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I) Introduction:

— A Brief History of WC v detectors
— Open questions

II) Next generation:

- The Hyper-Kamiokande detector
- Beam programme o

lll) Intermediate steps:

— The ANNIE experiment - ANNI
— Comparisons with LAr |
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In the Beginning
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* |n v physics, our starting point is beyond the Standard Model

- Arguably our only experimental evidence of BSM physics thus far...

v, (1 0 0 a cos0,; 0 sinO,e ° cosO,, sinf,, |o| [v,
Vv, |T|0 [ 080y SN0, kX 0 1 0 X\—sin0,, cosO,, JO|X|v,
V., 0 |—sin@,; cosO,, Csin013e*5 0  coso,, 0 0 11y,

1998 onwards:

Probed with atmospheric neutrinos,
long baseline accelerator neutrinos
(SK, K2K, MINOS)

sin?(20;) > 0.95 (90% C.L.)
Am?s;| = 2.44 +0.13 x 102 eV?

2001 onwards:
Probed with solar neutrinos,
long baseline reactor neutrinos
(SK, SNO, KamLAND)

sin2(2912) = 0.846 £ 0.021
Am?;=7.53 £0.18 x 10° eV?

\/
First measured recently! (2011 — 2012)
Short baseline reactor neutrinos (Daya Bay, RENO, DoubleChooz);
Long baseline accelerator neutrinos (T2K, MINOS, NOvA)

sin?(20:) = 0.093 + 0.008
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 T2K observes 28 ve events (4.92 + 0.55 events expected for sin2(2813) = 0)

 Comparison to nuII hypotheS|s gives 7.3c significance for 813 # 0

Tension with 813 measurement at reactors

o.:J[— ] already gives some sensitivity to 0
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1) What is the CP violating phase 07
2) What is the mass ordering?

, Normal Ordering Inverted Ordering
. . . . 2
Ambiguity in sign of: m; , EEm——— m, I E— 4
2 2 2 2 (Am )S()l! (Am )12
}n:} o }n2 (A m )arm }nl L
Two possible mass orderings: (Am2)23
(Am )arm
2 \ 4 )
m, : — (Am”),s
§An),, (A,
m, — m; Y
Ve Vi V7t Ve VU %A

3) Is 623 maximal? (i.e., 45°) If not, what octant does it lie in?

4) What is the nature of the neutrino? Dirac or Majorana?
5) Neutrino interaction cross-sections (currently not well understood)
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| B A priori, we expect equal amounts of matter and
anti-matter to have formed in the Big Bang.

h_ C -_-;? | Today (13.8 Gyears later): Not true!

_ /sl.e_; 5 \a Measured asymmetry parameter:
= beabig § (n _ _)
=\ | bhdifference § B NB NB i
|| jefeetes ne = -2 6x 107
i Ny Ny

(Using observations from D/H ratio, CMB, etc.)

LOST PROPERTY

* Neutrinos are Majorana particles (i.e., v=v)
e CP violation in the neutrino sector
(creates L asymmetry)
"Sorry Doc, we had a load of Anti-

* Non-perturbative processes in the early universe .. cound 13 billion years ago,
(COnvertS L—-B asymmetry) but it got lost when we moved”
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Hyper-Kamiokande

_ \Water Purificatiom
. System!

e

"¢ ~1 Megatonne total mass

» Segmented design

« 99,000 PMTs (207)

» 20% photo-coverage
CROSS SECTION

Broad physics programme:
« Neutrino oscillation:
— Atmospheric neutrinos (still statistics limited!)
— Accelerator neutrinos
— Solar neutrinos
 Proton decay
* Neutrino astrophysics
— Supernova burst (~250,000 events expected @ 10 kpc)
— Supernova relic neutrinos B | AN S/
« Various other physics (indirect WIMP search, n-n osc., etc.) o= """ "1

