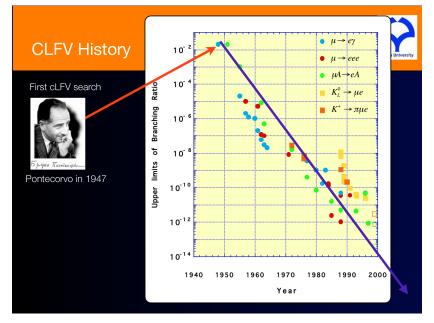
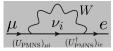
cLFV search with high intensity muon beams


F. Kapusta LPNHE Paris

LPC Clermont, 9-10 june 2015

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

History (from Yoshitaka Kuno)

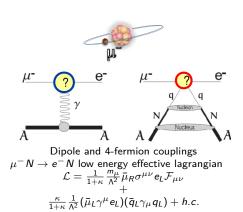

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

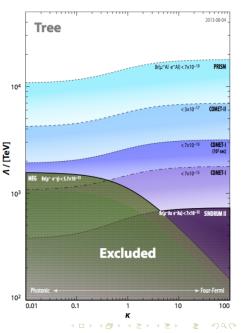
Physics Motivation : Beyond the Standard Model with muons

- ▶ We already know that LF is not conserved from neutrino oscillations.
- Direct search (Energy Frontier) LHC, ILC : higher energy for heavier new particle(s).

 $|A_{SM} + \varepsilon_{NP}|^2 \simeq |A_{SM}|^2 + 2Re(A_{SM}\varepsilon_{NP})$

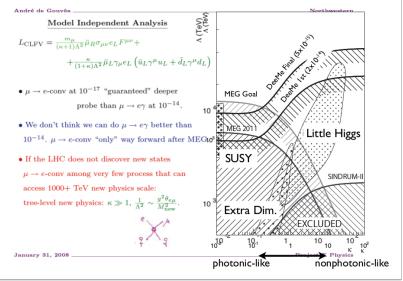
 Indirect search (Intensity Frontier): "slight" difference from SM prediction. cLFV in the SM (+m_v) is negligibly small.


Adding some radiation for energy and momentum conservation.


 $\mu\text{-e}$ transition results from the PMNS mixing. Tiny neutrino mass suppresses the contribution. Cheng and Li ('77,'80) Petcov('77). $BR(\mu \to e\gamma) \simeq O(10^{-54}).$

$$|A_{SM} + \varepsilon_{NP}|^2 \simeq |\varepsilon_{NP}|^2 \Rightarrow \mathsf{Rate} \simeq \frac{1}{\Lambda^4}$$

Probe the PeV scale with cLFV.


Exclusion diagrams

"Old Style" exclusion display with theoretical predictions

$\mu \rightarrow e \gamma$ vs. μ -e conversion

Experimental consequences

Rare decays searches require :

- Detectors with very good resolution and excellent background rejection.
- Background includes physical background, beam-related backgrounds, accidentals, cosmic rays and false tracking.
- As good as possible simulation and tracking are mandatory

Comparison between $\mu \rightarrow e\gamma$ and $\mu - e$ conversion :

	background	challenge	beam intensity
$\mu ightarrow e\gamma$	accidentals	detector resolution	limited
$\mu - e$ conversion	beam	beam background	no limitation

 High intensity pulsed muon beams require strict proton beam extinction between pulses.

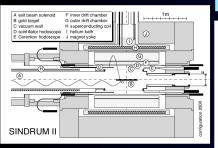
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ Unlimited discussions on limits on BR or SES between experiments.

Current bounds and future sensitivities

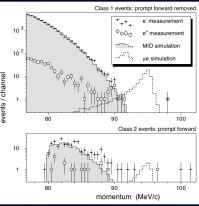
Process	Experiment	Limit
$BR(\mu^+ \to e^+ \gamma)$	MEG('13)	$5.7.10^{-13}$
	$MEG-II(\geq '16)$ at PSI	4.10^{-14}
$BR(\mu^+ o eee$)	SINDRUM('88)	$1.0.10^{-12}$
	Mu3e(\geq '17) at PSI	$O(10^{-16})$
	$MUSIC(\simeq '17)$	$O(10^{-16})$
$R(\mu \rightarrow e : Au)$	SINDRUM-II('06)	7.10 ⁻³
$R(\mu ightarrow e: AI)$	$COMET(\simeq '17)$	$O(10^{-17})$
v ,	$Mu2e(\simeq 20)$	$O(10^{-17})$
$R(\mu o e:Ti)$	$PRISM(\simeq 20)$	$O(10^{-18})$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

