Single top + $t\bar{t}$ $TH \rightarrow 3b$ and $TZ \rightarrow 3\ell$

Lorenzo Basso

Lorenzo Basso (IPHC)

March 25, 2015 1 / 13

$TH \rightarrow 3b$

Lorenzo Basso (IPHC)

▲口→ ▲圖→ ▲理→ ▲理→

Optimisation

- $p_{\ell}^T > 20 \text{ GeV}, p_j^T > 40 \text{ GeV}$
- isolation: CONE04 with threshold = 0.20
- $N_J \ge 1$ (J =light and b jets)
- $N_{\ell} = 1$
- $N_b = 3$
- × *H* candidate as pair of *b* jets closest to M_H ×(?) *t* candidate as *b* with closest $M^T(\ell b)$ to M_t

✓(?) together

- 80 GeV < $|M(bb) M_H| < 180$ GeV
- loose top reco: $M^T(b\,\ell) < 210~{\rm GeV}$
- ? W reco? (still to run)

Higgs and top reco


```
Red: H reco only
Green: t reco only
Blue: simultaneously
```

```
if( (abs(MTallin - 173.0) + abs(MHallin - 125.0)) <
(abs(MTall - 173.0) + abs(MHall - 125.0)) )
MTall = MTallin;
MHall = MHallin;</pre>
```

Shaping signal?

CutFlow

Cut	Sum Bg	Signal gct	Signal gut	Signal ttbar	THq	TT+V+jets	TT+jets	VH	W+jets	ZToLL
nocuts	102374306 ± 48253	21261 ± 21	173700 ± 172	139891 ± 141	17526 ± 6	8033 ± 23	32322460 ± 7322	126199 ± 317	61478064 ± 15417	8422024 ± 45133
$N_i >= 1.$	95851947 ± 47415	21016 ± 21	166291 ± 169	137840 ± 140	17081 ± 6	7992 ± 23	31967096 ± 7284	112118 ± 298	55856312 ± 14757	7891348 ± 44466
$N_{b} = 3$	533789 ± 1474	1988 ± 7	11213 ± 44	11364 ± 40	2525 ± 2	239 ± 4	524811 ± 976	1820 ± 35	2319 ± 100	2075 ± 1100
$N_{\ell} = 1$	208013 ± 624	290 ± 2	1672 ± 17	6301 ± 30	1038 ± 1	56 ± 2	205788 ± 611	42 ± 6	875 ± 61	215 ± 108
$80 < M_H < 180$	180029 ± 574	277 ± 2	1583 ± 17	5937 ± 29	800 ± 1	41 ± 2	178498 ± 569	37 ± 6	600 ± 51	54 ± 54
$M_{t}^{T} < 210$	162219 ± 543	259 ± 2	1452 ± 16	5511 ± 28	633 ± 1	30 ± 1	161095 ± 541	32 ± 5	429 ± 43	0 ± 0

 $\varepsilon(1\ell 3b) \sim 4\%$: 34% (3b-tag), $60\% \cdot 78\% = 47\%$ (1 $\ell = e, \mu$) $\Rightarrow 25\%$ (3b kin)

Lorenzo Basso (IPHC)

Distributions - I

Maybe useful to disentangle $t\bar{t}$ -mediated signal from single-top one?

Distributions - III

arxiv:1402.3073

Significant only for $\kappa(gut)$ (too much suppressed) and single-top type of signal

$TZ \to 3\ell$

Lorenzo Basso (IPHC)

▲口→ ▲圖→ ▲理→ ▲理→

Optimisation - almost matched Isis's

•
$$p_{\ell}^T > 20 \text{ GeV}, p_j^T > 40 \text{ GeV}$$

• isolation: CONE04 with threshold = 0.20

- N_J ≥ 1 (J = light and b jets) dropped N_J ≤ 3: no real gain
- $N_b \ge 1$ to reduce WZ, $N_b \le 1$ once WZ is removed $\Rightarrow N_b \equiv 1$
- Z candidate as pair of $e^+e^-(\mu^+\mu^-)$ closest to M_Z and $|M_{\ell\ell} - M_Z| < 15 \text{ GeV}$
- loose W reco: $10 < M^T(\ell_W) / \text{GeV} < 150$
- loose top reco: $M^T(b \ell_W)/\text{GeV} < 215$

Fakes - isolation problem

Solution: Cut $\Delta R(\ell_i \ell_j) > 0.4 \ \forall i, j = 1..3$

Lorenzo Basso (IPHC)

