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Large Deviations of the Total Current

R1

J

R2

Let Yt be the total charge transported through the system (total current)
between time 0 and time t.

In the stationary state: a non-vanishing mean-current Yt

t → J

The fluctuations of Yt obey a Large Deviation Principle:

P

(
Yt

t
= j

)
∼e−tΦ(j)

Φ(j) being the large deviation function of the total current.

Note that Φ(j) is positive, vanishes at j = J and is convex (in general).
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Density Fluctuations in the open ASEP

Recall that Density Fluctuations in a gas at thermal equilibrium were
obtained as

Pr{ρ(x)} ∼ e−βV F({ρ(x)}

where the Large-Deviation Functional is local and is given by

F({ρ(x)} =

∫ 1

0

(f (ρ(x),T )− f (ρ̄,T )) d3x

What do the Density Fluctuations in the ASEP look like?

The probability of observing an atypical density profile in the steady
state of the ASEP was calculated starting from the exact microscopic
solution of the exclusion process, with the help of the Matrix Ansatz (B.
Derrida, J. Lebowitz E. Speer, 2002).
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Large Deviations of the Density Profile in ASEP

The Large Deviation Functional for the symmetric case q = 0 is given by

F({ρ(x)}) =

∫ 1

0

dx

(
B(ρ(x),F (x)) + log

F ′(x)

ρ2 − ρ1

)
where B(u, v) = (1− u) log 1−u

1−v + u log u
v and F (x) satisfies

F
(
F ′2 + (1− F )F ′′

)
= F ′2ρ with F (0) = ρ1 and F (1) = ρ2 .

This functional is non-local as soon as ρ1 6= ρ2.

This functional is NOT identical to the one given by local equilibrium.

Note that in the case of equilibrium, for ρ1 = ρ2 = ρ̄, we recover

F({ρ(x)}) =

∫ 1

0

dx

{
(1− ρ(x)) log

1− ρ(x)

1− ρ̄
+ ρ(x) log

ρ(x)

ρ̄

}
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The General Large Deviations Problem

More generally, the probability to observe an atypical current j(x , t) and
the corresponding density profile ρ(x , t) during 0 ≤ s ≤ L2 T (L being
the size of the system) is given by

Pr{j(x , t), ρ(x , t)} ∼ e−L I(j,ρ)

Is there a Principle which gives this large deviation functional for
systems out of equilibrium?
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The Hydrodynamic Limit: Diffusive case

E = ν/2L

ρ ρ
21

L

Starting from the microscopic level, define local density ρ(x , t) and
current j(x , t) with macroscopic space-time variables x = i/L, t = s/L2

(diffusive scaling).
The typical evolution of the system is given by the hydrodynamic
behaviour (Burgers-type equation):

∂tρ = ∇ (D(ρ)∇ρ)− ν∇σ(ρ) with D(ρ) = 1 and σ(ρ) = 2ρ(1− ρ)

(Lebowitz, Spohn, Varadhan)

How can Fluctuations be taken into account?
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Fluctuating Hydrodynamics

Consider Yt the total number of particles transfered from the left
reservoir to the right reservoir during time t.

limt→∞
〈Yt〉
t = D(ρ)ρ1−ρ2

L + σ(ρ)νL for (ρ1 − ρ2) small

limt→∞
〈Y 2

t 〉
t =

σ(ρ)

L
for ρ1 = ρ2 = ρ and ν = 0.

Then, the equation of motion is obtained as:

∂tρ = −∂x j with j= −D(ρ)∇ρ+ νσ(ρ)+
√
σ(ρ)ξ(x , t)

where ξ(x , t) is a Gaussian white noise with variance

〈ξ(x ′, t ′)ξ(x , t)〉 =
1

L
δ(x − x ′)δ(t − t ′)

For the symmetric exclusion process, the ‘phenomenological’ coefficients
are given by

D(ρ) = 1 and σ(ρ) = 2ρ(1− ρ)
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Large Deviations at the Hydrodynamic Level

What is the probability to observe an atypical current j(x , t) and the
corresponding density profile ρ(x , t) during 0 ≤ s ≤ L2 T?