45000
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Understanding neutron yield can help disentangle
the various fluxes from a core-collapse SN burst.
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In 1987, neutrinos were detected froma ~ 10
SN burst in Large Magellanic Cloud

(Sanduleak -69° 292 — SN1987a)

Solar B

Reactor

<

>
Q
=
ol 10°
25 neutrino events at 3 detectors S 10: ,. Solar hep
(Kamiokande, IMB, Baksan) o 10°F "-g/
o 10 :
Even today, Super-Kamiokande would E 1, Atmospheric ve
detect ~10,000 neutrinos from SN burst 10 ,
in galactic centre. (250,000 in Hyper-K) 210 F . tr- 8IS
o10
A SN burst in Andromeda would £10 T
produce 25 — 50 neutrinos in Hyper-K. 210 _ i
= 10 : SRN predictions
H . H H -T....I.. .il....l....I....I....I....I...I.... fa
Our universe is big, with many 1 9770 20 30 40 50 60 70 80 90 100

supernovae explosions; besides Neutrino Energy (MeV)

neutrinos from individual SN bursts, it
Searches for these “Supernova Relic Neutrinos”

should also be possible to detect a SRN | ‘ N
diffuse isotropic neutrino signal from all ( ) are currently background limited;
understanding neutron yield could help

the core-collapse supernova ever. separate the signal from various backgrounds
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Possible “grand unification™ of strong & strong 101

GeV

electroweak forces not directly testable \“T

due to energy scale involved (~10" GeV) "o

2
~ 10" GeV t -
: TOE

force streng

electromagnetic

Can test indirectly, searching for effects ;
of Grand Unified Theories (GUTs) such as: | —  cwronek
— Electric dipole moment of the neutron
— Proton decay energy

Proton decay has been experimentally pursued
for ~35 years.

X Early Grand Unified models (e.g., SU(5))
- predicted lifetime of ~10*° years.

Current experimental limits from
Super-Kamiokande are at the 10°* year level.

p — e+ 10

Modern GUTs predict lifetimes of 10°°°° years.
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Proton Decay

In a water Cherenkov detector, a typical signal

looks like:
1000
* Three rings (all electron-like)
« Total energy close to Mp o
» Unbalanced momentum close to 0. R
p — et + T[O g 500 g R
2 :
Positron 5 0
@ § | ATMvMC.
./ Proton -
| S
2 500 [~ —
gamma i S
Modern GUTs predict lifetimes of 10°°°° years. e~
— Hyper-Kamiokande will probe this region 0 ; : |‘
0 1000
At this scale, previously negligible backgrounds from Invariant Proton Mass (MeV/c?)

atmospheric neutrinos start to limit sensitivity.
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J-PARC Main Ring
Neutrino beamline
( KEK
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* Expected # of events for sin?26,, =0.1, 8 =0 and NH

(7.5 x 107 MW:-sec )
Signal Wrn.ng sign - beam ve/Ve Slgnlflcantly I.arger
(ViI—ve CC) apearance | VWVHCC | mination NC | statistics merit better
v | _ 3,016 28 T 523 | 172 | Ystemates:
V 2,110 396 9 618 265 | New near detector(s)!

From Hayato (Neutrino 2014)
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= \Water Purificatiom
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Cherenkov
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+

Muon Range
Detector
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TITUS: The Tokai Intermediate Tank w/ Unoscillated Spectrum

* To be located ~2 km from J-PARC neutrino beam

* Next-generation 2 kt water Cherenkov, includes:
— 0.1% Gadolinium-doping
— Partly enclosed by Muon Range Detector
* 1.5 Tesla magnetic field
— Large Area Picosec. Photo-Detectors (LAPPDs)
<100 psec tres ; ~1 cm Xres

= p2H s
« Same target nuclei as Hyper-K . o) ~ % Hjaiﬂ f
H20 (and maybe Gd) % T ;: néﬁ 3 _F[Fj:,:, —