Mine

Cut	Sum Bg	κ_{tZc}	$\kappa t Z u$	$t\bar{t} - \kappa tZu$	TT+V+jets	TT+jets	TZq	VV+jets	ZToLL
Initial	630956982 ± 587722	2386 ± 3	2263 ± 3	2086 ± 1	6087 ± 11	7439298 ± 2305	2097 ± 1	286524 ± 87	623222976 ± 587717
$N_i >= 1.$	109686797 ± 175815	2078 ± 3	1848 ± 3	1984 ± 1	5944 ± 11	7010238 ± 2245	1851 ± 1	112084 ± 56	102556680 ± 175801
$N_{\ell} = 3$	33725 ± 2010	262 ± 1	190 ± 1	474 ± 0	525 ± 3	5158 ± 62	194 ± 0	7941 ± 14	19907 ± 2009
OSSF > 0	32364 ± 2010	261 ± 1	189 ± 1	473 ± 0	475 ± 3	3880 ± 54	193 ± 0	7908 ± 14	19907 ± 2009
$N_{b} = 1$	3873 ± 280	171 ± 1	115 ± 1	244 ± 0	245 ± 2	2210 ± 41	114 ± 0	328 ± 3	976 ± 277
$ M(\ell \ell) - M_Z < 15$	2065 ± 264	157 ± 1	104 ± 1	232 ± 0	167 ± 2	645 ± 22	104 ± 0	296 ± 3	853 ± 263
$M^{T}(\ell) < 150$	1755 ± 213	149 ± 1	97 ± 1	223 ± 0	146 ± 1	537 ± 20	100 ± 0	276 ± 3	698 ± 212
$M^{T}(\ell b) < 220$	1211 ± 189	143 ± 1	92 ± 1	210 ± 0	89 ± 1	320 ± 16	94 ± 0	148 ± 2	560 ± 188

lsis's

	Initial	3 leptons	At least 2 jets	At least 1 CSVL	At least 1 OSSF pair	Inv Mass Z	High pt b jet	Inv Mass FCNC top
TTsemilep Kappa Zct Ztoll	$2.09e+03 \pm 0.718$	242 ± 0.239	159 ± 0.193	134 ± 0.178	72.1 ± 0.13	55.1 ± 0.113	32.7 ± 0.0874	26.5 ± 0.0788
TTdilep WToLNu	$1.93e+03 \pm 7.6$	149 ± 2.11	85 ± 1.6	77.9 ± 1.53	33.3 ± 0.999	7.74 ± 0.482	5.1 ± 0.391	3.51 ± 0.325
TTdilep ZToLL	803 ± 2.54	209 ± 1.29	121 ± 0.988	112 ± 0.949	55.2 ± 0.667	34.9 ± 0.53	26.5 ± 0.462	11.4 ± 0.303
TTdilep	$6.78e+06 \pm 3.44e+03$	$4.04e{+}03 \pm 82.1$	$1.41e{+}03 \pm 48.5$	$1.23e+03 \pm 45.2$	379 ± 25.1	71.7 ± 10.9	45.1 ± 8.67	28.4 ± 6.88
TTsemilep HToZZ 2	267 ± 0.34	2.64 ± 0.0339	0.00174 ± 0.00087	0.00174 ± 0.00087	0.00087 ± 0.000615	0.00087 ± 0.000615	0.00087 ± 0.000615	0.00087 ± 0.000615
TTsemilep ZToLL 1	$1.68e + 03 \pm 5.3$	110 ± 1.36	82.8 ± 1.18	73.5 ± 1.11	38.5 ± 0.804	28 ± 0.685	17.4 ± 0.54	6.56 ± 0.332
TTsemilep ZToLL 2	$1.68e + 03 \pm 5.3$	111 ± 1.37	84.4 ± 1.19	74.4 ± 1.12	38 ± 0.799	27.2 ± 0.675	17.1 ± 0.536	6.79 ± 0.338
WZToLLLNu	$2.57e+05 \pm 60.5$	$1.53e+04 \pm 15.5$	$1.73e+03 \pm 5.17$	497 ± 2.77	268 ± 2.04	199 ± 1.75	92.9 ± 1.2	32.8 ± 0.712
ZToLL50-3Jets	$6.28\mathrm{e}{+06} \pm 3.39\mathrm{e}{+03}$	$3.13e{+}03 \pm 76.1$	777 ± 37.9	250 ± 21.5	137 ± 15.9	124 ± 15.1	72.2 ± 11.6	35.2 ± 8.07
ZToLL50-4Jets	$2.16e+06 \pm 1.49e+03$	$1.66e+03 \pm 40.9$	959 ± 31.1	323 ± 18	186 ± 13.7	172 ± 13.2	97.8 ± 9.93	26.2 ± 5.14
ZZToLLJJ	$2.12e+05 \pm 480$	83.7 ± 9.54	14.1 ± 3.92	6.53 ± 2.66	1.09 ± 1.09	1.09 ± 1.09	1.09 ± 1.09	1.09 ± 1.09
ZZToLLLL	$3.59e+04 \pm 135$	$2.75\mathrm{e}{+03}\pm37.3$	181 ± 9.58	51.3 ± 5.1	30 ± 3.9	21.8 ± 3.33	9.65 ± 2.21	5.59 ± 1.68