Status of ttbar \rightarrow cZ Wb \rightarrow cll vlb Isis Van Parijs

Object selection

Object selection:

- Lepton pt:
 - Electrons and muons: pt > 20 GeV
 - Electrons |eta|: <2.5 en muons |eta|< 2.4
- Jets: pt > 40 , |eta| < 2.4 , EEoverHE() > 0.3
- Cone 04
- B jet discriminator: CSV loose

<u>Cutflow</u>

- Number of jets ≥ 2
- Number of b-jets ≥ 1
- At least 1 OSSF pair
- Z mass window of 15 GeV
- Top mass window of 35 GeV

Revising the object reconstruction

(no fake leptons)

New object reconstruction

- Z/W boson reconstruction stays the same
- c and b jet: choose the two highest pt jets
 - Avoids using b-tagger
 - Efficiency of selecting the right b and c jet changes from 78% to 87%
 - How to disentangle these two jets?

Transverse momentum jets

WZ = blue

pT is almost the same

M(l,b) vs M(l,l,c) for Zct right jet combinations

M(I,b) vs M(I,I,c) for Zct wrong jet combinations

Maybe use this to do a fit instead of the MVA?

M(I,b) vs M(I,I,c) for Zct all jet combinations

Second highest pT jet in M(l,b)

Highest pT jet in M(l,b)

M(I,b) vs M(I,I,c) for WZ all jet combinations

Checking the MVA

MVA with only WZ for training: overtraining fixed!

Ranking input variables (method specific) Ranking result (top variable is best ranked)						
Rank : Variable	: Variable Importance					
<pre>1 : MVA_Nb_CSVM_jets 2 : MVA_SM_lb 3 : MVA_Inv_Mass_FCNCtop 4 : MVA_Transverse_Mass_Wlep_MET_Bjet 5 : MVA_DeltaEta_Leptons_Zcan 6 : MVA_DeltaEta_Bjet_Zcan 7 : MVA_DeltaEta_Wlep_MET 8 : MVA_Ht 9 : MVA_Batio_top_TnvMass</pre>	: 1.605e-01 : 1.540e-01 : 9.794e-02 : 8.696e-02 : 8.239e-02 : 8.040e-02 : 7.969e-02 : 7.682e-02 : 6.215e-02					
10 : MVA_MET	: 6.140e-02					
<u>II . NVA_DettaLta_wtep_2tan</u>	. 5.7010-02					

MVA only WZ for training and testing with fake leptons

 \rightarrow still need to include new variables

Conclusions

- Looking for a way to disentangle b and c jets
- Found variables to do a template fit instead of the MVA
- Solved the overtraining in the MVA

Back up

MVA: only WZ for training (no fakes)

Ranki Ranki	ing Ing) input variables (method specific)) result (top variable is best rank). ke	 d)	
Rank	:	Variable	:	Variable	Importa
1		MVA Nb CSVM jets		9.919e-0	2
2		MVA SM lb		8.769e-0	2
3		MVA Inv Mass FCNCtop		4.808e-0	2
4		MVA DeltaR Bjet Zcan		4.767e-0	2
5		MVA_DeltaPhi_Wlep_Zcan		4.503e-0	2
6		MVA_DeltaR_Wlep_Zcan		3.873e-0	2
7		MVA_Ratio_top_InvMass		3.353e-0	2
8		MVA_DeltaR_Bjet_FCNCtop		3.329e-0	2
9		MVA_Transverse_Mass_Wlep_MET_Bjet		3.316e-0	2
10		MVA_DeltaEta_Bjet_Zcan		3.184e-0	2
11		MVA_DeltaPhi_Leptons_Zcan		3.179e-0	2
12		MVA_Inv_Mass_Leptons		3.094e-0	2
13		MVA_DeltaEta_Leptons_Zcan		3.080e-0	2
14		MVA_DeltaPhi_Wlep_MET		3.057e-0	2
15		MVA_Pt_Zcandidate		3.009e-0	2
16		MVA_Transverse_Mass_Wlep_MET		2.875e-0	2
17		MVA_MET		2.846e-0	2
18		MVA_DeltaR_Wlep_MET		2.798e-0	2
19		MVA_Nb_jets		2.787e-0	2
20		MVA_DeltaEta_Wlep_MET		2.776e-0	2
21		MVA_DeltaPhi_Bjet_FCNCtop		2.752e-0	2
22		MVA_Pt_FCNCtop		2.700e-0	2
23		MVA_Ht		2.652e-0	2
24		MVA_Wlep_Pt		2.572e-0	2
25		MVA_DeltaEta_Wlep_Zcan		2.360e-0	2
26		MVA_DeltaEta_Bjet_FCNCtop		2.334e-0	2
27		MVA_DeltaPhi_Bjet_Zcan		2.253e-0	2
28		MVA_DeltaR_Leptons_Zcan		2.162e-0	2
29		MVA_Ratio_top_pt		8.929e-0	3

TMVA overtraining check for classifier: BDT

Cut efficiencies and optimal cut value

Efficiency (Purity)