« Nearly same target angle and ER = ol [ T Hyeer®
_ 5 %4 08 | —ND 1.8 km}
neutrino energy spectrum Z 0 2 07t —ND 1.0km_
r = 0.6E- | | | ND|280m_:
« Many systematics cancel out in 0.05- o 1 2 3 4 5
Far/Near ratio : ' 1 Ev (GeV)

O 2 T

Ey (GeV)
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Next-Gen Water Cherenkov s

Gadolinium loading « CCQEforv:v+n—1+p(pis“invisible”)
V\I:roton P \ CCQEforv:v+p— I +n
9 Gadolinium —« Coincident signal from Gd allows:
/| charged IJ - v vs. v discrimination
/| lepton QAN Ty e . .
LS - Sensitivity to v interaction mode
| E 120 A
J
Originally detectable signal New signal < 100 F _
[
Magnetised MRD Three main benefits: 80 - E
(1) Increased statistics via calorimetry by 1 range &0 =
— Include p which exit the WC tank but range out in MRD F
— N.B. This does NOT require magnetic field 40 _
(2) Direct constraint on wrong-sign contamination -
— Pro: Well understood physics & high recon. efficiency 20 .
— Con: Sample limited to which exit the WC tank . F | . | | . .
(3) Validation of gadolinium performance [
- Gd-loaded water is a new analysis technique -100 -80 -60 -40 -20 0 20
— Cross-checking with (2) will provide confidence to exploit it Eu = 600 MeV X (cm)
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Gd-loaded water
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Note: ANNIE is effectively a 1% scale model for TITUS!
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Primary physics objective:

— A measurement of the abundance of final state neutrons
(“neutron yield”) from neutrino interactions in water,
as a function of energy.

~

» Theoretically: This depends on nuclear
physics that is not well understood

« Experimentally: To date, the neutron
yield has has not been well measured

\_ J

how many neutrons are
knocked out of the water

—

energy of the neutrino interaction
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Q: How can ANNIE help?

Proton decay events only rarely produce

neutrons in the final state \

p — et+T10 s
=
&
=
Positron uc.:
-+ é . ATMv MC_
©
2 500 | =
- e
0 |
1000

Atmospheric neutrino interactions frequently

_ Invariant Proton Mass (MeV/c?)
produce final state neutrons
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Hyper-K Proton Decay
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P > e"+ T revisited

5.000E+35

(0.5 Mton (10% Bgd)

==0.5 Mton
5.000E+34
Super-K
5.000E+33
~ N M S W W~ 00 O A NS N W~ 000 O = M Wn
S N N N NN SN SN N0 N 0N Mm N M
8e888888803383838383333838333333
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Studies of neutrino-nucleon interactions are
also interesting in their own right!
(see Nulnt conference series)

ANNIE measurements can help constrain and
distinguish between various interaction models.

Precision neutrino oscillation measurements:

/ ﬂ,—"\""I“I‘ll'_""'\_ _u'\_/m"_/\-.f&__ "

AN s A } 1.000m

ot . —

295 km

-

Neutrino cross-sections are a dominant systematic in long-baseline oscillation
experiments, like T2K.

Reduction of this uncertainty will be necessary to conduct searches for dcP,
resolve the mass hierarchy, octant degeneracy, etc.
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ANNIE is designed to run in the
- T ' — Booster Neutrino Beam (BNB) at
| Fermilab.

 — ANNIE will be situated in the former
& SciBooNE hall. (now 'ANNIE Hall'?)

Relevant BNB statistics at this site:
lﬁ,m « On-axis neutrino beam
: 100 meters from target
4 x 10" P.O.T. per pulse
~700 MeV peak energy

- 93% pure vu (in neutrino mode)
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ANNIE is designed to run in the
Booster Neutrino Beam (BNB) at

Fermilab.

ANNIE will be situated in the former
SciBooNE hall. (now 'ANNIE Hall'?)