Pr{j(x , t), ρ(x , t)} ∼ e−L I(j,ρ)

Use fluctuating hydrodynamics to write the Large-Deviation Functional
as a path-integral: the current and the density evolve (ρ(x , t), j(x , t))
according to a stochastic dynamics. The weight of a trajectory between 0
and t can written as:

Weight

(
{ρ(x , t ′), j(x , t ′)}0 ≤x≤1

0≤t′≤t

)
=∫

Dξ(x , t ′) exp

(
−L

2

∫ t

0

dt ′
∫ 1

0

dx ξ2(x , t)

)
∏

0≤x≤1
0≤t′≤t

δ

(
∂ρ

∂t ′
+
∂j

∂x

) ∏
0≤x≤1
0≤t′≤t

δ

(
j + D(ρ)

∂ρ

∂x
− νσ(ρ) +

√
σ(ρ)ξ

)
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This formula is analogous to the one used to change variables in
probability theory:
If X is a random variable distributed according to P(X ) and if Y = F (X )
(F being known function) then the distribution of Y is given by

Prob(Y ) =

∫
dX P(X ) δ(Y − F (X ))

Now the probability of observing ρ(x , t) and j(x , t) at time t knowing
that we started with ρ0(x), j0(x) is given by the sum of the weights of all
possible trajectories beginning with ρ0(x), j0(x) and ending up at ρ(x , t)
and j(x , t):

Proba (ρ(x , t), j(x , t)|ρ0(x), j0(x))

=

∫
ρ0→ρt
j0→t

Dρ(x , t ′)Dj(x , t ′) Weight

(
{ρ(x , t ′), j(x , t ′)}0≤x≤1

0≤t′≤t

)

Using the previous expression for the Trajectory Weight and performing
the integral over the noise ξ, we obtain:
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Proba (ρ(x , t), j(x , t)|ρ0(x), j0(x)) =

∫
ρ0→ρt
j0→t

DρDj
∏

0≤x≤1
0≤t′≤t

δ

(
∂ρ

∂t ′
+
∂j

∂x

)

exp

(
−L

2

∫ t

0

dt ′
∫ 1

0

dx
(j + D(ρ)∂ρ∂x − νσ(ρ))2

σ(ρ)

)

We are interested in the large L limit: the integral will be dominated by
the optimal value of the exponent (saddle-point).

The value at the saddle-point will provide us with the large deviation
functional.
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Macroscopic Fluctuation Theory

The large deviation functional can be written as the solution of an
optimal path problem (G. Jona-Lasinio et al.)

I(j , ρ) = min
ρ,j

{∫ T

0

dt

∫ 1

0

dx
(j − νσ(ρ) + D(ρ)∇ρ)2

2σ(ρ)

}
with the constraint: ∂tρ = −∇.j
Knowing I(j , ρ) one can deduce (by contraction) the LDF of the current
or the profile.
For example

Φ(j) = min
ρ
{I(j , ρ)}

This variational problem has a Hamiltonian structure and can be
expressed by using a pair of conjugate variables (p, q).
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MFT Formalism

Mathematically, one has to solve the corresponding Euler-Lagrange
equations. After some transformations, one obtains a set of coupled
PDE’s (here, we take ν = 0):

∂tq = ∂x [D(q)∂xq]− ∂x [σ(q)∂xp]

∂tp = −D(q)∂xxp −
1

2
σ′(q)(∂xp)2

where q(x , t) is the density-field and p(x , t) is a conjugate field.
The physical content is encoded in the ’transport coefficients’ D(q)(= 1)
and σ(q)(= 2q(1− q)) that contain the information of the microscopic
dynamics relevant at the macroscopic scale.
Do note that these equations have a Hamiltonian structure.

A general framework but these non-linear MFT equations are very
difficult to solve in general. By using them one can in principle
calculate large deviation functions directly at the macroscopic level.

The analysis of this new set of ‘hydrodynamic equations’ has just
begun!
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Conclusions

The asymmetric exclusion process is a paradigm for the behaviour of
systems far from equilibrium in low dimensions. The ASEP is important
for the Theory and for its multiple Applications (especially in biophysics).

Large deviation functions (LDF) appear as a generalization of the
thermodynamic potentials for non-equilibrium systems. They exhibit
remarkable properties such as the Fluctuation Theorem, valid far away
from equilibrium. The LDF’s are very likely to play a key-role in the
future of non-equilibrium statistical mechanics.

Current fluctuations are a signature of non-equilibrium behaviour. The
exact results we derived can be used to calibrate the more general
framework of fluctuating hydrodynamics (MFT), which is currently being
developed.
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