Advanced Reconstruction in Large Volume Liquid Scintillator Detectors

Applied to LENA

Björn Wonsak

Universität Hamburg

UH
it
Universität Hamburg der forschung । der lehre । der bildung

Overview

- Tracking at high energies (GeV)
- Basic algorithm
- Performance
- Application to low energies (MeV)
- New techniques to improve robustness
- Positron discrimination

Motivation: Tracking at High Energies

v_{e} appearance experiments:
NC-background
\rightarrow Is it possible to identify the π_{0} ?

Reactor experiments

Short-lived cosmogenics $\left({ }^{9} \mathrm{Li} /{ }^{8} \mathrm{He}\right)$ dangerous background

Full veto produces too much deadtime
\rightarrow Identify places of high energy deposition (showers induced by muon)

Why no 3D Tracking (so far)?

Point-like event:

Light emitted in 4π
\rightarrow no directional information

Time between emission and detection = distance
\rightarrow Circles

Point of light emission

Why no 3D Tracking (so far)?

Point-like event:

Light emitted in 4π
\rightarrow no directional information

Time between emission and detection = distance
\rightarrow Circles

Point of light emission

Why no 3D Tracking (so far)?

Point-like event:

Light emitted in 4π
\rightarrow no directional information
Time between emission and detection = distance
\rightarrow Circles

Point of light emission

Why no 3D Tracking (so far)?

Track:

Lots of emission points with different emissions times
\rightarrow No association between signal and emission time

My Basic Idea

Assumption:

- One known reference-point (in space \& time)
- Almost straight tracks
- Particle has speed of light

Concept:

- Take this point as reference for all signal times

The Drop-Ife Shape

Signal time $=$ particle tof $\boldsymbol{+}$ photon tof

$$
\rightarrow \mathbf{c t}=|V X|+n^{*}|X P|
$$

The Drop-Ife Shape

ct $=|\mathbf{V X}|+\mathbf{n}$ * $|X P| \rightarrow$ drop-like form

The Drop-Ife Shape

ct $=|\mathbf{V X}|+\mathbf{n}$ * $|X P| \rightarrow$ drop-like form

Time Distribution

Convolution of Gaus and Exponential-Function

Time Distribution

Convolution of Gaus and Exponential-Function

Result 1 PMT

Result a Few PMTs

Result 266 PMTs

Light Distribution (LD) Effects

Some parts of each drop-like shape are more likely the origin of light, because:

- they are closer
- directly in front of the PMT
\rightarrow Need to consider:
- solid angle of PMT area
- attenuation
- angular acceptance

Light Distribution (LD) Effects

Some parts of each drop-like shape are more likely the origin of light, because:

- they are closer
- directly in front of the PMT
\rightarrow Need to consider:
- solid angle of PMT area
- attenuation
- angular acceptance

Finally I have to normalise the resulting pdf !

Result all PMTs

Probability Mask

So far probabilities have been added!
\rightarrow correct for independent information

However:

Light signals are not completely independent from each other, because they belong to the same track.
\rightarrow Use "Result l" to weight all the single light contribution and re-normalise each of them!

Result I

Result 2nd Iteration

Result 3rd Iteration

Result 9th Iteration

3D Topology

Probability distribution projected into the xy plane

Color: Total photon emission probability in arbitrary units
$\rightarrow \mathrm{dE} / \mathrm{dx}$ seems accessible

Image Processing

Resolution < 20 cm

Computing

One 3 GeV event, 20 cm bins, full light, 22 iterations in LENA \rightarrow several hours (despite usage of adaptive mesh refinement)

However:

- I'd like to go to 2 cm bins
- because there should be enough light for this resolution
- In principle many more iterations are allowed

But algorithm highly parallisable \rightarrow GPUs, etc.

Gurrent Status

Large reconstruction campaign ongoing!

Muons with 1-5 GeV: (first results)

- Robustness \rightarrow okay
- Angular resolution: $\sim 1.5^{\circ}$

Electron events under production
Other event classes still to be studied
Paper under preparation!

Ph. D. student Sebastian Lorenz

Can also do it with Cherenkov Light

3 GeV muon, initial direction $(1,-1,0)$

A few \% of light in liquid Scintillator is Cherenkov light
\rightarrow using both could help pattern and partical identification
Also suitable for water Cherenkov detectors! Perfect for WbLS!