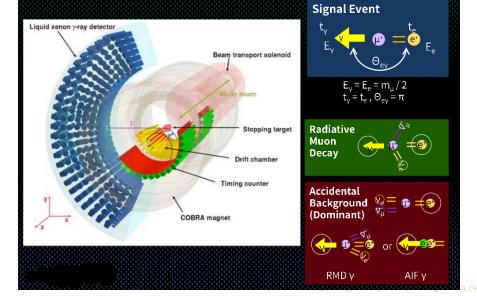

PSI vs J-PARC : $10^8 \mu/s$ vs $10^{11} \mu/s$

SINDRUM

Previous Measurements



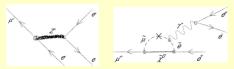
SINDRUM-II (PSI)



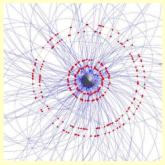
PSI muon beam intensity ~ 10⁷⁻⁸/sec beam from the PSI cyclotron. To eliminate beam related background from a beam, a beam veto counter was placed. But, it could not work at a high rate. Published Results (2004)

$$B(\mu^{-} + Au \to e^{-} + Au) < 7 \times 10^{-13}$$

MEG experiment



Mu3e

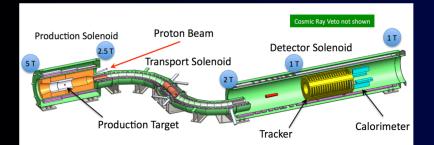


The Mu3e Experiment

• Search for LFV decay: $\mu \rightarrow eee$ • Single event sensitivity of 10⁻¹⁵ Phase I <10⁻¹⁶ Phase II • Muon rate 10⁸ (>10⁹) per second • O(10) (O(100)) tracks within 50ns • Sensitive to New Physics:

Discussed in Research Proposal: \rightarrow arXiv:1301.6113

All silicon tracker based on HV-MAPS technology


・ロト ・ 雪 ト ・ ヨ ト

PSI, Users Meeting, February 9, 2015

э

Mu2e

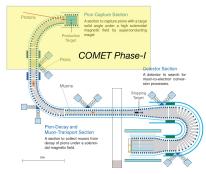
µ-e conversion : Mu2e at Fermilab

$$\begin{split} B(\mu^- + Al \to e^- + Al) &= 5 \times 10^{-17} \quad \text{(S.E.)} \\ B(\mu^- + Al \to e^- + Al) &< 10^{-16} \quad \text{(90\%C.L.)} \end{split}$$

- Reincarnation of MECO at BNL.
- Antiproton buncher ring is used to produce a pulsed proton beam.

μ

Mu2e


e

 Approved in 2009, and CD0 in 2009, and CD1 in 2011.

Data taking starts in about 2019.

COMET

- $\mu \rightarrow e \ {\rm conversion}$
 - Staging approach
 - ▶ Phase I to achieve 10⁻¹⁴ sensitivity and then Phase II

- Funding approved in JFY 2012 supplementary budget
- Annex of the current existing hall
- ▶ 8 GeV, pulsed proton beam to produce high-intensity muon beam
- COMET building finished and Muon Transport Solenoid installed