Fluxes at this site:

=10"E
I
=
2
510 3
E
2
3
c10"E
F Ve
L
1072 T
R
g Ve \“‘x.
T, -, \1\
10" = e .
- T "
- H\"‘-L '--1“_\"
1U'|.1_ P Illlb?\lh—L'-.-l __-‘111"-..|I||
0 1 2 3 4 5
Ev (GeV)
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Assuming ANNIE running in the BNB from SciBooNE hall, we expect the
following event rates for a 10*° P.O.T. exposure (~1 year) in neutrino mode:

CC events at ANNIE hall, ENB

NC events at ANNIE hall, BNB

-?.f E LR L | | It LI [LANLISURLISY [URSUISLIRLES U LI [RLARLAS LN L E E | Tt o I I LU [LASLISURLI [RLISUSLESUES [RU L [RLIRLOSLIL I [RUSLINU '_
T 3 i v, 3
5 "E ™ —v, = S . —v, -
% E L v, E % B Ve ]
2l — ! 2 E . E
1 e —h ) ) _:_ B i _;
1-:1'J _| T - ) i
| Nl L ] | | Ly | ' - =
¢ o : 15 e 3 3 4 4?: Iuﬂf n:I' ' 'c-.lsl ' |1 E— .Isl ' nl ' '2!5' ' '-Lla?' 'ﬂ.IE.' ' .It' I4'I£Iél._. :Glelu'_JB
Ev (GeV) Ev (GeV)
Remlnder_: i | r-type | Total Interactions | Charged Current | Neutral Current |
e On-axis neutrino beam v, 0R02 6001 3000
100 meters from target 2 = - i
« 4x 10" P.O.T. per pulse 2 30 20 0

600 MeV peak energy
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First phase will have:

e ~20 tonnes of Gd-doped water ®
 ~60 PMTs (from WATCHBOY)
@<
It will NOT have: \}
 Significant numbers of LAPPDs (or any?) ANNIE
° Mag netlsed M RD Atmospheric Neutrino Neutron Interaction Experiment

ANNIE Phase | proposal approved in February by Fermilab PAC!

— Will run as a 'test' and not an 'experiment’
— See: http://arxiv.org/pdf/1504.01480v1.pdf

Fermilab has a new 'Neutrino Division', which has a 'short baseline'
section headed by Peter Wilson.

Fermilab seems to view ANNIE as a welcome addition to the SBL
programme, complementing the various LAr detectors in the BNB.
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Timetable: Build Phase | in Summer 2015 and run from Autumn 2015

Physics goals for Phase | are neutron background measurements at

various positions in ANNIE hall (dirt neutrons, 'skyshine’, etc.)
— Will likely run DCTPC in conjunction with Phase |

Looking ahead: ANNIE Phase I

From Autumn 2016, we hope to run for ~2 years with:
« ~20 tonnes of Gd-doped water
« ~150 PMTs
« 10 — 20 LAPPDs
 MRD (possibly magnetised)

— Physics goals include proper neutron yield measurements, and
CC-inclusive measurement of vu on water
— Technical goals include first running of LAPPDs in water
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Hyper-Kamiokande is the next step in the water Cherenkov detectors

- Broad neutrino programme, including oscillation physics and neutrino astrophysics
- Also will have leading sensitivity for proton decay

New technologies for WC include:

- Gd-doping for neutron tagging
- Advanced photosensors (LAPPDs)

ANNIE will test these in the Fermilab Booster Neutrino Beam

- Will commence running later this year in SciBooNE hall
- Background neutron measurement is primary goal for Phase |
- Phase Il planned for next year, adding LAPPDs and making physics measurements

Application to future WC experiments (e.g., Hyper-Kamiokande)

- Beam programme can benefit from a new near detector (TITUS) modelled similar to ANNIE
- Proton decay analysis may increase sensitivity by order of magnitude
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