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STANDARD EXPLOSION SCENARIO : COLLAPSE

@ Massive star

@ > 10 M, : iron core
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STANDARD EXPLOSION SCENARIO : BOUNCE
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STANDARD EXPLOSION SCENARIO : SHOCK

Shock Propagation and v, Burst
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@ Proto-neutron star at the center

@ The shock is launched and propagates

@ Iron photodisintegration and electron capture
@ The shock stalls at r ~ 100 km from the center
@ Mechanism to deposit energy ?
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SASI (shock oscillations)

mass accretion

convection

Stalled
deformed
shock

NEUTRINO HEATING
MECHANISM
@ Huge amount of
neutrinos (99% total
energy)
@ Heat below the stalled
shock — gives energy
— shock may recover
positive velocities
@ If so : explosion ; if
not : black hole

formation S
) s \cooling layer
@ Hydrodynamics heating layer
instabilities
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HYDRODYNAMICS INSTABILITIES

SASI

@ Standing Accretion Shock Instability
@ Global deformation of the shock

@ Secondary shocks in the gain layer
@ Gain layer larger

SMALL SCALE CONVECTION
@ Only very few 3D simulations

@ Heating aided by convection explode in 2D (underenergetic
~ 10°° ergs of kinetic energy)

@ Problematic in 2D ?

o first detailed 3D results did NOT go in the right direction
@ anything missing ? maybe too coarse resolution

@ High resolution — turbulent pressure
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PROGENITORS

HOW ACCURATE ARE THEY ?

@ 1D hydrostatic (with mixing length for
convection)

@ non-radial motions in the progenitor ?
@ How much stellar winds, mass loss rate ?

@ Giant flares (removing some mass,
creating anisotropies)

@ Few different progenitor sets available
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@ Initial magnetic field has to be large (~ 10° G)

@ Growth during collapse by flux freezing
~10° G -~ 10" G

@ Growth to magnetar-like magnetic fields
~ 10" G —~ 10" G : magneto-rotational instability ?

@ Differential rotation

@ The shock stalls and is revived very early, pushed by
the very strong magnetic pressure

@ Very energetic explosions

@ A few percent of progenitor stars

@ Uncertainties remaining

o Magnetic field growth
o Difference 2D/3D
e Importance of energy deposition by neutrinos
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NEUTRINO FLAVOR CONVERSION

HEAVY LEPTON NEUTRINOS

@ Uy =V, Vs, Uy, Vs
@ More average energy per neutrino (earlier decoupling
with the fluid)

@ Cooling of the PNS, minor contribution to heating of the
shock

ELECTRON NEUTRINOS

° v, (7.)
@ Less average energy
@ Cooling of the PNS, heating of the shock

@ Flavor conversion due to neutrino self-interactions ?

@ v, deposit energy -> more energetic explosions ?

@ Open question, many papers but very simplified settings
@ Need for more detailed works
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BLACK HOLE FORMATION

HOW TO CREATE A BLACK HOLE

@ directly at collapse

@ after bounce, the shock stalls and it is not revived soon
enough. Matter continues to fall on the PNS and
eventually forms a BH

@ bounce, stalled shock, shock is revived, explosion, but
some matter is not expelled (fallback) and the PNS
cools down (possibly SN1987A)

-
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NUMERICAL SIMULATIONS
Ingredients for a detailed simulation from first principles

@ An accurate progenitor

@ 3 (spatial) dimensions hydrodynamics

@ Nuclear physics based Equation of State

@ A precise handling of the gravitation — general relativity
@ An accurate neutrino treatment — a Boltzmann solver
@ Extremely demanding in cpu power

NEUTRINOS ARE NOT FLUID

@ Mean free path : fully opaque to fully transparent (different
from all other particles)

@ Decoupling with the fluid — fluid treatment not good enough
@ Appropriate treatment : transport — Boltzmann equation
@ Heaviest part and sensitive to small changes
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EQUATIONS OF STATE

@ 10® < my,n;, < 10'% g.cm—3 with n, the baryon
number density
Behavior of mat'(‘j"jr. at @ 0 < T <200 MeV temperature
some given conditions @ 0 <Y, <0.5 electron fraction (Y, = n./n;)

(nb1 T! Ye) . .
@ Returns thermodynamics quantities :
pressure, entropy, abundances, chemical

. ials, ...
Nuclear physics based J potentials y

equation of state

@ Nucleon—nucleon interaction very hard to

model
Contains @ Few equations of state available for
n,p,e e, v, a,A J supernovae

@ New EoS coming e.g., Hempel and
Schaffner-Bielich, 2010
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RELATIVISTIC BOLTZMANN EQUATION

& of L Of

d\ Ox+ PP op' el

@ Derivative of f along a world line
Gravitation : geodesics equations

dp’ ;

- 4T, ptpY =0

CIf] : Collision operator

Neutrinos : null geodesics (considered massless)
Geodesics between two collisions

Numerical problems : 6D + time dependence,
Lagrangian connection coefficients (include fluid
velocity transformations, e.g., doppler shift)

@ No 3D hydro + full Boltzmann simulation available )
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MOMENTS OF THE BOLTZMANN EQUATION

E(1,7¢) = ¢ / F(,7,5)d0

Fo(1,7,e) = e / (1, F, )0

@ dQ : angle in momentum space
@ [® normalized 3-momentum

@ Flux-limited diffusion

@ Two-moments scheme
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COLLISION OPERATOR

@ Charged current, electron and positron
capture
@ V,+p<rnte
@ V. +N(A,Z) < NA,Z—1)+ e
-} 17@—|—n<—>p—|—e+
@ Scattering
Q@ V+prV+p
Qv+tn<v—+n
e v+ N(A,Z) <> v+ N(A,Z)
@ vte vte
@ Pair processes
et +e vt
O N+ N N+N+v+wv

@ Many simplifications
@ Simulations extremely sensitive to small
changes

.
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EXPLOSION MECHANISM

@ Neutrino heating

Most favored scenario

Neutrinos drive the deleptonization

Neutrinos drive the cooling of the protoneutron star

Neutrinos drive the heating of the shock

2D detailed simulations : underenergetic explosions ~ 10 erg
First 3D detailed simulations did not explode

Turbulent pressure ?

Non-radial instabilities seeded by the progenitor ?
@ MHD mechanism : the most energetic supernovae (a few %)

@ Equation of state physics improving slowly with constraints from nuclear
physics and astrophysics

@ Role of neutrino flavor conversion ?
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BLACK HOLE FORMATION

@ Explosion or no explosion ?
@ Black hole or neutron star ?
@ No single parameter sufficient to discriminate

NUMERICAL TREATMENT OF THE NEUTRINOS

@ Boltzmann equation (radiative transfer problem)

@ Full Boltzmann schemes on static background available for comparisons
(e.g. B.P. et al. 2014)

@ 3D Hydro + Boltzmann is too heavy for computation

@ Approximated transport (LHS) : flux-limited diffusion, two-moments
scheme, leakage scheme, light bulb, toy model...

@ Approximated collisions (RHS) : elastic scattering, mean heavy nuclei, ... )
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