Significance

Nb of events with fake leptons

	Initial	3 leptons	At least 2 jets	At least 1 loose bjet	At least 1 OSSF pair	Invariant Mass Z	Invariant Mass FCNC top
TTsemilep Kappa Zct Ztoll	$2.09e{+}03 \pm 0.718$	243 ± 0.239	161 ± 0.195	136 ± 0.179	72.2 ± 0.13	55.2 ± 0.114	41.9 ± 0.0989
HToWW	$7.02\mathrm{e}{+}05\pm1.08\mathrm{e}{+}03$	15 ± 5	0 ± 0	0 ± 0	0 ± 0	0 ± 0	0 ± 0
HToZZ	$8.6e{+}04 \pm 230$	51.6 ± 5.62	0 ± 0	0 ± 0	0 ± 0	0 ± 0	0 ± 0
SingleTop W madspin	$4.74e{+}06 \pm 2.11e{+}03$	420 ± 19.6	82.4 ± 8.68	58.6 ± 7.32	15.6 ± 3.77	3.66 ± 1.83	0 ± 0
SingleTop s madspin	$1.02e{+}06 \pm 2.29e{+}03$	5.12 ± 5.12	5.12 ± 5.12	5.12 ± 5.12	0 ± 0	0 ± 0	0 ± 0
SingleTop t madspin	$2.2e{+}07 \pm 2.45e{+}04$	27.4 ± 27.4	0 ± 0	0 ± 0	0 ± 0	0 ± 0	0 ± 0
TTdilep WToLNu madspin	$1.93e{+}03 \pm 7.6$	150 ± 2.12	87.6 ± 1.62	80.6 ± 1.55	33.6 ± 1	7.95 ± 0.488	4.44 ± 0.365
TTdilep ZToLL madspin	803 ± 2.54	209 ± 1.3	123 ± 0.996	114 ± 0.956	55 ± 0.665	34.7 ± 0.528	13 ± 0.324
TTdilep madspin	$6.78\mathrm{e}{+06}\pm3.44\mathrm{e}{+03}$	$7.03\mathrm{e}{+03} \pm 108$	$3.37\mathrm{e}{+03}\pm75$	$2.92e + 03 \pm 69.8$	657 ± 33.1	132 ± 14.8	48.4 ± 8.99
TTsemilep HToWW madspin1	$2.18e{+}03 \pm 2.21$	9.87 ± 0.149	0.00673 ± 0.00388	0.00224 ± 0.00224	0 ± 0	0 ± 0	0 ± 0
TTsemilep HToWW madspin2	$2.17e{+}03 \pm 3.49$	10.2 ± 0.239	0.0056 ± 0.0056	0 ± 0	0 ± 0	0 ± 0	0 ± 0
TTsemilep HToZZ madspin1	266 ± 0.383	2.7 ± 0.0386	0.0022 ± 0.0011	0.00165 ± 0.000955	0.0011 ± 0.000779	0.000551 ± 0.000551	0 ± 0
TTsemilep HToZZ madspin2	267 ± 0.34	2.71 ± 0.0343	0.00174 ± 0.00087	0.00174 ± 0.00087	0.00087 ± 0.000615	0.00087 ± 0.000615	0.00087 ± 0.000615
TTsemilep ZToLL madspin 1	$1.68e{+}03 \pm 5.3$	111 ± 1.36	84.4 ± 1.19	74.9 ± 1.12	38.7 ± 0.805	28.1 ± 0.687	11 ± 0.43
TTsemilep ZToLL madspin 2	$1.68e{+}03 \pm 5.3$	113 ± 1.37	85.6 ± 1.2	75.7 ± 1.13	38.4 ± 0.803	27.7 ± 0.682	10.9 ± 0.428
TTsemilep madspin 1	$1.62e{+}07 \pm 5.19e{+}03$	171 ± 17.7	120 ± 14.8	89.3 ± 12.8	0 ± 0	0 ± 0	0 ± 0
TTsemilep madspin 2	$1.61\mathrm{e}{+07}\pm5.26\mathrm{e}{+03}$	195 ± 19.1	152 ± 16.9	127 ± 15.5	0 ± 0	0 ± 0	0 ± 0
WToLNu-3Jets sm-no masses	$6.21\mathrm{e}{+07}\pm1.46\mathrm{e}{+04}$	165 ± 25.2	42.2 ± 12.7	15.4 ± 7.68	0 ± 0	0 ± 0	0 ± 0
WWToLLNuNu	$5.67\mathrm{e}{+}05\pm2.36\mathrm{e}{+}03$	97.9 ± 30.9	19.6 ± 13.8	0 ± 0	0 ± 0	0 ± 0	0 ± 0
WZToLLLNu	$2.57e{+}05 \pm 60.5$	$1.53\mathrm{e}{+04}\pm15.5$	$1.98e{+}03 \pm 5.53$	586 ± 3.01	272 ± 2.05	201 ± 1.76	61.9 ± 0.978
WZToLNuJJ sm-no masses	$9.17e{+}05 \pm 1.07e{+}03$	1.26 ± 1.26	0 ± 0	0 ± 0	0 ± 0	0 ± 0	0 ± 0
ZToLL10-50-3Jets sm-no masses	$2.42e{+}07 \pm 1.45e{+}04$	645 ± 75.5	53 ± 21.7	8.84 ± 8.84	0 ± 0	0 ± 0	0 ± 0
ZToLL10-50-4Jets sm-no masses	$1.05e{+}07 \pm 1.34e{+}04$	619 ± 103	155 ± 51.6	68.8 ± 34.4	17.2 ± 17.2	0 ± 0	0 ± 0
ZToLL50-3Jets sm-no masses	$6.28\mathrm{e}{+06}\pm3.39\mathrm{e}{+03}$	$6.14e{+}03 \pm 107$	$2.12e{+}03 \pm 62.6$	720 ± 36.5	298 ± 23.5	281 ± 22.8	118 ± 14.8
ZToLL50-4Jets sm-no masses	$2.16\mathrm{e}{+06}\pm1.49\mathrm{e}{+03}$	$2.92\mathrm{e}{+03}\pm54.3$	$1.93e{+}03 \pm 44.2$	719 ± 26.9	374 ± 19.4	348 ± 18.7	138 ± 11.8
ZZToLLJJ sm-no masses	$2.12e{+}05 \pm 480$	162 ± 13.3	41.3 ± 6.7	23.9 ± 5.1	10.9 ± 3.44	10.9 ± 3.44	5.44 ± 2.43
ZZToLLNuNu	$6.54e{+}04 \pm 182$	11.7 ± 2.44	1.53 ± 0.881	0.509 ± 0.509	0.509 ± 0.509	0.509 ± 0.509	0 ± 0
ZZToLLLL sm-no masses	$3.59e{+}04 \pm 135$	$2.75\mathrm{e}{+03}\pm37.4$	193 ± 9.9	58.9 ± 5.47	30.5 ± 3.93	23.4 ± 3.44	9.65 ± 2.21

