The Future of Water Cherenkov Neutrino Detectors

Matthew Malek The University of Sheffield

Réunion Gdr Neutrino 2015 Laboratoire de Physique Corpusculaire – Clermont-Ferrand 09 June 2015

Outline

I) Introduction:

- A Brief History of WC v detectors
- Open questions

II) Next generation:

- The Hyper-Kamiokande detector
- Beam programme

III) Intermediate steps:

- The ANNIE experiment
- Comparisons with LAr

In the Beginning

(a)

(b)

Solar Neutrinos Atmospheric Neutrinos e-events Kam-I-II +0.20 1.0 40 7.6^{+1.3}_{-1.1}SNU 30 Number of 20 **Experiments** 10 **Theory** 0 **Вe** pp 0.55±0.08 **CNO** 8**B** 60 Number of μ -events 50 2.56 ±0.23 40 30 20 10 0, 0.5 1.0 ³⁷C Homestake Kamioka **H**₂**O** P(GeV/c)

9 June 2015

Matthew Malek

Kamiokande (1992)

1998: Neutrino Mass!

9 June 2015

Where Are We Now?

- In v physics, our starting point is beyond the Standard Model
 - Arguably our only experimental evidence of BSM physics thus far...

First measured recently! (2011 – 2012) Short baseline reactor neutrinos (Daya Bay, RENO, DoubleChooz); Long baseline accelerator neutrinos (T2K, MINOS, NOvA)

 $\sin^2(2\theta_{13}) = 0.093 \pm 0.008$

Recent T2K & Reactor

- T2K observes 28 ve events (4.92 ± 0.55 events expected for $sin^2(2\theta_{13}) = 0$)
- Comparison to null hypothesis gives 7.3 σ significance for $\theta_{13} \neq 0$

9 June 2015

[Some] Open Questions

1) What is the CP violating phase δ ? 2) What is the mass ordering?

3) Is θ_{23} maximal? (*i.e.*, 45°) If not, what octant does it lie in?

Also, whilst not directly oscillation physics, we want to know:

4) What is the nature of the neutrino? Dirac or Majorana?

5) Neutrino interaction cross-sections (currently not well understood)

9 June 2015

Our Matter-Dominated Universe

A priori, we expect equal amounts of matter and anti-matter to have formed in the Big Bang.

Today (13.8 Gyears later): Not true!

Measured asymmetry parameter: $\eta_{\rm B} = \frac{(n_{\rm B} - n_{\rm \overline{B}})}{n_{\gamma}} \approx \frac{n_{\rm B}}{n_{\gamma}} \approx 6 \ x \ 10^{-10}$

(Using observations from D/H ratio, CMB, etc.)

Leptogenesis provides possible solution if:

- Neutrinos are Majorana particles (*i.e.*, $v = \overline{v}$)
- CP violation in the neutrino sector (creates L asymmetry)
- Non-perturbative processes in the early universe (converts L → B asymmetry)

9 June 2015

Hyper-Kamiokande

- Supernova relic neutrinos
- Various other physics (indirect WIMP search, n-n osc., etc.)

9 June 2015

•

Matthew Malek

Outer Water Tar

Supernova Neutrino Burst

Stars with M > 8 M \odot end as a core-collapse supernova when nuclear fuel exhausted:

All 6 v species produced; most likely to detect in WC is $\overline{v_e}$ via inverse beta decay (89%):

Understanding neutron yield can help disentangle the various fluxes from a core-collapse SN burst.

9 June 2015

Supernova Relic Neutrinos

In 1987, neutrinos were detected from a SN burst in Large Magellanic Cloud (Sanduleak -69° 292 \rightarrow SN1987a)

25 neutrino events at 3 detectors (Kamiokande, IMB, Baksan)

Even today, Super-Kamiokande would detect ~10,000 neutrinos from SN burst in galactic centre. (250,000 in Hyper-K)

A SN burst in Andromeda would produce **25 – 50** neutrinos in Hyper-K.

Our universe is **big**, with many supernovae explosions; besides neutrinos from individual SN bursts, it should also be possible to detect a diffuse isotropic neutrino signal from **all** the core-collapse supernova ever.

Searches for these "Supernova Relic Neutrinos" (SRN) are currently background limited; understanding neutron yield could help separate the signal from various backgrounds

9 June 2015

Proton Decay

Possible "grand unification" of strong & electroweak forces not directly testable due to energy scale involved (~10¹⁵ GeV)

Can test *indirectly*, searching for effects [§] of Grand Unified Theories (GUTs) such as:

- Electric dipole moment of the neutron
- Proton decay

Early Grand Unified models (*e.g.*, SU(5)) predicted lifetime of $\sim 10^{29}$ years.

Current experimental limits from Super-Kamiokande are at the 10³⁴ year level.

Modern GUTs predict lifetimes of 10³⁵⁻³⁶ years.

Proton Decay

In a water Cherenkov detector, a typical signal looks like:

- Three rings (all electron-like)
- Total energy close to Mp
- Unbalanced momentum close to 0.

At this scale, previously negligible backgrounds from atmospheric neutrinos start to limit sensitivity.

9 June 2015

Hyper-K Beam Programme

• Expected # of events for $\sin^2 2\theta_{13} = 0.1$, $\delta = 0$ and NH (7.5 x 10⁷ MW·sec)

	Signal (vµ→ve CC)	Wrong sign appearance	νμ/νμ CC	beam ve/ve contamination	NC
V	3,016	28		523	172
v	2,110	396	9	618	265
From Hayato (Neutrino 2014)					

Significantly larger statistics merit better systematics:

New near detector(s)!