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

From Yoshitaka Kuno

Muon Transport Solenoid at J-PARC

Osaka University

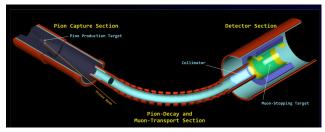
From Yoshitaka Kuno

COMET Collaboration

4		
* *	*)	*
0		DUENA
\star		
164	collabora	ators
37 instit	utes, 13 c	countries

The COMET Collaboration

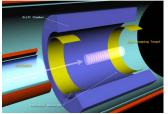
R. Akhmetshin^{6,28}, V. Anishchik⁴, M. Aoki²⁹, R. B. Applebv^{8,22}, Y. Arimoto¹⁵ Y. Bagaturia³³, Y. Ban³, W. Bertsche²², A. Bondar^{6,28}, S. Canfer³⁰, S. Chen²⁵ Y. E. Cheung²⁵, B. Chiladze³², D. Clarke³⁰, M. Danilov^{13,23}, P. D. Dauncev¹¹, J. David²⁰ W. Da Silva²⁰, C. Densham³⁰, G. Devidze³², P. Dornan¹¹, A. Drutskov^{13,23}, V. Duginov¹⁴ A. Edmonds³⁵, L. Epshteyn^{6,27}, P. Evtoukhovich¹⁴, G. Fedotovich^{6,28}, M. Finger⁷, M. Finger Jr⁷, Y. Fujii², Y. Fukao¹⁵, J-F. Genat²⁰, M. Gersabeck²², E. Gillies¹¹ D. Grigoriev^{6, 27, 28}, K. Gritsav¹⁴, R. Han¹, K. Hasegawa¹⁵, I. H. Hasim²⁹, O. Havashi²⁹ M. I. Hossain¹⁶, Z. A. Ibrahim²¹, Y. Igarashi¹⁵, F. Ignatov^{6,28}, M. Iio¹⁵, M. Ikeno¹⁵ K. Ishibashi¹⁹, S. Ishimoto¹⁵, T. Itahashi²⁹, S. Ito²⁹, T. Iwami²⁹, Y. Iwashita¹⁷, X. S. Jiang² P. Jonsson¹¹, V. Kalinnikov¹⁴, F. Kapusta²⁰, H. Katayama²⁹, K. Kawagoe¹⁹, V. Kazanin⁶. B. Khazin^{§6, 28}, A. Khvedelidze¹⁴, M. Koike³⁶, G. A. Kozlov¹⁴, B. Krikler¹¹, A. Kulikov¹⁴ E. Kulish¹⁴, Y. Kuno²⁹, Y. Kuriyama¹⁸, Y. Kurochkin⁵, A. Kurun¹¹, B. Lagrange^{11,18} M. Lancaster³⁵, H. B. Li², W. G. Li², A. Liparteliani³², R. P. Litchfield³⁵, P. Loveridge³⁰ G. Macharashvili¹⁴, Y. Makida¹⁵, Y. Mao³, O. Markin¹³, Y. Matsumoto²⁹, T. Mibe¹⁷ S Mihara¹⁵ F Mohamad Idris²¹ K A Mohamed Kamal Azmi²¹ A Moiseenko¹⁴ Y. Mori¹⁸, N. Mosulishvili³², E. Motuk³⁵, Y. Nakai¹⁹, T. Nakamoto¹⁵, Y. Nakazawa²⁶ J. Nash¹¹, M. Nioradze³², H. Nishiguchi¹⁵, T. Numao³⁴, J. O'Dell³⁰, T. Ogitsu¹⁵, K. Oishi¹⁵ K. Okamoto²⁹, C. Omori¹⁵, T. Ota³¹, H. Owen²², C. Parkes²², J. Pasternak¹¹, C. Plostinar³⁰ V. Ponariadov⁴, A. Popov^{6,28}, V. Rusinov^{13,23}, A. Ryzhenenkov^{6,28}, B. Sabirov¹⁴ N. Saito¹⁵, H. Sakamoto²⁹, P. Sarin¹⁰, K. Sasaki¹⁵, A. Sato²⁹, J. Sato³¹, D. Shemvakin^{6,26} N. Shigvo¹⁹, D. Shoukavv⁵, M. Shunecka⁷, M. Sugano¹⁵, Y. Takubo¹⁵, M. Tanaka¹⁷ C. V. Tao²⁶, E. Tarkovsky^{13, 23}, Y. Tevzadze³², N. D. Thong²⁹, V. Thuan¹², J. Tojo¹⁹ M. Tomasek⁹, M. Tomizawa¹⁵, N. H. Tran²⁹, I. Trek³², N. M. Truong²⁹, Z. Tsamalaidze¹⁴ N. Tsverava¹⁴, S. Tygier²², T. Uchida¹⁵, Y. Uchida¹¹, K. Ueno¹⁵, S. Umasankar¹⁰ E. Velicheva¹⁴, A. Volkov¹⁴, V. Vrba⁹, W. A. T. Wan Abdullah²¹, M. Warren³⁵, M. Wing³⁵ T. S. Wong²⁹, C. Wu^{2, 25}, G. Xia²², H. Yamaguchi¹⁹, A. Yamamoto¹⁵, M. Yamanaka²⁴ Y. Yang¹⁹, H. Yoshida²⁹, M. Yoshida¹⁵, Y. Yoshii¹⁵, T. Yoshioka¹⁹, Y. Yuan², Y. Yudin^{6,28}, J. Zhang², Y. Zhang²


¹North China Electric Power University, Beijing, Pople's Republic of China ²Institute of High Energy Physics (IHEP). Beijing, Poople's Republic of China ³Peking University, Beijing, Pople's Republic of China ⁴Belarusian State University (BSU), Minsk, Belarus ⁵B.I. Stepanor Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