Nb of events without fake leptons

	Initial	3 leptons	At least 2 jets	At least 1 loose bjet	At least 1 OSSF pair	Invariant Mass Z	Invariant Mass FCNC top
TTsemilep Kappa Zct Ztoll	$2.09\mathrm{e}{+03}\pm0.718$	241 ± 0.238	160 ± 0.194	135 ± 0.178	72.1 ± 0.13	55.1 ± 0.113	41.9 ± 0.0989
TTdilep WToLNu madspin	$1.93e{+}03 \pm 7.6$	147 ± 2.1	86 ± 1.61	78.9 ± 1.54	33 ± 0.995	7.89 ± 0.487	4.5 ± 0.367
TTdilep ZToLL madspin	803 ± 2.54	208 ± 1.29	124 ± 0.997	114 ± 0.957	55.3 ± 0.667	35 ± 0.531	13.3 ± 0.326
TTdilep madspin	$6.78\mathrm{e}{+06} \pm 3.44\mathrm{e}{+03}$	145 ± 15.6	38.4 ± 8	30 ± 7.08	6.67 ± 3.34	1.67 ± 1.67	0 ± 0
TTsemilep HToZZ madspin2	267 ± 0.34	2.64 ± 0.0339	0.00174 ± 0.00087	0.00174 ± 0.00087	0.00087 ± 0.000615	0.00087 ± 0.000615	0.000435 ± 0.000435
TTsemilep ZToLL madspin 1	$1.68e + 03 \pm 5.3$	108 ± 1.35	82.3 ± 1.17	73.1 ± 1.11	37.8 ± 0.797	27.4 ± 0.679	10.6 ± 0.421
TT semilep ZToLL madspin 2	$1.68e + 03 \pm 5.3$	110 ± 1.36	83.9 ± 1.19	74.1 ± 1.11	37.3 ± 0.791	26.6 ± 0.668	10.3 ± 0.416
WZToLLLNu	$2.57\mathrm{e}{+}05\pm60.5$	$1.52\mathrm{e}{+04} \pm 15.4$	$2.08\mathrm{e}{+03}\pm5.67$	601 ± 3.05	269 ± 2.04	200 ± 1.76	63 ± 0.987
ZToLL50-3Jets sm-no masses	$6.28\mathrm{e}{+06}\pm3.39\mathrm{e}{+03}$	33.3 ± 7.85	11.1 ± 4.53	7.4 ± 3.7	1.85 ± 1.85	1.85 ± 1.85	0 ± 0
ZToLL50-4Jets sm-no masses	$2.16\mathrm{e}{+06}\pm1.49\mathrm{e}{+03}$	6.05 ± 2.47	6.05 ± 2.47	5.04 ± 2.25	5.04 ± 2.25	4.03 ± 2.02	2.02 ± 1.43
ZZToLLJJ sm-no masses	$2.12e{+}05 \pm 480$	1.09 ± 1.09	0 ± 0	0 ± 0	0 ± 0	0 ± 0	0 ± 0
ZZToLLLL sm-no masses	$3.59\mathrm{e}{+04}\pm135$	$2.74\mathrm{e}{+03}\pm37.3$	196 ± 9.97	55.9 ± 5.33	26.9 ± 3.7	19.3 ± 3.13	8.63 ± 2.09