Tracking at Low Energies (a few MeV)

Robust Iterations!?

New Procedure

- Divide detector in different parts
- Do reconstruction for each part
- Multiply results
- Use this as Probability Mask
- Go back to first step

Result 2nd Iteration

z-projection

y-projection

1 MeV positron at center

Result 2nd Iteration (Zoom)

1 MeV positron at center

Result 2nd Iteration Slice 241

Result 2nd Iteration Slice 240

Result 2nd Iteration Slice 239

Result 2nd Iteration Slice 238

Result 2nd Iteration Slice 237

Result 2nd Iteration Slice 236

Grystalisation of the Result

- Use well defined probability mask
- Do reconstruction for each photon
- Identify bin with highest probability
- Associate photon with this bin
\rightarrow number of photons from that bin

Grystalisation: 1 MeV Positron

Crystalisation: 2 MeV Electron

Crystalisation: 2 MeV Electron

Electron vs. Positron Discrimination: First Try Results I

Ratio R of light reconstructed near vertex vs. total light

- 3343 events of electron and positron events each
- Visible energy $1-5.5 \mathrm{MeV}$
- At the center of the detector \rightarrow worst place

Notice: Used perfect vertex position for this analysis

- LENA-MC $\rightarrow 250$ photons per MeV

Electron vs. Positron Discrimination: At C-11 Energy Region

Ratio R of light reconstructed near vertex vs. total light

- 111 events of electron and positron events each
- Visible energy 1-2 MeV
- At the center of the detector \rightarrow worst place
- LENA-MC $\rightarrow 250$ photons per MeV

Notice: Used perfect vertex position for this analysis

Remarks on Potential

- Possible improvements:
- So far only 250 p.e/ MeV
\rightarrow Borexino: 500 p.e/ MeV, JUNO: 1200 p.e/ MeV
- Faster scintillator
- Remove scattered light statistically
- Multivariate analysis
- Other ideas:
- Use time as 4th dimension
- Gradient information (Sobel-Filter)

Remarks on Potential

- Possible improvements:
- So far only 250 p.e/ MeV
\rightarrow Borexino: 500 p.e/ MeV, JUNO: 1200 p.e/ MeV
- Faster scintillator
- Remove scattered light statistically
- Multivariate analysis
- Other ideas:
- Use time as 4th dimension
- Gradient information (Sobel-Filter)

Eliminating Influence of Scattered Light

- Idea: Use probability mask and lookup tables to calculate for each signal the probability to be scattered
\rightarrow reweigh signals after each iteration

Eliminating Influence of Scattered Light

- Idea: Use probability mask and lookup tables to calculate for each signal the probability to be scattered
\rightarrow reweigh signals after each iteration

Result before removal of scattered light!

Eliminating Influence of Scattered Light

- Idea: Use probability mask and lookup tables to calculate for each signal the probability to be scattered
\rightarrow reweigh signals after each iteration

Result after removal of scattered light!

Using the 4th Dimension

- Observation:

- Contrast limited by influence of neighbour bins

- Idea:

- Use time distribution at each point
- Fit signal-function + background from neighbours

Example of a bad bin with a lot of noise!

Scattered light not removed!

Using the 4th Dimension: Result

First result:

- Very preliminary!

This now respresents a real $\mathrm{dE} / \mathrm{dx}$!

Using the 4th Dimension: Result

First result:

- Very preliminary!
- Background estimate must be more robust
- One possibility is to use probability mask to calculate background from neighbour bins

This now respresents a real $\mathrm{dE} / \mathrm{dx}$!

Other Possible Applications

- Improvement of:
- Position reconstruction
- Energy reconstruction

Influence on non-stochastic term of energy resolution

- IBD directional information Supernova neutrinos
- Gamma identification
${ }^{8} \mathrm{~B}$ neutrinos
$\left({ }^{208} \mathrm{TI}\right.$ background at 2.6 MeV)
- Charge of stopping muons Atmospheric neutrinos
- Background reduction for $0 v \beta \beta$-experiments γ-cacade vs. point-like
(e.g. ${ }^{110 \mathrm{~m}} \mathrm{Ag}$ in KamLAND-Zen)

Conclusion I

- My Tracking:
- Powerful new tool to increase physics potential
- At both high and low energies
- Wide range of applications

Liquid Scintillator, Water Cherenkov, Water based Liquid Scintillator, even Liquid Argon

- Performance:
- Spatial resolution of less than 20cm
- dE/dx accessible
- Angular resolution for 1-5 GeV muon tracks $\sim 1.5^{\circ}$

Used realistic vertex information
\rightarrow As expected from backtracking algorithm

Conclusion II

- Positron-Discrimination:
- Promising first results
- Separation seems possible at low energies
- Tracking at low energies:
- Topological $\mathrm{dE} / \mathrm{dx}$ will be challenging
- Many possible applications

Used perfect vertex information so far
\rightarrow Need to use existing vertex finding algorithms

Thanks for your attention!