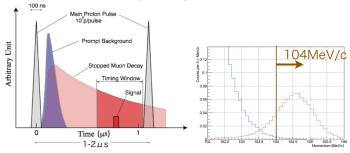
COMET (E21)

COMET Phase I (2016)

▶ Beam background study and achieve S.E.S. ≃ 3.10⁻¹⁵ with 8 GeV - 3.2 kW proton beam, ~ 3 months DAQ


COMET Phase II (2020)

 \blacktriangleright 8 GeV - 56 kW proton beam , \sim 1 year DAQ to achieve the COMET final goal of S.E.S $\simeq 3.10^{-17}$


*ロ * * @ * * 目 * ヨ * ・ ヨ * の < や

France-Japan collaboration in COMET

CDC and Triggering counter surrounding a muon stopping target

• $\mu \rightarrow e$ conversion signal identified with an energetic electron of 105MeV emitted from a muonic atom with delayed timing.

イロト イボト イヨト イヨト ヨー のくで

COMET Sensitivity

Signal Sensitivity for COMET Phase-I with CyDet

Signal Acceptance

Table 28: Breakdown of the $\mu^- N \to e^- N$ conversion signal acceptance.

Event selection	Value	Comments
Geometrical acceptance	0.37	
Track quality cuts	0.66	
Momentum selection	0.93	$103.6 \text{ MeV}/c < P_e < 106.0 \text{ MeV}/c$
Timing window	0.3	700 ns < t < 1100 ns
Trigger efficiency	0.8	
DAQ efficiency	0.8	
Track reconstruction efficiency	0.8	
Total	0.043	

Signal Sensitivity

$$B(\mu^- + Al \rightarrow e^- + Al) \sim \frac{1}{N_\mu \cdot f_{cap} \cdot A_e},$$

- f_{cap} = 0.6
- $A_e = 0.043$
- $N_{\mu} = 1.23 \times 10^{16} \text{ muons}$

Muon intensity

$$\begin{split} B(\mu^- + Al \to e^- + Al) &= 3.1 \times 10^{-15} \\ B(\mu^- + Al \to e^- + Al) &< 7 \times 10^{-15} \quad (90\% C.L.) \end{split}$$

about 0.00052 muons stopped/proton

With 0.4 μ A, a running time of about 110 days is needed.

COMET Backgrounds

Background Estimate for COMET Phase-I with CyDet

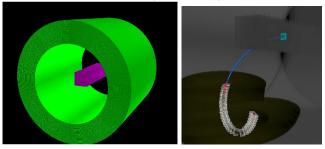
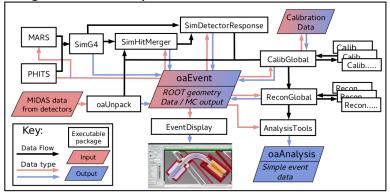


Table 30: Summary of the estimated background events for a single-event sensitivity of 3.1×10^{-15} with a proton extinction factor of 3×10^{-11} .

Type	Background	Estimated events
Physics	Muon decay in orbit	0.01
Physics	Radiative muon capture	$5.6 imes10^{-4}$
Physics	Neutron emission after muon capture	< 0.001
Physics	Charged particle emission after muon capture	< 0.001
Prompt Beam	Beam electrons (prompt)	$8.3 imes10^{-4}$
Prompt Beam	Muon decay in flight (prompt)	$\leq 2,0 \times 10^{-4}$
Prompt Beam	Pion decay in flight (prompt)	$\leq 2.3 imes 10^{-3}$
Prompt Beam	Other beam particles (prompt)	$\leq 2.8 \times 10^{-6}$
Prompt Beam	Radiative pion capture(prompt)	$2.3 imes 10^{-4}$
Delayed Beam	Beam electrons (delayed)	~ 0
Delayed Beam	Muon decay in flight (delayed)	~ 0
Delayed Beam	Pion decay in flight (delayed)	~ 0
Delayed Beam	Radiative pion capture (delayed)	~ 0
Delayed Beam	Anti-proton induced backgrounds	0.007
Others	Electrons from cosmic ray muons	< 0.0001
Total		0.019

France-Japan collaboration in COMET

▶ LPNHE R&D for an active muon stopping target in order to get an additional point for the electron trajectory (CM11 - 2013)


- Simulation and reconstruction with GENFIT within ICEDUST(Integrated Comet Experiment Data User Software Toolkit), the new COMET Software Framework rooted in T2K ND280.
- Discussion on the possibility of a beam test of ATLAS pixels at J-PARC with Kyushu University.
- MARS and ICEDUST installed at CCIN2P3 (thanks to Yonny Cardenas).

