhove]

IΓ (q) =

′∑
p1,...,pw∈Zτ+Z

w∏
α=1

τ2

π|pα|2

N∏
i=1

δ

(
w∑
α=1

pα

)
.

27/34



Modular graph functions
They satisfy a lot of important algebraic relations

a =

a

ζ1 ζa+1ζ1 ζa+1

b

a

c

= Ca,b,c(q; ζ1/ζ
′
1)

Ca1,...,aρ(τ) =
∑

(mr,nr),(0,0)

δ(
∑
r

(mrτ+nr))

ρ∏
r=1

(
τ2

π|mrτ+ nr|2

)ar
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Modular graph functions

C1,1,1 = E3 + ζ(3); C2,2,1 =
2
5
E5 +

ζ(5)
30

40C2,1,1,1 = 300C3,1,1 + 120E2E3 − 276E5 + 7 ζ(5)

C1,1,1,1,1 = 60C3,1,1 + 10E2E3 − 48E5 + 10 ζ(3)E2 + 16 ζ(5)

The loop order is not respected : one , two,three, four loops

The relations are between graphs with the same number of
propagators
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Modular graph function and MZV I
The lattice sum displays a clear parallel with the MZV sum
These functions have a mixed q and q̄ expansion

F(q) =
∑

n>0,m>0

cn,mq
nq̄m

The constant term c0,0 is a Laurent polynomial in y = πτ2

C2,1,1

∣∣∣
0,0

=
2y4

14175
+
ζ(3)y

45
+

5ζ(5)
12y

−
ζ(3)2

4y2 +
9ζ(7)
16y3

The Ca,b,c satisfy differential equations
(∆− λ)Ca,b,c = P(Ea, ζ(a)) and only contain ζsv
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Modular graph function and MZV

n = G(zi − zj|τ)
n.

ζi ζj

a

b

c = Da,b,c(q) .

D3,1,1(q)
∣∣∣
0,0

=
2y5

22275
+
y2ζ(3)

45
+

11ζ(5)
60

+
105ζ(7)

32y2

−
3ζ(3)ζ(5)

2y3 +
81ζ(9)
64y4
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Modular graph function and MZV
Zerbini computed that

D1,1,5(q)

47

∣∣∣
0,0

=
62y7

10945935
+
ζsv(3)
243

y4 +
119
648

ζsv(5)y2

+
11
54
ζsv(3)2y+

21
32
ζsv(7) +

23 ζsv(3)ζsv(5)
6y

+
7115ζsv(9) − 1800ζsv(3)2

576y2

+
1245ζsv(3)ζsv(7) − 150ζsv(5)2

64y3

+
288ζsv(3, 5, 3) − 4080ζsv(5)ζsv(3)2 − 9573ζsv(11)

256y4

+
2475ζsv(5)ζsv(7) + 1125ζsv(9)ζsv(3)

128y5 −
1575

64
ζsv(13)
y6
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Modular graph function as svEMZ
We showed in [Green, D’Hoker, Gurdogan, Vanhove] that the modular graph
functions IΓ (q) are the value at ζ = 1 of a single value elliptic
multiple polylogarithms

n12

n23

n34

n14

n24

n13

IΓ (q) =
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Modular graph function as svEMZ
One can open any world-sheet graph

n12

n23

n34

n14

n24

n13

ζ

1
IΓ (q; ζ) =

IΓ (q; ζ) =
4∏
k=2

∫
Σ

d2 log ζk
4π2τ2

∏
16i<j64

D1,1(q; ζj/ζi)nij×

×
(
D1,1(q; ζ1ζ/ζ3)

D1,1(q; ζ1/ζ3)

)n13
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Modular graph function as svEMZ

IΓ (q; ζ) =
4∏
k=2

∫
Σ

d2 log ζk
4π2τ2

∏
16i<j64

D1,1(q; ζj/ζi)nij×

×
(
D1,1(q; ζ1ζ/ζ3)

D1,1(q; ζ1/ζ3)

)n13

the integral is single valued in ζ and evaluates to at ζ = 1

IΓ (q; 1) = IΓ (q)
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Eichler integrals, period polynomials
The modular graph functions relations can be understood
properties of the period polynomials arising from Eichler
integral

C1,1,1 = E3 + ζ(3)

Both E3(q) and C1,1,1(q) are obtained from Eichler integrals of
holomorphic Eisenstein series

E3(q) =
2<e

(
2 + 4πτ2

d
d logq

)
G̃5(q)

(4πτ2)2

C1,1,1(q) =
2<e

(
2 + 4πτ2

d
d logq

)(
G̃5(q) +

1
2π

3ζ(3)(logq)2
)

(4πτ2)2 ,

33/34



Eichler integrals, period polynomials
The modular graph functions relations can be understood
properties of the period polynomials arising from Eichler
integral

C1,1,1 = E3 + ζ(3)

Both E3(q) and C1,1,1(q) are obtained from Eichler integrals of
holomorphic Eisenstein series

G̃5(q) = ζ(−5)
(logq)6

5!
+ ζ(5) + 2

∞∑
n=1

Li5 (q
n)

(
d

d logq

)5

G̃5(q) =
120

(2iπ)6

∑
(m,n),(0,0)

1
(mτ+ n)6
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Outlook
I The relations between modular graph functions leads to

interesting relations to Eichler integrals and period
polynomials

I String theory provide nice avenue for studying the new
modular functions produced by string and show how MZV
arise from non-trivial modular forms/functions

I The modular graph relations are very non obvious relations
between the lattice sums. A systematic understanding of
these relations is needed for non-BPS coupling in string
theory

I Space-time supersymmetry needs very similar functions.
We hope this will help understanding the non-BPS
couplings and allow to use the method of [Green,Russo,Vanhove] to
address UV question of maximal supergravity in four
dimensions
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