Backup slides

Example: Real Borexino Data

Comment on Ortho-Positronium

- Longer lifetime

\rightarrow Additional time-offset
\rightarrow Annihilation photons not (or badly) reconstructable

- But:
- Better separation in inside vs. outside analysis expected
- Residual asymmetry expected
(deviation from spherical symmetry)

But what about the reference point?

Answer: Any point on track can be used if I know the time the particle passing!

2GeV Muon, First Hit Information

- Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

10% of PMTs at +-500 cm in z with respect to vertex

2GeV Muon, First Hit, Backwards

- Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

10% of PMTs at +-500 cm in z with respect to vertex

2GeV Muon, First Hit, from Middle

- Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

10% of PMTs at +-500 cm in z with respect to vertex

2GeV Muon, First Hit, Back from Middle

- Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

10% of PMTs at +-500 cm in z with respect to vertex

2GeV Muon, First Hit, Back from Middle

- Vertex (-500.,0.,0.), Orientation (1.,1.,0.)

So if I have an outer detector and a particle leaves the LS volume I will have a starting point!

10% of PMTs at +-500 cm in z with respect to vertex

Vertex Finding/Backtracking

Basic idea:

- Calculate at every point the time correction needed for each first hit signal to match the flight time to that point
- Then look for peaks in this time distribution

Vertex Reconstruction I

Uses first hit time of each PMT and gaussian time distribution

How to improve Backtracking

Some regions on track do not produce many 'first hits'
\rightarrow Need to look more closely at timing patter (tof corrected)

\rightarrow whole track

Stopped Muon in Borexino

Double Muon Event in Borexino

Double Muon Event in Borexino

Both tracks cut out!

The power of the 4th dimension

4d Canny Algorithm

The Reco Result (266 PMTs)

4d-Sobel Result

Reco Result divided by 4d-Sobel

Minima of 4d-Sobel

Result after Follow-up

Some early examples with different particles

$465 \mathrm{MeV} \pi_{0}$

- Vertex (0.,0.,0.), Orientation (-1.,0.,0.)

10% of PMTs at +-500 cm in z with respect to vertex

$465 \mathrm{MeV} \pi_{0}$

- Vertex (0.,0.,0.), Orientation (-1.,0.,0.)

10% of PMTs at +-500 cm in z with respect to vertex

Muon 800 MeV

- Vertex (200.,100.,0.), Orientation (-1.,-1.,0.)

10% of PMTs at +-500 cm in z with respect to vertex

2 Muons with 750 MeV each

- Vertex (300.,0.,0.), Orientation +-45 ${ }^{\circ}$

10% of PMTs at +-500 cm in z with respect to vertex

Ridge-Line Analysis

- Remark:
- The pictures seem to give only rough spatial information
- This is only because the single photon resolution is poor But we have a lot of light
\rightarrow mean value should be very accurate
\rightarrow Need method to increase contrast/use the picture to find the track position

Ridge-Line Analysis

- Idea: Track should be a kind of ridge (in 3d) \rightarrow Take only bins, with more than 17 smaller neighbour bins

Resultat: 500 MeV Electron

- Vertex (0.,0.,0.), Orientation (-1.,0.,0.)

$465 \mathrm{MeV} \pi_{0}$

- Vertex (0.,0.,0.), Orientation (-1.,0.,0.)

Muon 800 MeV

- Vertex (200.,100.,0.), Orientation (-1.,-1.,0.)

10% of PMTs at +-500 cm in z with respect to vertex

2 Muons with 750 MeV each

- Vertex (300.,0.,0.), Orientation +-45 ${ }^{\circ}$

10% of PMTs at +-500 cm in z with respect to vertex

Event Signature for Tracking

Charge

(First) Hit time

Simulated distributions over detector surface!