9 June 2015

HK Sensitivity to CPV

9 June 2015

TITUS

TITUS Overview

TITUS: The Tokai Intermediate Tank w/ Unoscillated Spectrum

- Same target nuclei as Hyper-K – H₂O (and maybe Gd)
- Nearly same target angle and neutrino energy spectrum
- Many systematics cancel out in Far/Near ratio

- To be located ~2 km from J-PARC neutrino beam
- Next-generation 2 kt water Cherenkov, includes:
 - 0.1% Gadolinium-doping
 - Partly enclosed by Muon Range Detector
 - 1.5 Tesla magnetic field
 - Large Area Picosec. Photo-Detectors (LAPPDs)
 - < 100 psec tres ; ~1 cm **X**res

9 June 2015

Next-Gen Water Cherenkov

9 June 2015

In The Meantime: ANNIE

ANNIE: Accelerator Neutrino-Nucleus Interaction Experiment

Note: ANNIE is effectively a 1% scale model for TITUS!

9 June 2015

ANNIE Motivation

Primary physics objective:

 A measurement of the abundance of final state neutrons ("neutron yield") from neutrino interactions in water, as a function of energy.

<u>Theoretically</u>: This depends on nuclear physics that is not well understood

 <u>Experimentally</u>: To date, the neutron yield has has not been well measured

knocked out of the water

how many neutrons are

Proton Decay

Q: How can ANNIE help?

9 June 2015

Hyper-K Proton Decay

9 June 2015

Neutrino Interactions

Studies of neutrino-nucleon interactions are also interesting in their own right! (see NuInt conference series)

ANNIE measurements can help constrain and distinguish between various interaction models.

Precision neutrino oscillation measurements:

Neutrino cross-sections are a dominant systematic in long-baseline oscillation experiments, like T2K.

Reduction of this uncertainty will be necessary to conduct searches for δCP , resolve the mass hierarchy, octant degeneracy, etc.

9 June 2015

Neutrino Beam

ANNIE is designed to run in the Booster Neutrino Beam (BNB) at Fermilab.

ANNIE will be situated in the former SciBooNE hall. (now 'ANNIE Hall'?)

Relevant BNB statistics at this site:

- On-axis neutrino beam
- 100 meters from target
- 4 x 10¹² P.O.T. per pulse
- ~700 MeV peak energy
- 93% pure $v\mu$ (in neutrino mode)

9 June 2015

Neutrino Beam

9 June 2015

'ANNIE Hall'

Assuming ANNIE running in the BNB from SciBooNE hall, we expect the following event rates for a 10²⁰ P.O.T. exposure (~1 year) in neutrino mode:

Reminder:

- On-axis neutrino beam
- 100 meters from target
- 4 x 10¹² P.O.T. per pulse
- 600 MeV peak energy

ν -type	Total Interactions	Charged Current	Neutral Current
ν_{μ}	9892	6991	2900
$\bar{\nu}_{\mu}$	130	83	47
ν_e	71	51	20
$\bar{\nu}_e$	3.0	2.0	1.0

9 June 2015

9 June 2015

 \rightarrow Will run as a 'test' and not an 'experiment'

 \rightarrow See: http://arxiv.org/pdf/1504.01480v1.pdf

Fermilab has a new 'Neutrino Division', which has a 'short baseline' section headed by Peter Wilson. [N.B. 'Short' ≡ 'contained on site']

ANNIE Phase I proposal approved in February by Fermilab PAC!

Fermilab seems to view ANNIE as a welcome addition to the SBL programme, complementing the various LAr detectors in the BNB.

ANNIE Phase I

- ~20 tonnes of Gd-doped water
- ~60 PMTs (from WATCHBOY)
- It will NOT have:
 - Significant numbers of LAPPDs (or any?)
 - Magnetised MRD

Phase I & Beyond

<u>Timetable</u>: Build Phase I in Summer 2015 and run from Autumn 2015

Physics goals for Phase I are neutron background measurements at various positions in ANNIE hall (dirt neutrons, 'skyshine', etc.) → Will likely run DCTPC in conjunction with Phase I

Looking ahead: ANNIE Phase II

From Autumn 2016, we hope to run for ~2 years with:

- ~20 tonnes of Gd-doped water
- ~150 PMTs
- 10 20 LAPPDs
- MRD (possibly magnetised)
- Physics goals include proper neutron yield measurements, and CC-inclusive measurement of $\nu \mu$ on water
- Technical goals include first running of LAPPDs in water

Conclusions

Hyper-Kamiokande is the next step in the water Cherenkov detectors

- Broad neutrino programme, including oscillation physics and neutrino astrophysics
- Also will have leading sensitivity for proton decay

New technologies for WC include:

- Gd-doping for neutron tagging
- Advanced photosensors (LAPPDs)

ANNIE will test these in the Fermilab Booster Neutrino Beam

- Will commence running later this year in SciBooNE hall
- Background neutron measurement is primary goal for Phase I
- Phase II planned for next year, adding LAPPDs and making physics measurements

• Application to future WC experiments (e.g., Hyper-Kamiokande)

- Beam programme can benefit from a new near detector (TITUS) modelled similar to ANNIE
- Proton decay analysis may increase sensitivity by order of magnitude

Thank you for listening!