ICEDUST

Overview

Integrated Comet Experiment Data User Software Toolkit

December 2014

Ben Krikler

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

8

Recent history

- ► COMET Software Framework: from ND280 to ICEDUST. Imperial College London lead : Ajit Kurup, Ben Krikler
- Common COMET g-2/EDM FJPPL Workshop (Paris, 20-21 february 2014)

 3rd Workshop on Muon g-2, EDM and Flavour Violation in the LHC Era in december 2014

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

It was the right time for a decision from CCIN2P3 director and IN2P3 Particle Scientific Deputy Director to create a comet group to allow "foreign collaborators" to register and use CCIN2P3 machines.

Software Activity

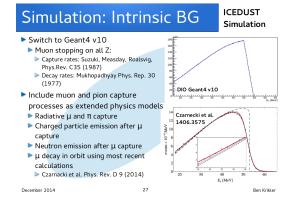
Software group structure, january 2014

Software group involves 13+ people Sub-group coordinator: Ajit Kurup Sam Tygier: Andy Edmonds MARS, SimG4 Fluka Ben Krikler: Chen Wu SimG4, overall framework Build system, repository, CyDet Per Johnsson: Phill Litchfield Unit tests, ND280 support Offline databases, ND280 support Kazuki Ueno: Fedor Ignatov Straw tracker Reconstruction Wilfrid da Silva, Frederic Vladimir Kalinnikov, Elena Kapusta: Velicheva GENFIT. Active Target ECAL Ben Krikler, Imperial College London

GitLAB members, march 2015

•0	a fibre d'Orange	ж/®1	Hernbers - corret G	- conset, postcale - Moolka Perelon		
*				v C Sv Doogle	A 公白 4 合 M	8 ₀ =
۵				9 Search in this prosp	••• • • • • •	e activity
0	Activity		correct group members (18)			
0	Milestones		Apt Korep Isotop		Owner (2	
0	tosues Merze Reports	2	Benjamin Krilder Derfolker		Owner (2	
	Benkers		KAPUSTA Prederio Instancia ante		Owner	
00	Gottings ~		- Keel Clebh Kos		Master (7	•
			YAND PAGE (CIV)		Master (7	
			Neen Tree norn		Developer (2	
			Williad de Elive dastiva		Developer (2	
			Mpeanglas Les mpeonglasses		Developer (2	
			Jordan Mash nash		Developer (2	
			Ches Ma vuches		Developer (2	
			Condry Shockary shockary		Developer (2	
			🖉 Hitoshi Yanagushi Iyomopo		Developer (2	
			Wong Ting Sam carrying		Developer (2	
			Phill Literatived Report		Developer (2	
			Yoshi Uchida yoshiz		Developer @	
			Per Jonsson jonssonp		Developer @	
			Kazuld Geno Kazaseno		Developer @	
			Even L Gillies right?		Developer @	

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@


Recent events

- Accepted proposal from the french group to use the CCIN2P3 computing power and support in order to prepare a Grid computing at the COMET Collaboration level.
- Accepted proposal to have gitlab.in2p3.fr hosting the COMET software in order to ease the collaborative work.
- ICEDUST is running with MARS using a common 1 TB of semi-permanent space on /sps/hep/comet.
- SimMARS has been tested and optimized at CCIN2P3.
- A MySQL database is available for parameters storage.
- muon.in2p3.fr is a french website under construction to unify μ^+ (g-2/EDM) and μ^- (COMET) experiments for BSM physics, the official COMET website being comet.kek.jp
- ► AtCM16, CCIN2P3 was accepted as a COMET Member.
- Full Simulation is currently running at CCIN2P3 with 20 TB of data storage using iRODS for data sharing.

*ロ * * ◎ * * ● * * ● * ● * ● * ●

Questions and a proposal

- ▶ From the "3rd Workshop on Muon g-2, EDM and Flavour Violation ..." :
 - new idea of cLFV search $\mu^-e^- \rightarrow e^-e^-$ in muonic atom.
 - upgrade of the DIO spectrum using Czarnecki last computation...

- Expected contribution from french theorists : model predictions and "advertising plots".
- You are invited to give a talk at CM17 beginning of september in Paris and ... maybe join COMET.
- "4th Workshop on Muon g-2, EDM and Flavour Violation in the LHC Era" in 2016 organized in Marseilles by Marc Knecht.